水系统管道阻力计算

合集下载

水泵扬程计算及管道阻力损失计算

水泵扬程计算及管道阻力损失计算

以上的管路阻力和水泵扬程的计算皆可用估算及查表的方法快速求得,详细计算过程及结果如下:冷冻水泵的扬程估算:1.冷水机组阻力:60-100kpa(取100kpa即10m水柱)2.管路阻力:制冷机房,除污器、集水器、分水器及管路等的阻力:50kpa(5m水柱);取输配侧管路长度250m,其比摩阻200pa/m.则摩擦阻力为:250X200=50000pa=50kpa (5m水柱)考虑输配侧的局部阻力为摩擦阻力的50%,则局部阻力为50X0。

5=25kpa(2。

5m水柱)统计管路的总阻力为:50+50+25=125kpa(12。

5m水柱)。

3.空调末端装置阻力:20—50kpa(取20kpa即2m水柱)4.调节阀的阻力:40kpa(4m水柱)冷冻水系统的各部分阻力之和为:80+110+50+40=280kpa(28m水柱)冷冻水泵扬程:取10%的安全系数,则扬程H=28。

5X1。

1=31m。

冷却水泵扬程估算:1.冷水机组阻力:60—100kpa(10)2.管路阻力:制冷机房,除污器及管路等的阻力:30kpa取输配侧管路长度100m,其比摩阻200pa/m.则摩擦阻力为:100200=20000pa=20kpa (2m水柱)考虑输配侧的局部阻力为摩擦阻力的50%,则局部阻力为200。

5=10kpa统计管路的总阻力为:30+20+10=60kpa(6m水柱)3.调节阀的阻力:40kpa冷却水系统的各部分阻力之和为:80+60+40=180kpa(18m水柱)设冷却塔进出水高差为4m,则总阻力和为20m水柱.水泵扬程:取10%的安全系数,则扬程H=20X1.1=22m。

给排水系统的管道阻力与流量计算

给排水系统的管道阻力与流量计算

给排水系统的管道阻力与流量计算给排水系统是建筑物中不可或缺的一部分,其正常运行依赖于合理的管道设计和准确的管道阻力与流量计算。

本文将介绍给排水系统中管道阻力与流量的计算方法,帮助读者了解如何进行相关设计与计算。

管道阻力计算管道阻力是指液体在管道中运动时所受到的阻碍力,对给排水系统的正常运行有重要影响。

管道阻力的计算可以通过以下公式进行:Hf = f * (L / D) * (v^2 / 2g)其中,Hf表示管道阻力,f表示摩阻系数,L表示管道长度,D表示管道内径,v表示液体流速,g表示重力加速度。

摩阻系数f是在给排水系统设计中常见的一个参数,其值可以根据不同管道材料和液体性质进行选择。

一般情况下,可通过查询相关文献或规范手册来获取合适的摩阻系数值。

液体流速v可以通过流量计算所得。

在给排水系统设计中,流量是一个重要的参数,可通过以下公式计算:Q = A * v其中,Q表示流量,A表示管道的截面积,v表示液体流速。

通过计算得到的流量可以用于管道阻力的计算。

管道流量计算给排水系统中,流量计算是设计过程中的重要环节,它直接影响管道的尺寸和性能。

可以使用以下几种方法进行管道流量的计算:1. 使用经验公式对于给排水系统中的常见管道,可以使用一些经验公式来进行流量估算。

一种常用的经验公式是曼宁公式,如下所示:Q = (1 / n) * A * R^(2/3) * S^(1/2)其中,Q表示流量,n表示曼宁粗糙系数,A表示管道的截面积,R表示管道的水力半径,S表示水流坡度。

2. 使用公式计算除了经验公式外,也可以使用一些计算公式进行流量的准确计算。

一种常用的计算公式是瑞诺数公式,如下所示:Q = C * A * v其中,Q表示流量,C表示瑞诺系数,A表示管道的截面积,v表示液体流速。

对于不同类型的管道,可以根据具体情况选择合适的计算公式。

在一些特殊情况下,可能需要考虑更多的因素,如压力损失、摩阻系数的变化等。

给排水系统的管道阻力与流量计算是一个复杂而关键的设计环节。

水系统管道阻力计算

水系统管道阻力计算

空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即(1-1)若直管段长度l=1m时,则式中λ——摩擦阻力系数,m;——管道直径,m;R——单位长度直管段的摩擦阻力(比摩阻),Pa/m;——水的密度,kg/m3;——水的流速,m/s。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

