ansys模态叠加

合集下载

探讨ANSYS教程:模态叠加法瞬态动力学分析

探讨ANSYS教程:模态叠加法瞬态动力学分析

探讨ANSYS教程:模态叠加法瞬态动力学分析模态叠加法通过对振型(由模态分析得到)乘以因子并求和来计算谐响应。

模态叠加法的分析过程由五个基本步骤组成:1.建模2.获取模态分析解3.获取模态叠加法谐响应分析解4.扩展模态叠加解5.观察结果在用运模态叠加法瞬态动力学分析方法时应注意:(1)获取模态分析解的方法在本章模态分析中有详细描述,但如下几点应该注意:模态提取方法应该用子空间法,分块1.anCZOS法,缩减法,或PowerDynamics法中的一种(另外两种方法,即非对称法和阻尼法在模态叠加法中不能采用。

),另外,只有当没有初始的静态解时,才可以使用PowerDynamics法;务必提取出对动力学响应有奉献的的所有模态;对RedUCed模态提取法,要在那些将施加简谐载荷的方位指定主自由度;如果在瞬态动力学分析中需要单元载荷,则必须在模态分析中施加。

这些载荷在模态分析求解时会被忽略,但程序将计算出相应的载荷向量并将其写入振型文件(Jobname.MODE)o这样在瞬态动力学分析时就可以使用这些载荷向量了。

(2)在获取模态叠加法瞬态分析解这一步中,程序将根据模态分析所得到的振型来计算瞬态响应。

注意振型文件(Jobname.MODE)必须存在,且数据库中必须包含和模态分析求解过程所有模型一样的模型。

操作过程和在完全法中描述的基本一样,差异如下:模态叠加法[HROPT];指定要用于求解的模态数[HROPT]。

此数将决定谐响应分析解的精度;可以选择在各频率处,输出一个概括了各阶模态对总响应的奉献的表格[HROUT];只可施加力,加速度,和模态分析中生成的载荷向量。

可用1.VSCA1.E命令来施加在模态分析中生成的载荷向量。

(3)无论采用的模态提取法是那种,模态叠加法谐响应分析的解都被保存到缩减位移文件Jobname.RFRQ中。

因此,如果对应力结果感兴趣,就需要对解开展扩展。

扩展模态的步骤和在缩减法中描述的一样。

ansys荷载叠加

ansys荷载叠加

对单层或二层框架进行弹性分析,需要考虑四种荷载恒荷载,活荷载,风荷载和吊车荷载1,几何模型(beam3和beam54)建立后,定义所需的element table,主要包括杆端力和最大应力,最小应力等。

然后保存数据库。

分别施加四种荷载的标准值(不乘分项系数),并分别存成四个load step file。

2,使用solution->from ls files,求解四种荷载3,荷载组合,命令流如下:/post1 lcdef,1,1 lcdef,2,2 lcdef,3,3 lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果lcfact,1,1.2 lcfact,2,1.4 lcfact,3,1.19 lcfact,4,1.4 !指定各工况的组合系数lcase,1 !读入工况1,database=1 sumtype,prin !指定加操作的对象lcoper,add,2 !荷载组合,database=database+2 lcoper,add,4 !荷载组合,database=database+4 lcoper,lprin !计算线性主应力lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果lcase,1 lcfact,2,1.19 lcfact,4,1.19 !改变组合系数sumtype,prin lcoper,add,2 lcoper,add,3 lcoper,add,4 lcoper,lprin lcwrite,12 !把database结果写到工况12,即恒荷载+活荷载+吊车荷载+风荷载的结果!... ...其他荷载组合!之后使用lcase,n 就可调入工况n,并查看它的变形和内力!可使用如下命令流得到工况11和12,13的较大者99,进而查看最大应力lcase,11 lcase,min,12 lcase,min,13 lcwrite,98 lcase 98 !查看工况98的应力分布... ... lcase,11 lcase,max,12 lcase,max,13 lcwrite,99 lcase 99 !查看工况99的应力分布... ... 以下为定义和读取荷载工况用到的一些命令:LCDEF_从结果文件中的一列结果产生荷载工况LCDEF, LCNO, LSTEP, SBSTEP, KIMG LCNO:随意的指针数(1-99),要赋给LSTEP,SBSTEP和FILE命令指定的荷载工况。

ansys模态分析详解

ansys模态分析详解

ANSYS动力学分析指南作者: 安世亚太第一章模态分析§1.1模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS产品家族中的模态分析是一个线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。

