电负性

合集下载

电负性

电负性
并不是所有电负性差值大于1.7的都形成离子 化合物。 如:HF H:2.1 F:4.0
• 对角线规则: 某些主族元素与其右下方的主族元素的有 些性质是相似的。 试从电负性的角度分析对角线规则。 Li Be B C
Na
Mg
Al
Si
• 1.锂和镁在空气里燃烧,不生成过氧化物, 只生成正常的氧化物(白色,不易溶于水)。 • 2.铍和铝的氢氧化物都呈两性。 • 3.硼和硅的含氧酸盐都能形成玻璃,且互溶。 硼酸和硅酸都难溶于水。
3.电负性大小的标准
分别以氟、锂的电负性为标准。
F: 4.0 Li: 1.0
• 请同学们仔细阅读电负性数值的表格,并 分析电负性的周期性递变。说出同周期、 同主族元素电负性的递变规律。
4、电负性的递变规律:
电负性最大

电负性逐渐 增 大 电 负 性 有
减 小
的 电负性最小 趋 势
原因?
原因解释
第一章 原子结构
第2节 原子结构与元素性质 (第三课时)电负性、对角线规则
三、电负性
1、电负性的概念:
键合电子:原子通过化学键形成物质,我 们把原子里用于形成化学键的电子称为键合电 子 电负性是用来描述不同元素的原子对键合 电子的 能力大小的一个量。
• 2.电负性的意义 • 电负性数值的大小衡量元素在化合物里吸引电 子的大小。元素的电负性越大,表示该原子对 键合电子的吸引能力越大,生成阴离子的倾向 越大。反之,吸引能力越小,生成阳离子的倾 向越大。
(3)判断化合物中各元素化合价的正负
• 电负性数值小的元素在化合物里吸引电子 的能力弱,元素的化合价为正值;电负性 数值大的元素在化合物里吸引电子的能力 强,元素的化合价为负值; NaH SO2 ICl

什么是电负性

什么是电负性

什么是电负性
电负性
原子分为两类,一类具有吸引电子称为阴离子的倾向;另一类具有放出电子成为阳离子的倾向。

将原子吸引电子成为阴离子的强弱程度用数值来表示,这就是电负性。

电负性越大的原子,越容易吸引电子,带负电荷。

电负性的强弱顺序
各元素的电负性数值如下面的元素周期表所示。

越靠近元素周期表右上方的元素,越容易成为负离子。

按照下表所示,与有机化学相关的离子,其吸引电子能力的强弱顺序如下:
Na < Li < H < C < N= Cl < O < F
也就是说,碳元素吸引电子的能力非常弱,且除去锂(Li)和钠(Na)等金属原子外,比碳的能力还弱的,就仅剩下氢元素了。

元素周期律元素的电负性

元素周期律元素的电负性

规律一
一般认为: 电负性 大 于 1.8的元素 为非金属元素; 电负性 小 于 1.8的元素 为金属元素; 电负性 等 于 1.8 的元素为 类金属元素。
规律二
一般认为: 如果两个成键元素间的电负性差值 大于1.7,他们之间通常形成 离 子 键 如果两个成键元素间的电负性差值 小于1.7,他们之间通常形成 共 价 键
鲍林研究电负性 的手搞
元素电负性
2、电负性的递变规律:
电负性最大

电负性逐渐 增 大 电 负 性 有
减 小
的 电负性最小 趋 势
原因?
解释
• 1、同周期从左至右元素的电负性逐渐增大 • 原因:同周期从左至右,电子层数相同,核电荷数 增大,原子半径递减,有效核电荷递增,对外层电 子的吸引能力逐渐增强,因而电负性值增加 • 2、同一主族中,从上到下,元素的电负性逐渐减小 • 原因:同主族元素从上到下,虽然核电荷数也增多, 但电子层数增多引起原子半径增大比较明显,原子 和对外层电子的吸引能力逐渐减弱,元素的电负性 值递减
规律三 电负性小的元素在化合物中吸 引电子的能力 弱 ,元素的化合 价为 正 值;
电负性大的元素在化合物中吸 引电子的能力 强 ,元素的化合 价为 负 值。
课堂练习: 1、一般认为:如果两个成键元素的电负性相差大 于1.7,它们通常形成离子键;如果两个成键元素 的电负性相差小于1.7,它们通常形成共价键。查 阅下列元素的电负性数值,判断:①NaF ②AlCl3 ③NO ④MgO ⑤BeCl2 ⑥CO2 共价化合物( ②③⑤⑥ ) 离子化合物( ①④ )
8. A、B、C、D四种元素,已知A元素是自然界 中含量最多的元素;B元素为金属元素,已知 它的原子核外K、L层上电子数之和等于M、N层 电子数之和;C元素是第3周期第一电离能最小 的元素,D元素在第3周期中电负性最大。 (1)试推断A、B、C、D四种元素的名称和符号。 氧(O)钙( Ca)钠( Na)氯(Cl)