计算管道沿程阻力时,室内冷、热负荷就是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷就是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。

二、局部阻力(一)局部阻力及其系数在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

Engineering Supervisor Comments:(2-1) 式中——管道配件的局部阻力系数;——水流速度,m/s。

常用管道的配件可以通过相应的表格进行查询。

根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。

对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。

因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。

管道阻力损失计算公式

管道阻力损失计算公式

管道阻力损失计算公式
管道阻力损失是流体在管道中经历的机械能损失,由其内的摩擦力,压力损失和间断损失组成。

管道阻力损失的计算公式是:
ΔP = L × 0.109 × (V²/ D4) × (f / 2g)
ΔP:管道阻力损失,单位是KPa;
L:管道总长度,单位是m;
V:流体流速,单位是m/s;
D:管道内径,单位是m;
f:管道内摩擦系数;
2g:重力加速度,一般把2g定为9.8。

管道阻力损失计算公式可以帮助我们计算管道中流体的机械能损失,从而更好地控制管道的设计和运行。

管道阻力损失的计算公式可以用于计算水管、汽油管、空气管、蒸汽管等各种流体的阻力损失。

例如,可以用来计算水管中水流的阻力损失,计算公式如下:
ΔP = L × 0.109 × (V²/ D4) × (0.02 / 2g)
ΔP:管道阻力损失,单位是KPa;
L:管道总长度,单位是m;
V:水流流速,单位是m/s;
D:管道内径,单位是m;
0.02:水流的摩擦系数;
2g:重力加速度,一般把2g定为9.8。

通过计算管道的阻力损失,我们可以更好地控制管道的运行,从而更有效地利用管道的资源。

管道阻力损失的计算公式实际上是一种能量守恒定律,它也可以用于分析水力学系统中流体的流动特性,从而发现和解决流体流动中的问题。

总之,管道阻力损失计算公式是一个非常有用的工具,可以帮助我们计算管道中流体的机械能损失,更好地控制管道的设计和运行。

水在管路中的阻力计算

水在管路中的阻力计算

水在管路中的阻力计算1.基本概念和定义-流体阻力:流体通过管道时受到的阻碍力,是流体流动过程中能量损失的表现。

-泊肃叶流动:当流体通过管道时,管道内流速分布均匀,流线方向与管道轴线平行。

-局部阻力:由于管道结构,如弯头、三通、突然收缩、扩大等,引起的局部阻力损失。

-摩擦阻力:由于流体分子之间的相互作用而形成的阻力,是流体通过管道的主要阻力。

2.摩擦阻力计算摩擦阻力计算使用的基本公式是达西-魏塞尔巴赫公式(Darcy-Weisbach equation),表示为:ΔP=f*(L/D)*(ρV²/2)其中,ΔP是通过管道的压力损失,f是摩擦系数,L是管道长度,D 是管道直径,ρ是水的密度,V是流速。

摩擦系数f是根据管道壁面粗糙度、雷诺数和所处区域的实验数据确定的。

常用的计算f的公式包括:- 汉密尔顿公式:f = 0.4/((log10((ε/D)/3.7))^2),适用于光滑管壁。

- 罗特金-普拉特公式:f = 0.11/((log10((ε/D)/1.5) +(1/3.7))^2),适用于一般商业钢管。

3.局部阻力计算局部阻力损失的计算需要结合具体的管道结构和特性,一般可以使用以下公式:-突然扩大或收缩:ΔP=K*(V²/2)其中,K是局部阻力系数,可以根据实验数据或经验公式查表获得。

