金属凝固理论 PPT

合集下载

铸造金属凝固原理介绍课件

铸造金属凝固原理介绍课件

凝固缺陷
01 缩孔:金属凝固过程中,由 于体积收缩,导致内部出现 孔洞
02 疏松:金属凝固过程中,由 于气体析出,导致内部出现 疏松多孔的结构
03 偏析:金属凝固过程中,由 于成分不均匀,导致内部出 现成分分布不均匀的现象
04 裂纹:金属凝固过程中,由 于应力过大,导致内部出现 裂纹
铸造方法
01
砂型铸造:利用砂型制作铸 件,成本低,生产效率高
03
压力铸造:利用高压将熔融 金属压入模具,生产效率高, 适用于薄壁铸件
05
连续铸造:利用连续铸造机 将熔融金属连续铸造成铸件, 适用于大批量生产
02
熔模铸造:利用蜡模制作铸 件,精度高,适用于复杂铸 件
04
离心铸造:利用离心力将熔 融金属甩入模具,适用于管 状铸件
05
凝固原理在铸造工艺优 化中的实例分析
02
凝固原理对铸造工艺 的影响
04
凝固原理在铸造工艺优 化中的具体应用方法
06
凝固原理在铸造工艺优 化中的发展趋势
质量控制
01
凝固原理在铸造过 程中的应用
02
凝固原理在金属材料 质量控制中的作用
03
凝固原理在铸造缺 陷检测中的应用
04
凝固原理在铸造工 艺优化中的作用
新材料研究
01
纳米材料:具有高强度、高韧性、耐腐蚀等优良性能
02
复合材料:结合多种材料的优点,提高性能和降低成本
03
生物材料:利用生物技术制备新型材料,如生物陶瓷、生物高分子等
04
智能材料:具有感知、响应和自适应功能的材料,如形状记忆合金、压电材料等
绿色铸造技术
绿色铸造技术是指在铸造过程中减少环境污染、降低 能耗、提高材料利用率的技术。

第四章纯金属的凝固

第四章纯金属的凝固

(二)临界晶核 设晶胚为半径r的球形,形核时总能量变化为: ΔG=-ΔG体积+ΔG表面 =-433GV42
ΔGV-单位体积自由能,σ-比表面能 ΔG是r的函数。
由 Gf(r) 的函数作图可知,在r=rc时△G取 得极大值。
讨论: 1.当r<rk则晶胚生长 ,将导致体系 ΔG ,晶胚重新熔化而消失。 2.若r>rk 晶胚r ,体系的ΔG,结晶 自发进行,此时的晶胚就成为晶核
2.金属熔化时的体积变化:大多数金属熔化时体积变化仅为
3%-5%,熔化前后原子间距变化不大,熔化前后原子间结 合力较为接近。
3.金属熔化熵值变化小:
金属熔化时结构变化小,只是相对“无序度”增加.
液态金属结构与固态相似存在近程有序,近程密堆, 远程无序.
二.材料凝固的过冷现象
过冷现象-实际结晶温度低于理论结 晶温度的现象。
假设:晶核是依附过冷液相现成基底B上形成晶核S;
设晶核为半径为r的球缺体;S1为球冠面积; S2为晶核与基底接触的面积; θ为晶核与基体的润湿角。
晶核形成稳定存在的瞬间(不 熔化、长大),三相交点处, 表面张力应达到平衡:
σLB=σSB+σLScosθ
非均匀形核示意图
σLB、σsB、σLs分别为L/B、S/B、L/S间的表面张力
均为自发过程.
结论:过冷是结晶的必要条件, 而 ΔT≥ΔTc是结晶的充分必要条件。
过冷度对临界晶核与 最大相起伏的影响
(五)临界晶核的形核功
ΔG=-ΔG体积+ΔG表面 =-433GV42