电负性规律总结

电负性规律总结

电负性规律总结1. 什么是电负性?电负性是描述一个原子或离子在共有电子对中吸引电子的能力的量度。

在化学中,电负性常用于描述共价键中的电子云的偏移程度。

通常,电负性较高的元素会吸引共享电子对,而电负性较低的元素则会被吸引,形成极性键。

2. 电负性的测定方法目前,最常用的电负性测定方法是根据保罗电负性表进行。

保罗电负性表是由美国化学家林德利·保罗(Linus Pauling)在1932年提出的一种量化电负性的方法。

保罗将氢的电负性定为2.1,并将其他元素的电负性与氢进行比较,得出了一张电负性表。

保罗电负性表中,元素的电负性数值越高,表示元素吸引共享电子对的能力越强。

例如,氧的电负性为 3.44,而钠的电负性仅为0.93。

电负性数值的差异越大,键越极性。

3. 电负性规律3.1 周期表中的电负性根据周期表的排列,我们可以观察到电负性在周期表中的一些规律。

在同一周期中,随着原子核电荷数的增加,元素的电负性呈现上升趋势。

这是由于原子核的电荷数增加,电子云被更有效地吸引,从而增加了元素的电负性。

同一族元素的电负性也具有一定的规律。

一般来说,元素原子序数越大,电负性越低。

这是因为原子半径增加,电子离原子核的距离增加,电子云与核之间的吸引减弱,从而降低了元素的电负性。

3.2 化合物中的电负性在化合物中,元素的电负性差异决定了键的极性。

当两个元素的电负性相差较大时,形成的键称为离子键。

离子键是由电子从一个原子转移到另一个原子形成的,并且通常存在于金属和非金属元素之间。

当两个元素的电负性差异较小时,形成的键称为共价键。

共价键是由共享电子对形成的,并且通常存在于非金属之间。

共价键还可以分为极性共价键和非极性共价键。

当两个元素的电负性相等时,形成的共价键为非极性共价键;当两个元素的电负性差异较大时,形成的共价键为极性共价键。

3.3 电负性与化学反应的影响电负性差异对化学反应的性质和速率有重要影响。

极性键中,电负性较大的原子会部分亦或完全掌握着共享电子对。

电负性的规律

电负性的规律

电负性的规律
1.随着原子序号的递增,元素的电负性呈现周期性变化。

2.同一周期,从左到右元素电负性递增,同一主族,自上而下元素电负性递减。

对副族而言,同族元素的电负性也大体呈现这种变化趋势。

因此,电负性大的元素集中在元素周期表的右上角,电负性小的元素集中在左下角。

1电负性大小比较规律
1.随着原子序号的递增,元素的电负性呈现周期性变化。

2.同一周期,从左到右元素电负性递增,同一主族,自上而下元素电负性递减。

对副族而言,同族元素的电负性也大体呈现这种变化趋势。

因此,电负性大的元素集中在元素周期表的右上角,电负性小的元素集中在左下角。

3.电负性越大的非金属元素越活跃,电负性越小的金属元素越活泼。

氟的电负性最大(
4.0),是最容易参与反应的非金属;电负性最小的元素(0.79)铯是最活泼的金属。

4.过渡元素的电负性值无明显规律。

2常见元素电负性大小(鲍林标度)
非金属系:氟>氧>氯>氮>溴>碘>硫>碳
金属系:铝>铍>镁>钙>锂>钠>钾。

电负性变化规律

电负性变化规律

电负性变化规律我们知道,电负性是物质原子或离子所带的正电荷数与负电荷数的比值。

它是物质本身固有的特性,在周围环境中几乎不会发生变化。

但由于人类对电的性质还缺乏深入的了解,因此对它的认识经历了一个由浅入深、从表及里、逐步完善的漫长过程。

直到19世纪末期,电荷在导体内的运动,人们才初步发现了它的“逆”运动规律。

据科学家统计,迄今为止,共有200多种元素具有电负性。

因此,绝大部分元素都呈中性,只有少数元素例外。

所谓“电负性”是指这些元素的原子核对于核外电子吸引能力的大小。

由于原子核对电子的吸引能力随电子层数的增加而减弱,因此电负性总是由较外层电子数目的增加而增加。

最早发现这一规律的是法拉第。

他注意到在磁场作用下,钢针偏转的现象。

由此推断这一现象也可能存在于导体内。

为了证实这一假设,他将铜针放在通电的螺线管中,观察到铜针转动得更快。

通过进一步研究他发现这一现象的机理:在导体内产生强磁场后,由于它对空间电荷的作用相当于洛仑兹力,因此使电荷在导体内产生沿螺线管长度方向的移动,从而造成铜针转动。

当时,法拉第认为这一效应只存在于导体内部,其应用前景十分渺茫。

3。

自感现象:自感是导体自身电流发生变化而引起的导体本身电位变化。

根据这一现象建立了自感系数的定义:电流自身变化量与电流变化量之比。

可见,在这两种现象中,都涉及到电荷的位移,并且都表示电荷在导体内部的移动。

那么,这两种现象究竟是怎样产生的呢?原来,在导体内部,由于受到电荷的束缚,因此要产生电流必须克服束缚电荷的阻力做功,这就需要有能量损耗。

能量的这种损耗,主要来源于电子的热运动。

当导体内的电子与导体分子发生碰撞时,便会产生大量的热,这些热量被导体内部的非电子气体所吸收,使导体的电阻增大,从而降低了电子的平均能量,这样,电子在通过导体时碰撞机会减少,因此运动速度减慢。

如果导体中没有电流通过,热量全部被导体内的分子和原子吸收,电子与导体的碰撞机会也将很少,因此电子的平均能量将保持不变,电子在导体内的运动也就将是自由落体运动,其动能不会发生变化,电流也就无从谈起。