-管道弯头:ΔP=K*(ρV²/2)4.阻力损失计算-分段法:将管道分成若干段,计算每段的局部阻力和摩擦阻力,然后将其累加得到整个管道系统的阻力损失。

-等效长度法:将整个管道系统的阻力损失转化为等效长度,再根据上述的摩擦阻力公式计算出阻力损失。

5.示例计算假设有一个水流经过长度为100m、直径为0.3m的水管。

水的密度为1000kg/m³,流速为2m/s。

根据公式可以计算出摩擦阻力:ΔP=f*(L/D)*(ρV²/2)ΔP=0.04*(100/0.3)*(1000*2²/2)假设在水管中有一个半径为0.2m的弯头,根据公式可以计算出局部阻力:ΔP=K*(ρV²/2)ΔP=K*(1000*2²/2)综合计算整个管道系统的阻力损失,将摩擦阻力和局部阻力进行累加。

水系统管道阻力计算

水系统管道阻力计算

水系统管道阻力计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]Engineering Supervisor Comments:Signature:____________________________ ________________空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力?p m ,即?p m =λ?l d ?ρ?v 22(1-1)若直管段长度l=1m 时,R =λd ?ρ?v 22 则?p m =R ?l式中 λ——摩擦阻力系数,m ;d——管道直径,m ; R ——单位长度直管段的摩擦阻力(比摩阻),Pa/m ;ρ——水的密度,kg/m 3;v——水的流速,m/s 。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU 机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m ,通常不应超过400Pa/m 。

Engineering Supervisor Comments:Signature:____________________________ ________________二、局部阻力(一)局部阻力及其系数在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力(P j )。

管路沿程阻力计算

管路沿程阻力计算

管路沿程阻力计算【原创实用版】目录一、引言二、管路沿程阻力的概念和计算方法1.概念2.计算方法三、管路局部阻力的概念和计算方法1.概念2.计算方法四、冷水机组冷却水系统的管路阻力分析1.系统概述2.沿程阻力和局部阻力的计算五、结论正文一、引言在暖通空调系统中,冷水机组冷却水系统的管路阻力计算是一项重要的工作。

合理的管路设计可以降低系统阻力,提高系统的工作效率,从而实现节能降耗。

本文将对冷水机组冷却水系统的管路沿程阻力和局部阻力进行分析和计算。

二、管路沿程阻力的概念和计算方法1.概念管路沿程阻力是指流体在管道中由于管道长度、粗糙度等因素造成的阻力。

沿程阻力的计算公式为:f = ΔP / (L / Q)其中,f 为沿程阻力,ΔP 为压力差,L 为管道长度,Q 为流量。

2.计算方法根据所给数据,冷却水系统的管道沿程阻力可计算如下:f = 50kPa / (100m / 1000kg/s) = 0.05 kPa·m三、管路局部阻力的概念和计算方法1.概念管路局部阻力是指流体在管道中由于管道直径变化、弯头、阀门等局部因素造成的阻力。

局部阻力的计算公式为:f = ΔP / (1 / 2 * γ * Q^2)其中,f 为局部阻力,ΔP 为压力差,γ为流体比热容比,Q 为流量。

2.计算方法根据所给数据,冷却水系统的管道局部阻力可计算如下:f = 150kPa / (1 / 2 * 4.186 * (1000kg/s)^2) = 0.036 kPa·m四、冷水机组冷却水系统的管路阻力分析1.系统概述冷水机组冷却水系统包括冷却塔、冷水机组和管道等组成部分。

系统工作时,冷却水从冷却塔进入冷水机组,经冷却塔底出口流出。

在这个过程中,冷却水需要克服管道的沿程阻力和局部阻力。

2.沿程阻力和局部阻力的计算根据上面的计算,冷却水系统的沿程阻力为 0.05 kPa·m,局部阻力为 0.036 kPa·m。

给水管道阻力损失估算

给水管道阻力损失估算

给水管道阻力损失估算
给水管道阻力损失的估算是工程设计中非常重要的一项计算。

管道的阻力损失取决于多个因素,包括管道的直径、长度、流体的流速、流体的性质以及管道内壁的粗糙度等。

下面我将从不同角度来回答这个问题。

首先,管道的阻力损失可以通过达西-魏布努斯公式来估算,该公式为h_f = f (L/D) (V^2/2g),其中h_f为单位长度管道的阻力损失,f为摩擦阻力系数,L为管道长度,D为管道直径,V为流体流速,g为重力加速度。