k
2 GV
代入上式可得:
3
2
G k4 3 L 2 m T T m G 4 L 2 m T T m 化简得

《金属的凝固特点》课件

《金属的凝固特点》课件

连铸工艺
连铸工艺是将液态金属通过连续浇注 的方式,在连铸机内冷却凝固成所需 形状和性能的金属制品的工艺方法。
连铸工艺的应用范围广泛,可生产各 种规格的钢材,如板材、管材、型材 等。
连铸工艺具有高效、节能、环保等优 点,是现代钢铁工业中的重要生产工 艺之一。
定向凝固工艺
定向凝固工艺是一种通过控制热 流方向,使液态金属在特定方向 上凝固,从而获得具有定向组织
结构的金属制品的工艺方法。
定向凝固工艺主要用于制备高性 能的金属材料,如高温合金、单
晶叶片等。
定向凝固工艺具有组织细密、力 学性能优异、耐高温等特点,广 泛应用于航空、航天、能源等领
域。
05
金属的凝固应用
在机械制造中的应用
01
02
03
零件制造
金属凝固后具有良好的强 度和耐久性,因此在机械 制造中广泛应用于制造各 种零件和工具。
金属的凝固速率
01
影响因素
冷却速率、金属的纯度和结晶温度。
02
规律
冷却速率越快,凝固速率越高;金属纯度越高, 凝固速率越高;结晶温度越高,凝固速率越高。
金属的凝固缺陷
01 凝固过程中由于各种原因导致金属内部结构的不 完善或异常。
02 主要类型:缩孔、疏松、偏析、裂纹等。
02 对金属的性能产生不良影响,如降低机械性能、 耐腐蚀性能等。
01 结晶温度
金属开始从液态向固态转变的温度点。
02 影响因素
金属的纯度、冷却速率和金属的种类。
03 规律
纯金属的结晶温度较高,合金的结晶温度较低; 冷却速率越大,结晶温度越高。
金属的凝固结构
金属的固态晶格结构。
影响因素:金属的原子半 径、晶体结构和化学键类 型。

(PPT).凝固与结晶的理论

(PPT).凝固与结晶的理论

冷却,长大成一块单晶体。 2、垂直提拉法 籽晶与液面接触,缓冷,旋转上升,长大
成单晶体。可获得大尺寸单晶体。
三、定向凝固技术
通过控制冷却方式,使铸件从一端开始凝 固,并向另一端发展的结晶过程。
获得单向的柱状晶,在柱状晶轴方向上具 有较好的性能。
如涡轮叶片等。
作业
P58:2、3、13、15、17
Thank you!
N G
过冷度ΔT
图2-28 ΔT对N和G的影响
控制晶粒度的措施
1、控制过冷度 ΔT越大,N/G越大,晶粒越细小。 2、化学变质处理 加入变质剂,促进非自发晶核,拟制晶粒长大,
细化晶粒。 3、增强液体流动 振动、搅拌、超声波处理使液体流动,形核、破
碎枝晶。
二、单晶体的制备
1、尖端形核法 见图2-29,尖端产生一个晶核,容器外移
2.4 凝固与结晶理论的应用
一、铸态晶粒度的控制 金属的晶粒越细小,强度、度越高,塑
性、韧性越好。 细晶强化 通过细化晶粒来提高材料强度
的方法。 硅钢片,晶粒越大其磁滞损耗小、磁效应
越高。
晶粒度的控制
形核率N 长大速率G
形核率(N):单位 时间、单位体积内 形成晶核的数目。
长大速度(G):晶 核单位时间生长的 平均线长度。

金属凝固原理课件

金属凝固原理课件
形核速率
描述形核过程的快慢,与温度、过 冷度等因素有关。
晶体的长大与生长形态
晶体长大
晶核形成后,周围的原子或分子 继续附着到晶核上,使晶体逐渐
长大的过程。
生长形态
晶体生长过程中形成的外观形态, 如树枝状、柱状、球状等。
生长速率
晶体长大的速度,通常与温度梯 度、溶质浓度等因素有关。
04
金属凝固过程中的组织与性能
02
金属凝固过程中的传热与传质
传热与传质的基本概念
传热
指热量从高温处传递到低温处的 现象,是热量传递的一种方式。
传质
指物质从一处传递到另一处的现 象,是物质传递的一种方式。
金属凝固过程中的传热与传质现象
传热现 象
在金属凝固过程中,热量从液态传递 到固态,使液态金属逐渐冷却并转变 为固态。
传质现 象
03
金属凝固过程中的形核与长大
形核的基本概念
形核
指在液态金属中形成固相 晶核的过程。
形核过程
在液态金属冷却过程中, 原子或分子的排列逐渐变 得有序,最终形成固体晶 格结构。
形核率
单位时间内形成的晶核数量。
形核机制与形核速率
均质形核
在液态金属中自发形成晶核的过 程,需要克服能量障碍。
异质形核
在金属中的杂质或界面上形成晶核 的过程,通常较容易发生。
02
金属凝固是金属材料制备和加工 过程中最重要的物理过程之一, 对金属材料的性能和应用具有重 要影响。
金属凝固的物理过程
01
02
03
冷却过程
金属液体在冷却过程中, 原子逐渐失去液态的无序 性,开始形成固态晶格结 构的过程。
形核过程
在金属液体冷却到熔点以 下时,原子开始聚集形成 晶核的过程,是金属凝固 的起始点。