电负性

电负性

电负性本页解释何谓电负性、周期表中元素电负性的变化规律及原因;元素电负性差异对成键造成的影响、极性键和极性分子的意义。

如果你对有机化学背景下的电负性感兴趣,你可以在页面底部找相关链接。

什么是电负性定义电负性是原子对成键电子吸引倾向的量化(相对标度);元素的电负性愈大,吸引成键电子对的倾向就愈强。

鲍林标度(Pauling scale)是使用最广泛的电负性标度。

其标度值的范围从电负性最强的元素氟(F)——标度值为3.98,到电负性最弱的元素钫(Fr)——标度值为0.7。

两个电负性相同的原子成键会发生什么?如下图,原子A和原子B之间存在一个成键。

当然除了这个成键以外,每个原子可以同时与更多的原子之间存在着成键——不过这与我们所要讨论的问题无关。

如果原子的电负性相同,那么它们对成键电子对的吸引能力也相同。

因而电子出现在两个原子附近的概率相等,电子在平均意义上会出现在两个原子间的正中。

此类成键,A 和B通常为同一种原子,例如H2分子或Cl2分子。

注意: 上边的示意图表示的是电子在平均意义上的位置。

电子实际上存在于分子轨域当中,并且其位置在不断的变换。

此类成键被看作是"纯粹" 的共价键——电子均匀的为两个原子所共享。

如果B的电负性稍强于A呢?B对电子对的吸引能力会比A稍强一些。

这意味着在成键的B端电子密度会更高一些,因此略微带负电。

同时,A 端(有点缺乏电子)略微带正电。

图中,"" (读做"delta") 的意思为"略微的","+" 表示"略微带正电"。

什么是极性键?我们用极性键一词形容成键两端电荷不均匀分布的共价键——换一句话说就是成键的一端略微带正电荷而另一端略微带负电荷。

大多数共价键为此类成键。

HCl中的氢—氯成键以及水分子中的氢—氧成键皆为典型的极性键。

如果B的电负性远远超过了A呢?电子对会被吸引到成键的B端。

电负性

电负性

电负性本页解释何谓电负性、周期表中元素电负性的变化规律及原因;元素电负性差异对成键造成的影响、极性键和极性分子的意义。

什么是电负性定义电负性是原子对成键电子吸引倾向的量化(相对标度);元素的电负性愈大,吸引成键电子对的倾向就愈强。

鲍林标度(Pauling scale)是使用最广泛的电负性标度。

其标度值的范围从电负性最强的元素氟(F)——标度值为3.98,到电负性最弱的元素钫(Fr)——标度值为0.7。

两个电负性相同的原子成键会发生什么?如下图,原子A和原子B之间存在一个成键。

当然除了这个成键以外,每个原子可以同时与更多的原子之间存在着成键——不过这与我们所要讨论的问题无关。

如果原子的电负性相同,那么它们对成键电子对的吸引能力也相同。

因而电子出现在两个原子附近的概率相等,电子在平均意义上会出现在两个原子间的正中。

此类成键,A 和B通常为同一种原子,例如H2分子或Cl2分子。

注意: 上边的示意图表示的是电子在平均意义上的位置。

电子实际上存在于分子轨域当中,并且其位置在不断的变换。

此类成键被看作是"纯粹" 的共价键——电子均匀的为两个原子所共享。

如果B的电负性稍强于A呢?B对电子对的吸引能力会比A稍强一些。

这意味着在成键的B端电子密度会更高一些,因此略微带负电。

同时,A 端(有点缺乏电子)略微带正电。

图中,"" (读做"delta") 的意思为"略微的","+" 表示"略微带正电"。

什么是极性键?我们用极性键一词形容成键两端电荷不均匀分布的共价键——换一句话说就是成键的一端略微带正电荷而另一端略微带负电荷。

大多数共价键为此类成键。

HCl中的氢—氯成键以及水分子中的氢—氧成键皆为典型的极性键。

如果B的电负性远远超过了A呢?电子对会被吸引到成键的B端。

A失去了它对成键电子对的控制权,而B 完全控制住了这两个电子。

电负性

电负性

周期变化
氢 2.20锂0.98铍 1.57硼 2.04碳 2.55氮 3.04氧 3.44氟 3.98 钠 0.93镁 1.31铝 1.61硅 1.90磷 2.19硫 2.58氯 3.16 钾 0.82钙 1.00锰 1.55铁 1.83镍 1.91铜 1.9锌 1.65镓 1.81锗 2.01砷 2.18硒 2.48溴 2.96 铷 0.82锶 0.95银 1.93碘 2.66钡 0.89金 2.54铅 2.33 一般来说,周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。 电负性也可以作为判断元素的金属性和非金属性强弱的尺度。一般来说,电负性大于1.8的是非金属元素,小 于1.8的是金属元素,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金 属性又有非金属性。
电负性
化学术语
01 计算方法
03 递变规律
目录
02 周期变化 04 主要应用

电负性是元素的原子在化合物中吸引电子的能力的标度。元素的电负性越大,表示其原子在化合物中吸引电 子的能力越强。又称为相对电负性,简称电负性,也叫电负度。电负性综合考虑了电离能和电子亲合能,首先由 莱纳斯·卡尔·鲍林于1932年引入电负性的概念,用来表示两个不同原子间形成化学键时吸引电子能力的相对强弱, 是元素的原子在分子中吸引共用电子的能力。通常以希腊字母χ为电负性的符号。
鲍林的计算方法是:原始鲍林电负性表 其中,,分别指AB、A2、B2分子的键能 阿莱-罗周电负性表(上)和修正鲍林电负性表(下) ②1934年R.S.马利肯从电离势和电子亲合能计算的绝对电负性,即电离能和电子亲和能的平均值。 I为电离能,A为电子亲和能(放热为正,吸热为负) ③1956年A.L.阿莱和E.罗周提出的建立在核和成键原子的电子静电作用基础上的电负性。