摩擦阻力系数f可以通过经验公式或图表查得,而流速V可以根据设计流量和管道截面积计算得出。

其次,对于复杂的管道系统,可以使用计算机辅助设计软件进行模拟计算。

这些软件可以考虑更多的因素,如管道的布局、管道材质、流体的温度和压力等,从而更准确地估算阻力损失。

此外,还可以通过实验测定的方法来估算管道的阻力损失。

通过在实验室或现场设置实验装置,测量流体在管道中的压力损失,从而得出阻力损失的数据。

最后,需要指出的是,在进行阻力损失估算时,需要充分考虑管道系统的实际工况,如流体的变化流速、流量以及管道的局部阻力等因素,以保证估算结果的准确性和可靠性。

综上所述,给水管道阻力损失的估算涉及多个方面,需要综合考虑各种因素,通过理论计算、软件模拟、实验测定等方法来获得准确的结果,以保证管道系统的安全稳定运行。

水系统管道阻力计算

水系统管道阻力计算

空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力∆pm,即∆pm =λ∙ld∙ρ∙v22(1-1)若直管段长度l=1m时,R=λd ∙ρ∙v22则∆pm=R∙l式中λ——摩擦阻力系数,m;d——管道直径,m;R——单位长度直管段的摩擦阻力(比摩阻),Pa/m;ρ——水的密度,kg/m3;v——水的流速,m/s。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

计算管道沿程阻力时,室冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室负荷是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。

二、局部阻力(一)局部阻力及其系数在管水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力(P j)。

ΔP j=ζ∙ρν22(2-1) 式中ζ——管道配件的局部阻力系数;ν——水流速度,m/s。

常用管道的配件可以通过相应的表格进行查询。

根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。

对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。

因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。

管道水阻计算

管道水阻计算

管道水阻计算全文共四篇示例,供读者参考第一篇示例:管道水阻计算是指在管道中液体流动时,由于管道本身的摩擦和弯曲等因素产生的阻力。

在管道工程中,水阻的计算是非常重要的,它直接影响着管道工程设计的合理性和施工的可行性。

下面我们将详细介绍管道水阻计算的方法和流程。

一、水阻计算的基本原理1. 水阻的定义:水阻是指管道内部液体流动时所受到的阻力,通常用单位长度的管道所受的水阻力来表示,单位为帕斯卡/米(Pa/m)或牛顿/米(N/m)。

2. 水阻的影响因素:水阻的大小受到多种因素的影响,包括管道材质、管道内径、管道长度、流体粘度、流量大小等。

3. 水阻的计算方法:水阻的计算通常采用达西公式或皮肖莱公式等经验公式,也可以通过数值模拟等方法进行精确计算。

二、管道水阻计算的方法1. 达西公式法:达西公式是描述管道内流体流动情况的经典公式,其计算公式为:f = (8*g*L*Q^2)/(π^2*D^5),其中f为水阻系数,g 为重力加速度,L为管道长度,Q为流量,D为管道直径。

通过达西公式计算出水阻系数后,可根据流体性质和流速等参数进一步计算出管道的水阻力。

2. 皮肖莱公式法:皮肖莱公式是在达西公式基础上发展而来的,其计算公式为:f = (1/[(2*log(R/a))^2]),其中R为管道内径,a为绝对粗糙度。

1. 管道设计与选型:在进行管道设计和选型时,需要对管道的水阻进行计算,以保证管道工程的可靠性和经济性。

2. 管道工程施工:在管道工程施工过程中,需要对管道的水阻进行计算,以评估施工方案的合理性和施工工艺的可行性。

3. 管道运行与维护:在管道运行和维护过程中,需要对管道的水阻进行监测和分析,以保证管道系统的正常运行和安全使用。

四、总结管道水阻计算是管道工程设计、施工和运行中非常重要的环节,通过对管道水阻系数和水阻力的计算,可以确保管道系统的安全性和经济性,提高管道工程的整体质量和效率。