金属凝固及控制PPT

金属凝固及控制PPT

液体的特征: 具有良好的流动性,无确定的形状,原子间距稍大于固体, 配位数稍小于固体,存在近程有序状态。(图1-3)
图1-3 液体金属的球体模型
1.2 固体金属的晶体结构
固体金属由晶体组成,每个晶体具有相同的排列次序,而晶 体间的接合部-晶界的原子排列紊乱。如果取一个晶体中的单胞 来研究,按其点阵排列状况可分为:立方晶系、六方晶系、三斜 晶系、单斜晶系、正交晶系、四方晶系、三角晶系。常见的有立 方晶系和六方晶系,如:面心立方、体心立方、密排六方晶胞等。
3.1 固—液相界面的结构
光滑界面(小平面):是指固相界面上的原子排列成平整的原子 平面,即晶体学的某一晶面。(图3-1) 粗糙界面:是指固相界面上的原子排列高高低低粗糙不平,不显 示晶体学的任何晶面特征。(图3-2)
3.2 决定固相—液相界面类型的因素
表面自由能相对改变值: (图3-3)
表面位置被占据的分数: x 当特征值 α≤2 时,在x = 1/2处曲线出现一个极小值,说明这类物 质以粗糙界面形式长大(金属型界面)。 当特征值 α≥5 时,在x = 0、1处,曲线出现极小值,说明这类物 质以光滑面形式长大(非金属型界面)。(图3-4)
图1-19 体心立方晶胞的原子数
d)构成晶胞的原子堆积方式(图1-15) (1)ACAC (2)ABAB (3)ABCABC (4)ACBACB 如:密排六方的原子堆积方式ACACAC……或者ABABAB…… 面心立方的原子堆积方式ABCABCABC……
图1-15 密集排列的原子面,从中可见有B和C两 种凹穴位置,其上可放置第二层原子
图5-18 K0<1和K0>1两类平衡相图的一角
b)非平衡分配系数KE:反映在特定条件下非平衡凝固过程中固相 成分和液相成分的差别。 KE = 瞬时形成的固相成分/在同一时间内液相的平均成分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非均质形核与均质形核时
θ '> θ "
临界曲率半径大小相同,
但球缺的体积比均质形核
Δ T *" Ihe" Ihe'
Iho
时体积小得多。因此非均 I
Δ T *'
质形核在较小的过冷度下
ΔT *
就可以得到较高的形核率。
ΔT
非均质形核、均质形核 过冷度与形核率
二、非均质形核形核条件
结晶相的晶格与杂质基底晶格的错配度的影响
粗糙界面与 光滑界面是在 原子尺度上的 界面差别,注 意要与凝固过 程中固-液界 面形态差别相 区别,后者尺 度在μm 数量 级。
S H/T mL/T m
GV L(TmTmT)LTmT
图1 液-固两相自由能与温度的关系
故ΔGV只与ΔT有关。因此液态金属(合金)凝固的驱动力是 由过冷度提供的,或者说过冷度ΔT就是凝固的驱动力。
△GA高能态区即为固态晶粒与 液态相间的界面,界面具有界面 能,它使体系的自由能增加,它 由金属原子穿越界面过程所引起
凝固热力学是研究金属形核过程中各种相变的热 力学条件;平衡条件或非平衡条件下的固、液两 相或固液界面的溶质成分;溶质平衡分配系数以 及压力、晶体曲率的影响等。
凝固动力学是研究形核、界面结构及晶体长大。
Chapter 4 Thermodynamics and kinetics of solidification
二、形核率
形核率:是单位体积中、单位时间内形成的晶核数目。
ICex pK GA Tex pK G T
式中,ΔGA为扩散激活能 。
I Δ T *≈ 0 .2 T m
对于一般金属,温度降到某一程度,
达到临界过冷度(ΔT*),形核率迅
速上升。
计算及实验均表明: ΔT*~0.2Tm
ΔT
均质形核的形核率 与过冷度的关系
在相变驱动力的驱使下,借助
于起伏作用来克服能量障碍图2Biblioteka 金属原子在结晶过程 中的自由能变化
4.1.2 溶质平衡分配系数(K0)
K0定义为恒温T*下溶质在固液两相的物
质分数C*s与C*L 达到平衡时的比值。 T
K0
C
S
C
L
K0 的物理意义:
对于K0<1, K0越小,固相线、液相线
T * C 0K 0 C*
主要内容
4.1 凝固热力学 4.2 凝固动力学 4.3 纯金属的晶体长大
4.1 凝固热力学
4.1.1 液-固相变驱动力
4.1.2 溶质平衡分配系数(K0)
4.1.1 液-固相变驱动力
热力学条件:
LS, G<0, 过程自发进行
G vG LG S(H LTL)S(H STS)S HT S
T=Tm时, G v H T m S0
凝固是物质由液相转变为固相的过程,是液态成形技术的
核心问题,也是材料研究和新材料开发领域共同关注的问题。 严格地说,凝固包括:
(1)由液体向晶态固体转变(结晶) (2)由液体向非晶态固体转变(玻璃化转变)
常用工业合金或金属的凝固过程一般只涉及前者,本章主 要讨论纯金属结晶过程的形核及晶体生长热力学与动力学。
粗糙界面与光滑界面 界面结构类型的判据 界面结构与冷却速度(动力学因素)
1、粗糙界面与光界滑面
粗糙界面:界面固相一侧的点阵位置只有约50%被固相原 子所占据,形成坑坑洼洼、凹凸不平的界面结构。 粗糙界面也称“非小晶面”或“非小平面”。
光滑界面:界面固相一侧的点阵位置几乎全部为固相原子 所占满,只留下少数空位或台阶,从而形成整体上平整光 滑的界面结构,也称“小晶面”或“小平面”。
错配 度 aCaNaN10% 05%完 , 全共 格 25% ; 完 , 全不共
晶格结构越相似,它们之间的界面能越小 ,越易形核。
杂质表面的粗糙度对非均质形核的影响 凹面杂质形核效率最高,平面次之,凸面最差 。
4.3 纯金属的晶体长大
一、 液-固界面自由能及界面结构 二、 晶体长大机制 三、 晶体宏观生长方式
S
张开程度越大,固相成分开始结晶时
与终了结晶时差别越大,最终凝固组
织的成分偏析越严重。因此,常将
C0
∣1- K0∣称为“偏析系数”。
K