电负性

电负性

电负性鲍林标度电负性表电负性的定义电负性(Electronegativity)又称为相对电负性,简称电负性。

电负性综合考虑了电离能和电子亲合能,首先由莱纳斯·卡尔·鲍林于1932年引入电负性的概念,用来表示两个不同原子形成化学键时吸引电子能力的相对强弱,是元素的原子在分子中吸引共用电子的能力。

通常以希腊字母χ为电负性的符号。

鲍林给电负性下的定义为“电负性是元素的原子在化合物中吸引电子能力的标度”。

元素电负性数值越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性数值越小,相应原子在化合物中吸引电子的能力越弱(稀有气体原子除外)。

一个物理概念,确立概念和建立标度常常是两回事。

同一个物理量,标度不同,数值不同。

电负性可以通过多种实验的和理论的方法来建立标度。

计算方法首先需要说明,电负性是相对值,所以没有单位。

而且电负性的计算方法有多种(即采用不同的标度),因而每一种方法的电负性数值都不同,所以利用电负性值时,必须是同一套数值进行比较。

比较有代表性的电负性计算方法有3种:① L.C.鲍林提出的标度。

根据热化学数据和分子的键能,指定氟的电负性为4.0,锂的电负性1.0,计算其他元素的相对电负性。

②R.S.密立根从电离势和电子亲合能计算的绝对电负性。

③A.L.阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性。

常见元素的电负性变化氟〉氧〉氮= 氯〉溴〉碘= 硫= 碳铝>铍>镁>锂=钙>钠>钾电负性的周期性变化氢 2.1 锂1.0铍 1.57 硼 2.04 碳 2.55 氮 3.04 氧 3.44 氟 4.0 钠 0.93 镁 1.31 铝 1.61 硅 1.90 磷 2.19 硫 2.58 氯 3.16 钾 0.82 钙 1.00 锰 1.55 铁 1.83 镍 1.91 铜 1.9 锌 1.65 镓1.81 锗2.01 砷 2.18 硒 2.48 溴 2.96铷 0.82 锶 0.95 银 1.93 碘 2.66 钡 0.89 金 2.54 铅 2.33一般来说,周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。

元素的电负性及其变化规律

元素的电负性及其变化规律

最新进展:发现新的电负性 测量技术和计算方法
当前研究重点:探索电负性 变化的规律和影响因素
未来展望:深入研究电负性在 材料科学、化学和生物学等领
域的应用前景
挑战与机遇:电负性研究面 临的问题和可能的突破口
探索更多元素和化合物的电负 性规律
深入研究电负性与元素周期表 的关系
拓展电负性在化学反应中的作 用机制
电子密度受原子半径、电子 构型等因素影响
电子密度越大,电负性越强
电子密度与元素在周期表中 的位置有关
电子密度变化规律与元素性 质密切相关
PART FOUR
电负性影响共价 键的形成和强度
电负性差异导致 极性键和非极性 键的形成
电负性在分子间 作用力中的重要 性
电负性对酸碱反 应的指导作用
判断元素的金属性和非金属性
XX,a click to unlimited possibilities
汇报人:XX
CONTENTS
PART ONE
电负性是描述元素吸引电子的能力的参数 电负性值越大,元素吸引电子的能力越强 电负性的变化规律与元素在周期表中的位置有关 电负性的变化规律受到原子半径、有效核电荷数等因素的影响
描述原子吸引电子的能力 决定元素在化合物中的化合价 影响元素的化学性质 用于预测分子的极性
预测化合物的性质
指导元素化合物的合成和分离
指导元素的分类和命名
电负性在化学反应中可以预测化合物的性质和稳定性 电负性可以用来判断化学键的类型和强度 电负性可以用来预测化学反应的方向和速率 电负性在化学反应中可以用来指导新材料的合成和设计
合金设计:利用电 负性差异,调整合 金成分,提高材料 性能
化学键合:利用电 负性差异,形成稳 定的化学键,合成 新型材料

化学高考电负性知识点总结

化学高考电负性知识点总结

化学高考电负性知识点总结化学高考电负性知识点总结电负性是用来描述元素对共价键中电子的吸引能力的一个物理量。

它能够帮助我们理解分子的性质以及化学反应的方向性。

在高考化学中,电负性是一个重要的知识点,本文将对电负性进行详细的总结和解析。

一、电负性的概念和含义1. 电负性的定义:电负性是一个量化描述元素吸引共价键中电子能力的物理量。

常用的电负性量表是由林德尔(Pauling)提出的,该量表将最电负元素(氟)的电负性定义为4.0,然后按照一定规则对其他元素进行排序。

2. 电负性的含义:电负性的大小反映了元素获取电子的能力,即元素对共价键中电子的吸引能力。

电负性大的元素倾向于获得电子,形成阴离子;电负性小的元素倾向于失去电子,形成阳离子。

二、电负性的趋势和规律1. 周期表中的电负性:沿着周期表向右和向上,电负性逐渐增加。

原因:原子半径的缩小和核电荷的增加使得电子与原子核之间的吸引力增强,电子云向外层扩散的难度加大,电子云的密度增加,电负性增强。

2. 主族元素之间的电负性:随着电荷数的增大,同一个周期中的元素电负性逐渐增大。

3. 电负性的数值差异:根据电负性表,同一化合价的元素之间的电负性差值为0.4-0.5时为共价键,差值大于1.7时为离子键,差值介于0.4-1.7之间的化合物具有明显的共价和离子性混合。