在进行管道水阻计算时,应选择合适的计算方法和工具,结合实际情况进行准确计算,并根据计算结果做出科学合理的决策。

管道阻力计算公式

管道阻力计算公式

管道阻力计算公式管道阻力是指液体在管道内流动时所受到的阻碍力,也可以理解为液体通过管道时所需要克服的摩擦力。

管道阻力是流体力学中一个重要的参数,它不仅与管道的长度、直径、粗糙度等几何因素有关,还与流体的运动速度、粘度等流体性质相关。

下面将介绍一些常见的管道阻力计算公式。

1.低雷诺数情况的定泄流量计算公式:当雷诺数小于4000时,可以使用定泄流量公式进行计算。

定泄流量公式基于液体流动的黏滞机制,其计算公式如下:Q=(π/128)*d^4*(2gΔh/ρ)^0.5其中,Q为流量,单位为立方米/秒;d为管道直径,单位为米;g为重力加速度,单位为米/秒^2;Δh为两点之间的液位高度差,单位为米;ρ为流体的密度,单位为千克/立方米。

2.磁级法计算公式:对于封闭管道中直流液体的流动,可以使用磁级法计算管道阻力。

磁级法是通过测量管道内液体的压降来计算管道阻力的,其公式如下:ΔP=f*(L/d)*(ρv^2/2)其中,ΔP为管道内压降,单位为帕斯卡;f为阻力系数,没有单位;L为管道长度,单位为米;d为管道直径,单位为米;ρ为流体的密度,单位为千克/立方米;v为液体的流速,单位为米/秒。

3.流量-压降关系公式:不同流速下液体在管道内的流动会产生不同的压降。

利用实验数据可以得到流量-压降关系公式,通过该公式可以根据所需流量反推出相应的压降。

具体公式如下:ΔP=(ρ/2)*K*Q^2其中,ΔP为管道内压降,单位为帕斯卡;ρ为流体的密度,单位为千克/立方米;K为压降系数,没有单位;Q为流量,单位为立方米/秒。

4.英国工程学文献公式:提出了一种通用的计算管道阻力的公式,即英国工程学文献公式。

ΔP=4f*(L/d)*(ρv^2/2)其中,ΔP为管道内压降,单位为帕斯卡;f为阻力系数,没有单位;L为管道长度,单位为米;d为管道直径,单位为米;ρ为流体的密度,单位为千克/立方米;v为液体的流速,单位为米/秒。

总结:以上就是一些常见的管道阻力计算公式。

水系统管道阻力计算

水系统管道阻力计算

空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即(1-1)若直管段长度l=1m时,则式中λ——摩擦阻力系数,m;——管道直径,m;R——单位长度直管段的摩擦阻力(比摩阻),Pa/m;——水的密度,kg/m3;——水的流速,m/s。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。

二、局部阻力(一)局部阻力及其系数在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数;——水流速度,m/s。

常用管道的配件可以通过相应的表格进行查询。

根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。

对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。

因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。

在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。

管路阻力计算和水泵选型

管路阻力计算和水泵选型

2.1水系统管路阻力估算、管路及水泵选择a)确定管径一般情况下,按5℃温差来确定水流量(或按主机参数表中的额定水流量),主管道按主机最大能力的总和估算,分支管道按末端名义能力估算。

根据能力查下面《能力比摩阻速查估算表》,选定管型。

b)沿程阻力计算根据公式沿程阻力=比摩阻×管长,即H y=R×L,pa,计算时应选取最不利管路来计算:第一步:采用插值法计算具体的适用比摩阻,比如能力为7.5kW,范围属于“6<Q≤11”能力段,K r=39.4,进行插值计算。

R=104+(7.5-6)×39.4=163.1 pa/m第二步:根据所需管长计算沿程阻力,假设管长L=28m,则H y= R×L=163.1×28=4566.8 pa=4.57 kpac)局部阻力计算作为估算,一般地,把局部阻力估算为沿程阻力的30-50%,当阀门、弯头、三通等管件较多的时候,取大值。

实际计算采用如下公式:Hj=ξ*ρv2/2,ξ---局部阻力系数,ρv2/2---动压ρv2/2动压查表插值计算,ξ局部阻力系数参考下表取值:d)水路总阻力计算及水泵选型水路总阻力包括:所有管道的沿程阻力、阀门、弯头、三通等管件的局部阻力、室外主机的换热器阻力(损失)、室内末端阻力(损失),后面两项与不同的主机型号和末端相关。

计算式为:H q=H y+H j+H z+H m+H fH z——室外主机换热器阻力,一般取7m水柱H m——室内末端阻力H f——水系统余量,一般取5m水柱;总阻力计算完成后,就可以根据总阻力选取流量满足要求的情况下能提供不小于总阻力扬程的水泵来匹配水系统。