0
1
C
* L
C 0/K 0
C, %
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
4.2 凝固动力学
4.2.1 均质形核 4.2.2 非均质形核
均匀形核 :形核前液相金属或合金中无外来固相
质点而从液相自身发生形核的过程,所以也称“自 发形核” (实际生产中均质形核是不太可能的,即使是
在区域精炼的条件下,每1cm3的液相中也有约106个边长为
103个原子的立方体的微小杂质颗粒)。
非均匀形核:依靠外来质点或型壁界面提供的衬
底进行生核过程,亦称“异质形核”或“非自发形 核”。
一、形核功及临界半径 二、形核率
二、非均质形核形核条件
一、 非均质形核形核功
非均质形核临界晶核半径:
与均质形核完全相同。
r*2LC2LC Tm
GV HmT
非均质形核功
f ()G G h e 1 4(2 3 co s co 3 )s G h o
ho
当一当θ般θ==θ0远1º8时小0º,于时Δ18,G0hºe,Δ=GΔ0h,eG=h此eΔ远时G小在ho于无Δ过G冷ho情。况如下图即所可示形。核
一、形核功及临界半径
晶核形成时,系统自由能变化由 两部分组成,即作为相变驱动力
的液-固体积自由能之差(负)和 阻碍相变的液-固界面能(正):
GV
GV VS
ASL
G3 4r3GV4r2SL r< r*时,r↑→ΔG↑ r = r*时,ΔG达到最大值ΔG* r >r*时,r↑→ΔG↓
液相中形成球形晶胚时自由能变化
4.2.2 非均质形核
非均匀(质)形核,晶核依附于夹杂物的界面或型壁上形成。 合金液体中存在的大量高熔点微小杂质,可作为非均 质形核的基底。这不需要形成类似于球体的晶核,只 需在界面上形成一定体积的球缺便可成核。非均质形
核过冷度ΔT比均质形核临界过冷度ΔT*小得多时就大
量成核。
一、非均质形核形核功
得临界晶核半径 r*:
r 2 SL
GV
2SL Tm
Hm T
得临界形核功G*: G 136S3LHTm mT2
经推导得:
G
1 3
ASL
即:临界形核功ΔG*的大小为临界晶核表面能的三分
之一, 它是均质形核所必须克服的能量障碍。形核功 由熔体中的“能量起伏”提供。因此,过冷熔体中形 成的晶核是“结构起伏”及“能量起伏”的共同产物。
相关文档
最新文档