三、电负性与化学性质的关系1. 共价键的极性:电负性差异大的元素之间形成极性共价键,电负性差异小的元素之间形成非极性共价键。

2. 分子极性:分子的极性主要由分子中各原子的电负性差异所决定。

当一个分子中极性键的极性相互抵消时,整个分子为非极性分子;当一个分子中极性键的极性不能完全抵消时,整个分子为极性分子。

四、电负性和化学反应的方向性1. 电负性差异和反应活性:电负性差异大的元素,如金属和非金属之间形成的化合物一般更加稳定,反应活性较低。

而电负性差异小的元素,如非金属之间形成的化合物,由于电负性接近,容易发生化学反应。

电负性的变化规律

电负性的变化规律

电负性是一种被广泛应用于科学研究和工业应用的质量。

它可以描述一种物质的电性质,用来表示电荷的多少。

它的变化规律是由物质的电荷的性质而定的。

一般情况下,物质的电负性会随着电子的数量的变化而变化,电子越多,物质的电负
性就越高。

例如,铁的电负性就比铝的电负性高,因为铁的原子拥有更多的电子。

电负性
也会随着物质的结构而变化,例如,金属的电负性会比非金属的电负性要高。

此外,电负
性也会随着温度的变化而变化,当温度升高时,物质的电负性会增加,而当温度降低时,
物质的电负性会降低。

另外,物质的电负性也会受到物质间相互作用的影响,例如,当物质A和物质B发
生反应时,物质A和物质B的电负性可能会发生变化,即物质A的电负性可能会变得比
物质B的电负性高,或者反之亦然。

总之,电负性的变化规律是复杂的,主要受电子数量、物质结构、温度变化和物质间
相互作用的影响。

因此,在进行科学研究和工业应用时,必须充分了解电负性变化的机制,以便能够更好地利用这些性质。

绝对电负性概念

绝对电负性概念

绝对电负性概念
电负性概念:
电负性是原子在分子中吸引成键电子能力相对大小的量度。

元素电负性的值是个相对的量,它没有单位。

电负性大的元素吸引电子能力强,反之就弱。

同周期主族元素电负性从左到右逐渐增大,同主族元素的电负性从上到下逐渐减小。

元素电负性的概念最先是由鲍林(LinnsPauling,1901—1994)于1932年在研究化学键性质时提出来的。

他指定电负性最大的氟的值为4.O,然后根据键能推算其他元素的相对电负性的数值。

后来又有人作了更精确的计算,对鲍林的电负性值作了修改医学教育网`搜集整理。

1934年,马利肯(RobertSandersonMulliken,1896—)采用电离能(I)和电子亲和势(EA)结合的方法求出电负性。

1957年,阿莱-罗周(Allred -Rochow)又根据原子的有效核电荷(z*)对成键电子的静电引力算出一套电负性数据XAR.他们所用公式是XAR=0.359z*/r20.744,式中r是原子的共价半径(10-10米)。

元素的原子在不同分子中的价态、所带电荷量以及相应轨道杂化方式等因素都会影响原子吸引电子的能力,因此每一元素的电负性实际表现不是一成不变的。

根据元素电负性大小可以判别化合物分子中键的性质。

两种元素的电负性差值(XA—XB)越大,形成键的极性越强。

电负性定义

电负性定义

电负性定义电负性:分子由阴、阳两种不同的电荷,形成电中性。

电荷在移动时,其电场的强度和方向都随之改变,电荷的这种特性叫做电负性。

电负性:物质原子核所带电荷数,称为原子的电负性。

电负性是由元素本身的原子结构决定的。

当元素的原子失去最外层电子时,原子即可得到一个或几个电子,该原子就会显电负性。

对于同一种元素来说,原子的电负性基本相同,随着原子序数的增加,原子半径增大,失去电子能力越强,得到电子能力越弱,它的电负性也就越大。

在常温下,同一周期元素的电负性从左至右呈现减小趋势,同一族元素的电负性从上至下逐渐增大。

对于同一个原子,电负性一般不超过1。

(一)对于正电荷的理解1、对正电荷的定义2、在水溶液中,离子的电荷只有一种,其数目等于离子的电荷数。

离子的电荷与离子的大小及所带电荷的多少有关,在化合物中以及不同离子间,还存在着一定的电中性。

离子的电荷用电子表示,电子数目等于离子的电荷数。

3、离子的电荷量,又称为电负性,它表示一个离子所带电荷的多少。

离子的电荷量是指一个离子所带的电荷数,用e表示,即1个离子所带的电荷量是e。

离子的电荷量是相对的,相对原子的电荷量来说,它是很小的。

通常把1个原子所带的电荷数看作是1。

离子带1个单位的正电荷。

4、常见的正离子有铵根离子NH4+、硫氰酸根离子SO42-、亚铁离子Fe3+等。

(二)对于负电荷的理解负电荷分布在矿物晶体里,主要集中在阴离子和阳离子之间,而且这些电荷密度也是相对较高的。

在阳离子和阴离子之间还有另一种电荷分布。

有人认为,这些电荷是由成对的、不相连接的电子组成的。

负电荷如果沿着矿物晶体的对角线排列起来,就好像分开的几条无限长的狭缝。

其实,这些负电荷并不是分开的无限长的电子,而是它们集合在一起所形成的许多空隙,类似于道路上的公路。

所以,阴离子或阳离子与相邻的离子之间存在着一定的距离。

在生活中,人体的各部分含有正负不同的电荷,在发生摩擦时,总是一些正电荷把另一些负电荷从对方身上吸引过来,因此,在人体的正极附近,电荷比较集中,我们称为“带正电”,而负极附近,电荷比较集中,我们称为“带负电”。