选取水泵时要根据“流量——扬程曲线”来确定,但扬程和流量不能超出所需太大(一般不超过20%),避免导致出现水力失调和运行耗能较高。

水系统的沿程阻力和局部阻力与系统水流量和所采用的管径相关,流量、管径及所使用各种配件的多少决定总阻力,流量取决于主机能力(负荷)及送回水温差,流量确定的情况下,管径越大,总阻力越小,水泵的耗能越小,但管路初投资会增大。

排水管道阻力计算方法及优化措施

排水管道阻力计算方法及优化措施

排水管道阻力计算方法及优化措施排水管道是城市基础设施中至关重要的部分,它们负责将废水从建筑物或公共区域排出。

然而,在这个过程中,管道中的阻力会对排水效率产生不利影响。

因此,计算排水管道的阻力以及采取优化措施对于确保排水系统的正常运行非常重要。

本文将探讨排水管道阻力计算的方法,并提出一些优化措施以提高排水效率。

一、排水管道阻力的计算方法排水管道的阻力可以通过以下几个因素计算得出。

1. 管道材料和尺寸:不同材料和尺寸的管道对水流的阻力不同。

通常,直径越大的管道对水流的阻力越小。

2. 流速:流速也是计算阻力的重要因素。

流速越大,阻力也会增加。

3. 管道长度:管道越长,阻力越大。

基于上述因素,可以采用一些常用的公式来计算排水管道的阻力。

例如,Darcy-Weisbach公式可以用来计算管道的阻力损失,其表达式为:hL = f * (L/D) * (V^2/2g)其中,hL为单位长度的阻力损失(米/米),f为摩阻系数,L为管道长度(米),D为管道直径(米),V为流速(米/秒),g为重力加速度(9.81米/秒²)。

值得注意的是,这只是计算阻力的一种方法,根据具体情况可能还需要考虑其他因素。

二、排水管道阻力的优化措施为了降低排水管道的阻力并提高排水效率,可以采取以下一些优化措施。

1. 使用合理尺寸的管道:选择合适的管道尺寸可以减小阻力。

当管道的直径适当增大时,管道内的水流速度会减小,从而减少了阻力。

2. 采用光滑的内壁材料:管道内壁越光滑,水流的阻力就越小。

因此,在设计和安装排水管道时,应尽量选择内壁光滑的材料。

3. 缩短管道长度:管道长度越短,阻力损失也就越小。

因此,在规划和设计排水系统时,应尽量缩短管道的长度,避免不必要的弯曲和转角。

4. 定期清理管道:管道内部的污垢和堆积物会增加水流的阻力。

定期清理管道,保持管道内部的通畅,有助于降低阻力并保持排水系统的正常运行。

5. 考虑使用增压设备:在长距离或者高层建筑中,水流可能会受到重力的限制,导致排水效率下降。

水系统管道阻力计算

水系统管道阻力计算

水系统管道阻力计算Engineering Supervisor Comments:Signature:____________________________ ________________Engineering Supervisor Date 空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即(1-1)若直管段长度l=1m 时,则式中 λ——摩擦阻力系数,m ;——管道直径,m ; R ——单位长度直管段的摩擦阻力(比摩阻),Pa/m ; ——水的密度,kg/m 3; ——水的流速,m/s 。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

Engineering Supervisor Comments:Signature:____________________________ ________________Engineering Supervisor Date 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU 机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m ,通常不应超过400Pa/m 。

二、局部阻力(一)局部阻力及其系数在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

水系统管道阻力计算终审稿)

水系统管道阻力计算终审稿)

水系统管道阻力计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]Engineering Supervisor Comments:Signature:____________________________ ________________空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力p m ,即p m =λ?l d ρ?v 22 (1-1)若直管段长度l=1m 时,R =λd ρ?v 22 则p m =Rl式中 λ——摩擦阻力系数,m ;d——管道直径,m ;R ——单位长度直管段的摩擦阻力(比摩阻),Pa/m ;ρ——水的密度,kg/m 3;v——水的流速,m/s 。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU 机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m ,通常不应超过400Pa/m 。