鲍林电负性

鲍林电负性

鲍林电负性1定义电负性综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。

它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。

元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。

2计算方法电负性的计算方法有多种,每一种方法的电负性数值都不同,比较有代表性的有3种:① L.C.鲍林提出的标度。

根据热化学数据和分子的键能,指定氟的电负性为3.98,计算其他元素的相对电负性。

②R.S.密立根从电离势和电子亲合能计算的绝对电负性。

③A.L.阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性。

利用电负性值时,必须是同一套数值进行比较。

同一周期从左至右,有效核电荷递增,原子半径递减,对电子的吸引能力渐强,因而电负性值递增;同族元素从上到下,随着原子半径的增大,元素电负性值递减。

过渡元素的电负性值无明显规律。

就总体而言,周期表右上方的典型非金属元素都有较大电负性数值,氟的电负性值数大(4.0);周期表左下方的金属元素电负性值都较小,铯和钫是电负性最小的元素(0.7)。

一般说来,非金属元素的电负性大于2.0,金属元素电负性小于2.0。

电负性概念还可以用来判断化合物中元素的正负化合价和化学键的类型。

电负性值较大的元素在形成化合物时,由于对成键电子吸引较强,往往表现为负化合价;而电负性值较小者表现为正化合价。

在形成共价键时,共用电子对偏移向电负性较强的原子而使键带有极性,电负性差越大,键的极性越强。

当化学键两端元素的电负性相差很大时(例如大于1.7)所形成的键则以离子性为主。

3常见元素电负性鲍林标度鲍林指定氟的电负性为4.0,并以此为标准确定其他元素的电负性。

氢 2.1 锂 0.98 铍 1.57 硼 2.04 碳 2.55 氮 3.04 氧 3.44 氟 3.98 钠 0.93 镁 1.31 铝 1.61 硅 1.90 磷 2.19 硫 2.58 氯 3.16钾 0.82 钙 1.00 锰 1.55 铁 1.83 镍 1.91 铜 1.9 锌 1.65 镓 1.81 锗2.01 砷 2.18 硒 2.48 溴 2.96铷 0.82 锶 0.95 银 1.93 碘 2.66 钡 0.89 金 2.54 铅 2.33一般来说,电负性大于1.8的是非金属元素,而小于等于1.8的往往是金属元素(当然,其中也存在例外)电负性对应氧化性特殊元素O的电负性比N的大呀,N的第一电离需要破坏2P半充满的低能状态,O 的第一电离形成了 2P半充满的低能状态,所以N的第一电离能比O的大,O的非金属性比N强,所以O的电负性比N的大4在周期表内的递变规律1.随着原子序号的递增,元素的电负性呈现周期性变化。

电负性

电负性

Inductive Effects
Electronegativity
编辑本段
电负性在周期表内的递变规律
1.随着原子序号的递增,元素的电负性呈现周期性变化。

2.同一周期,从左到右元素电负性递增,同一主族,自上而下元素电负性递减。

对副族而言,同族元素的电负性也大体呈现这种变化趋势。

因此,电负性大得元素集中在元素周期表的右上角,电负性小的元素集中在左下角。

3.非金属元素的电负性越大,非金属元素越活泼,金属元素的电负性越小,金属元素越活泼。

氟的电负性最大(
4.0),是最活泼的非金属元素;钫是电负性最小的元素(0.7),是最活泼的金属元素。

4.过渡元素的电负性值无明显规律
编辑本段
电负性的应用
(1)判断元素的金属性和非金属性。

一般认为,电负性大于1.8的是非金属元素,小于1.8的是金属元素,在1.8左右的元素既有金属性又有非金属性。

(2)判断化合物中元素化合价的正负。

电负性数值小的元素在化合物吸引电子的能力弱,元素的化合价为正值;电负性大的元素在化合物中吸引电子的能力强,元素的化合价为负值。

(3)判断分子的极性和键型。

电负性相同的非金属元素化合形成化合物时,形成非极性共价键,其分子都是非极性分子;电负性差值小于1.7的两种元素的原子之间形成极性共价键,相应的化合物是共价化合物;电负
性差值大于1.7的两种元素化合时,形成离子键,相应的化合物为离子化合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章原子结构与性质第二节原子结构与元素的性质(第1课时)教学过程〖复习〗必修中什么是元素周期律?元素的性质包括哪些方面?元素性质周期性变化的根本原因是什么?〖课前练习〗写出锂、钠、钾、铷、銫基态原子的简化电子排布式和氦、氖、氩、氪、氙的简化电子排布式。

一、原子结构与周期表1、周期系:随着元素原子的核电—荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。

然后又开始由碱金属到稀有气体,如此循环往复——这就是元素周期系中的一个个周期。

例如,第11号元素钠到第18号元素氩的最外层电子排布重复了第3号元素锂到第10号元素氖的最外层电子排布——从1个电子到8个电子;再往后,尽管情形变得复杂一些,但每个周期的第1个元素的原子最外电子层总是1个电子,最后一个元素的原子最外电子层总是8个电子。

可见,元素周期系的形成是由于元素的原子核外屯子的排布发生周期性的重复。

2、周期表:所有元素都被编排在元素周期表里,那么元素原子的核外电子排布与元素周期表的关系又是怎样呢?(1).周期:〖思考〗元素在周期表中排布在哪个横行,由什么决定?什么叫外围电子排布?什么叫价电子层?什么叫价电子?元素在周期表中排在哪个列由什么决定?(2)族:元素在周期表中排在哪个列由什么决定?阅读分析周期表着重看元素原子的外围电子排布及价电子总数与族序数的联系。

〖总结〗元素在周期表中的位置由原子结构决定:原子核外电子层数决定元素所在的周期,原子的价电子总数决定元素所在的族。

〖分析探索〗每个纵列的价电子层的电子总数是否相等?按电子排布,可把周期表里的元素划分成5个区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。

s区、d区和p区分别有几个纵列?为什么s区、d区和ds区的元素都是金属?元素周期表可分为哪些族?为什么副族元素又称为过渡元素?各区元素的价电子层结构特征是什么?[基础要点]分析图1-16区全是金属元素,非金属元素主要集中区。

主族主要含区,副族主要含区,过渡元素主要含区。

[思考]周期表上的外围电子排布称为“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化。

元素周期表的每个纵列上是否电子总数相同?〖归纳〗S区元素价电子特征排布为nS1~2,价电子数等于族序数。

d区元素价电子排布特征为(n-1)d1~10ns1~2;价电子总数等于副族序数;ds区元素特征电子排布为(n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。

原子结构与元素在周期表中的位置是有一定的关系的。

(1)原子核外电子总数决定所在周期数周期数=最大能层数(钯除外)10,最大能层数是4,但是在第五周期。

46Pd [Kr]4d(2)外围电子总数决定排在哪一族如:29Cu 3d104s110+1=11尾数是1所以,是IB。

元素周期表是元素原子结构以及递变规律的具体体现。

原子结构与元素的性质(第2课时)教学过程:二、元素周期律(1)原子半径元素周期表中同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势?〖归纳总结〗(2)电离能[基础要点]概念1、第一电离能I1;态电性基态原子失去个电子,转化为气态基态正离子所需要的叫做第一电离能。

第一电离能越大,金属活动性越。

同一元素的第二电离能第一电离能。

〖科学探究〗1、原子的第一电离能有什么变化规律呢?碱金属元素的第一电离能有什么变化规律呢?为什么Be的第一电离能大于B,N的第一电离能大于O,Mg的第一电离能大于Al,Zn的第一电离能大于Ga?第一电离能的大小与元素的金属性和非金属性有什么关系?碱金属的电离能与金属活泼性有什么关系?为什么原子的逐级电离能越来越大?这些数据与钠、镁、铝的化合价有什么关系?数据的突跃变化说明了什么?〖归纳总结〗1、递变规律2、第一电离能越小,越易失电子,金属的活泼性就越强。

因此碱金属元素的第一电离能越小,金属的活泼性就越强。

3、Na的I1,比I2小很多,电离能差值很大,说明失去第一个电子比失去第二电子容易得多,所以Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小很多,所以Mg容易失去两个电子形成十2价离子;Al的I1、I2、I3相差不多,而I3比I4小很多,所以A1容易失去三个电子形成+3价离子。

而电离能的突跃变化,说明核外电子是分能层排布的。

〖课堂练习〗1、某元素的电离能(电子伏特)如下:此元素位于元素周期表的族数是A. IAB. ⅡAC. ⅢA D、ⅣA E、ⅥA F、ⅤA G、ⅦA2、某元素的全部电离能(电子伏特)如下:回答下列各问:(1)由I1到I8电离能值是怎样变化的?___________________。

为什么?______________________________________(2)I1为什么最小?________________________________(3) I7和I8为什么是有很大的数值__________________________(4)I6到I7间,为什么有一个很大的差值?这能说明什么问题?_________________________________________________________(5)I1到I6中,相邻的电离能间为什么差值比较小?______________________________________________(6)I4和I5间,电离能为什么有一个较大的差值__________________________________________________(7)此元素原子的电子层有 __________________层。

最外层电子构型为______________,电子轨道式为________________________________,此元素的周期位置为________________________ 周期___________________族。

2、讨论氢的周期位置。

为什么放在IA的上方?还可以放在什么位置,为什么?3、概念辩析:(1)每一周期元素都是从碱金属开始,以稀有气体结束(2)f区都是副族元素,s区和p区的都是主族元素(3)铝的第一电离能大于K的第一电离能(4)B电负性和Si相近(5)已知在200C 1mol Na失去1 mol电子需吸收650kJ能量,则其第一电离能为650KJ/mol(6)Ge的电负性为1.8,则其是典型的非金属(7)气态O原子的电子排布为:,测得电离出1 mol电子的能量约为1300KJ,则其第一电离能约为1300KJ/mol(8)半径:K+>Cl-(9)酸性 HClO>H2SO4,碱性:NaOH > Mg(OH)2(10)第一周期有2*12=2,第二周期有2*22=8,则第五周期有2*52=50种元素元素的最高正化合价=其最外层电子数=族序数4、元素的电离能与原子的结构及元素的性质均有着密切的联系,根据下列材料回答问题。

气态原子失去1个电子,形成+1价气态离子所需的最低能量称为该元素的第一电离能,+l价气态离子失去1个电子,形成+2价气态离子所需要的最低能量称为该元素的第二电离能,用I2表示,以此类推。