Engineering Supervisor Comments:Signature:____________________________ ________________二、局部阻力(一)局部阻力及其系数在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力(P j )。

水管内的阻力计算公式

水管内的阻力计算公式

水管内的阻力计算公式水管内的阻力是指水流通过管道时受到的阻碍力,它是影响水流速度和压力损失的重要因素。

在工程实践中,准确计算水管内的阻力是非常重要的,可以帮助工程师设计合理的管道系统,提高水流效率,降低能耗和成本。

本文将介绍水管内的阻力计算公式及其应用。

一、水管内的阻力计算公式。

1. 窄管流动。

当水流通过直径较小的管道时,可以采用泊肖流动公式来计算阻力。

泊肖流动公式如下:f = 64 / Re。

其中,f为摩擦阻力系数,Re为雷诺数。

雷诺数的计算公式为:Re = ρ v d / μ。

其中,ρ为水的密度,v为水流速度,d为管道直径,μ为水的动力粘度。

通过这两个公式,可以计算出水管内的摩擦阻力系数。

2. 湍流流动。

当水流通过直径较大的管道时,会出现湍流现象,此时可以采用克尔文-方程来计算阻力。

克尔文-方程如下:f = 0.079 / (Re ^ (1/4))。

其中,f为摩擦阻力系数,Re为雷诺数。

雷诺数的计算公式同上。

通过这个公式,可以计算出水管内的摩擦阻力系数。

3. 总阻力。

水管内的总阻力可以通过以下公式来计算:ΔP = f (L / d) (ρ v^2 / 2)。

其中,ΔP为压力损失,f为摩擦阻力系数,L为管道长度,d为管道直径,ρ为水的密度,v为水流速度。

通过这个公式,可以计算出水管内的总阻力。

二、水管内的阻力计算应用。

1. 工程设计。

在水力工程和给排水工程中,需要设计合理的管道系统,以确保水流畅通,减小能耗和成本。

通过水管内的阻力计算公式,工程师可以计算出管道系统的阻力,从而选择合适的管道直径和泵的流量,提高水流效率,降低能耗和成本。

2. 管道维护。

在管道维护过程中,需要定期清洗和检修管道系统,以确保水流畅通。

通过水管内的阻力计算公式,工程师可以计算出管道系统的阻力,从而评估管道系统的状况,及时进行维护和修复,保证水流畅通。

3. 水流控制。

在水流控制系统中,需要控制水流的速度和压力,以满足不同的工艺需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空调水系统的水力计算
根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)
流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即
(1-1)
若直管段长度l=1m时,

式中λ——摩擦阻力系数,m;
——管道直径,m;
R——单位长度直管段的摩擦阻力(比摩阻),Pa/m;
——水的密度,kg/m3;
——水的流速,m/s。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。

二、局部阻力
(一)局部阻力及其系数
在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数;
——水流速度,m/s。

常用管道的配件可以通过相应的表格进行查询。

根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。

对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。

因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。

在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。

可参见设备安装详图,其中会画出相应的管道配件。

(二)当量长度
利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m):
式中——管道配件的局部阻力系数。

根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。

三、设备压力损失
空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。

这些设备自身都有一定的压力损失。

在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。

将这两部分加起来,才是整个系统的水力损失。

但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。

若缺乏该方面的资料,可以按照经验值进行估算。

估算值见表3-1。

按照上表中估算值,可以得到一个大概的机组压力损失,用于整个系统的阻力估算。

但是如果该品牌厂家提供了设备的压损数据,应采用确切的压损数值进行计算。

这样有利于水力计算的结果以及水泵的选择。

四、冷凝水管
空气冷却处理的过程中,当空气冷却器的表面温度低于或等于处理空气的露点温度时,空气中的水气将冷却器表面冷凝。

因此末端设备都会设置冷凝水收集装置及排水口。

为了能够及时将末端设备内的凝结水排走,必须设置相应的冷凝水排水系统。

1.冷凝水管的水平干管必须保持一定的坡度;
2.一般情况下,根据室内冷负荷查出冷凝水管的公称直径,表4-1
表4-1冷凝水管的管径选择表
如有侵权请联系告知删除,感谢你们的配合!
表3-1部分设备压力损失估算值。

相关文档
最新文档