下表是钠和镁的第一、二、三电离能(KJ·mol-1)。

(1)分析表中数据,请你说明元素的电离能和原子结构的关系是:元素的电离能和元素性质之间的关系是:(2)分析表中数据,结合你已有的知识归纳与电离能有关的一些规律。

(3)请试着解释:为什么钠易形成Na+,而不易形成Na2+?原子结构与元素的性质(第3课时)教学过程:〖复习〗1、什么是电离能?它与元素的金属性、非金属性有什么关系?2、同周期元素、同主族元素的电离能变化有什么规律?(3)电负性:〖思考与交流〗1、什么是电负性?电负性的大小体现了什么性质?阅读教材p20页表同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧的非金属性与氯的非金属性哪个强?〖归纳志与总结〗 1、金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。

周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。

电负性的大小可以作为判断元素金属性和非金属性强弱的尺度。

金属的电负性一般小于1.8,非金属的电负性一般大于1.8,而位于非金属三角区边界的“类金属”的电负性则在1.8左右,他们既有金属性又有非金属性。

2、同周期元素从左往右,电负性逐渐增大,表明金属性逐渐减弱,非金属性逐渐增强。

同主族元素从上往下,电负性逐渐减小,表明元素的金属性逐渐减弱,非金属性逐渐增强。

[思考5]对角线规则:某些主族元素与右下方的主族元素的有些性质相似,被称为对角线原则。

请查阅电负性表给出相应的解释?1.在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”。

查阅资料,比较锂和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱,说明对角线规则,并用这些元素的电负性解释对角线规则。

2.对角线规则课时作业:一、选择题1.居室装修用石材的放射性常用22688Ra作为标准,居里夫人(Marie Curie)因对Ra元素的研究两度获得诺贝尔奖。

下列叙述中正确的是A.RaCl2的熔点比CaCl2高B.Ra元素位于元素周期表中第六周期ⅡA族C.一个22688Ra原子中含有138个中子D.Ra(OH)2是一种两性氢氧化物2.下列离子中,电子数大于质子数且质子数大于中子数的是()A、D3O+B、Li+C、OD¯D、OH¯3.最近,意大利科学家使用普通氧分子和带正电荷的氧离子制造出了由4个氧原子构成的氧分子,并用质谱仪探测到了它存在的证据。

若该氧分子具有空间对称结构,下列关于该氧分子的说法正确的是A.是一种新的氧化物B.不可能含有极性键C.是氧元素的一种同位素D.是臭氧的同分异构体4.下列原子或离子原子核外电子排布不属于基态排布的是( )A. N: 1s22s22p3B. S2-: 1s22s22p63s23p6C. Na: 1s22s22p53s2D. Si: 1s22s22p63s23p25.有四种氯化物,它们的通式为XCl2,其中最可能是第IIA族元素的氯化物是:A. 白色固体,熔点低,完全溶于水,得到一种无色中性溶液,此溶液导电性差B. 绿色固体,熔点高,易被氧化,得到一种蓝绿色溶液,此溶液具有良好的导电性C. 白色固体,极易升华,如与水接触,可慢慢分解D. 白色固体,熔点较高,易溶于水,得无色中性溶液,此溶液具有良好的导电性6.气态中性基态原子的原子核外电子排布发生如下变化,吸收能量最多的是A. 1s22s22p63s23p2→1s22s22p63s23p1B. 1s22s22p63s23p3→1s22s22p63s23p2C. 1s22s22p63s23p4→1s22s22p63s23p3D. 1s22s22p63s23p64s24p2→1s22s22p63s23p64s24p17.等物质的量的主族金属A、B、C分别与足量的稀盐酸反应,所得氢气的体积依次为V A、V B、V C,已知V B=2V C,V A=V B+V C,则在C的生成物中,该金属元素的化合价为A.+1 B.+2 C.+3 D.+48.元素周期表中ⅠA族元素有R′和R″两种同位素,R′和R″的原子量分别为a和b,R元素中R′和R″原子的百分组成分别为x 和y ,则R元素的碳酸盐的式量是A、2(ax+by)+60B、ax+by+60C、(ax+by)/2+60D、ay+bx+609.下列具有特殊性能的材料中,由主族元素和副族元素形成的化合物是A.半导体材料砷化镓B.吸氢材料镧镍合金C.透明陶瓷材料硒化锌D.超导材K3C6010.X和Y属短周期元素,X原子的最外层电子数是次外层电子数的一半,Y位于X的前一周期,且最外层只有一个电子,则X和Y所形成的化合物的电子式可表示为( )A.XYB.XY2C.XY3D.X2Y311.A、B都是短周期元素,原子半径B>A,它们可形成化合物AB2,由此可以得出的正确判断是( ) A.原子序数:A<B B.A和B可能在同一主族C.A可能在第2周期ⅣA族D.A肯定是金属元素12.下列是几种原子的基态电子排布,电负性最大的原子是( )A.1s22s22p4B.1s22s22p63s23p3C.1s22s22p63s23p2 C.1s22s22p63s23p64s213.下列关于砷(As)元素的叙述中,正确的是A、在AsCl3分子中,砷原子最外层电子数为8;B、Na3AsO4溶液的pH大于7;C、砷的氢化物的化学式为AsH3,它是一种强氧化剂;D、砷的相对原子质量为74.92,由此可知砷原子核内有42个中子。

相关文档
最新文档