阻尼法和QR阻尼法允许在结构中存在阻尼。

后面将详细介绍模态提取方法。

§1.2模态分析中用到的命令模态分析使用所有其它分析类型相同的命令来建模和进行分析。

同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。

后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。

而“模态分析实例(GUI方式)”则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。

(要想了解如何使用命令和GUI选项建模,请参阅<<ANSYS建模与网格指南>>)。

<<ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSYS命令说明。

§1.3模态提取方法典型的无阻尼模态分析求解的基本方程是经典的特征值问题:其中:=刚度矩阵,=第阶模态的振型向量(特征向量),=第阶模态的固有频率(是特征值),=质量矩阵。

ansys动力学分析

ansys动力学分析

结构动力分析研究结构在动荷载作用的响应(如位移、应力、加速度等的时间历程),以确定结构的承载能力和动力特性等。

ANSYS动力分析方法有以下几种,现分别做简要介绍。

1.模态分析用模态分析可以确定设计中的结构或机器部件的振动特性(固有频率和振型)。

它也可以作为其他更详细的动力学分析的起点,例如瞬态动力学分析、谐响应分析、谱分析。

用模态分析可以确定一个结构的固有频率和振型。

固有频率和振型是承受动态荷载结构设计中的重要参数。

如果要进行谱分析或模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。

ANSYS的模态分析是一线性分析,任何非线性特性(如塑性和接触单元)即使定义了也将忽略。

可进行有预应力模态分析、大变形静力分析后有预应力模态分析、循环对称结构的模态分析、有预应力的循环对称结构的模态分析、无阻尼和有阻尼结构的模态分析。

模态分析中模态的提取方法有七种,即分块兰索斯法、子空间迭代法、缩减法或凝聚法、PowerDynamics法、非对称法、阻尼法、QR阻尼法,缺省时采用分块兰索斯法。

2.谐响应分析任何持续的周期荷载将在结构中产生持续的周期响应(谐响应)。

谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳及其他受迫振动引起的有害效果。

谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的荷载时的稳态响应的一种技术。

分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。

从这些曲线上可以找到“峰值”响应,并进一步观察频率对应的应力。

这种分析技术只计算结构的稳态受迫振动。

发生在激励开始时的瞬态振动不在谐响应分析中考虑。

谐响应分析是一种线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使被定义了也将被忽略,但在分析中可以包含非对称系统矩阵,如分析流体—结构相互作用问题。

谐响应分析同样也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。

ansys11-14新功能介绍

ansys11-14新功能介绍

Ansys12 新功能ANSYS Workbench 2.ANSYS Workbench作为一个框架,整合现有的应用,将仿真过程结合在一起,这一点在ANSYS Workbench2.0 没有改变。

但在工程页引入了工程图解的概念,见图1。

通过该项功能,一个复杂的包含多场分析的物理问题,通过系统间的连接实现相关性。

图表元素右边的状态符号显示了该项设置是否需要更新、输入等,方便用户查看设置状态。

图1 ANSYS Workbench 工程页图2 Workbench 核心应用程序界面此外,ANSYS Workbench2.0 平台还可以作为一个应用开发框架,提供项目全脚本、报告、用户界面(UI)工具包和标准的数据接口,该功能将随后发布。

在ANSYS 12.0 版本(下文简称R12.0)中,工程数据和DesignXplorer将不再是独立的应用程序,通过UI工具箱它们被重新设计整合在ANSYS Workbench工程页下。

尽管工程页做了较大调整,但Workbench的核心应用程序及操作界面并无大的改变,见图2。

在这个创新的框架下,工程师可以完成一个完整的仿真分析,包括CAD集成、几何修改和网格划分。

工程页的概念图解帮助指导用户完成复杂的分析,说明和明确数据关系,捕捉自动化的过程。

Workbench2.0 平台的改进代表了工程仿真又前进了一步。

几何&网格划分ANSYS在其深厚的知识和经验的基础上,融合了丰富的几何和网格划分技术,整合后的几何和网格划分解决方案,使在不同的分析应用中可以共享几何和网格信息。

R12.0 对几何接口进行了增强,通过几何接口用户可以从CAD系统中输入更多的信息,包括新的数据类型如:用于模拟梁的线体;附加属性如颜色、坐标系及在CAD系统中改进的命名选择等。

前处理大模型时,R12.0 支持64位操作系统,可以对几何进行智能有选择更新。

另外,R12.0增强了Workbench环境下创建几何的功能,提供了更多的自动化功能和更强的适应性,增加了合并、连接和映射等功能用于曲面建模。

ANSYS模态分析详细解释

ANSYS模态分析详细解释

Ansys模态分析详细论述1、有限元概述将求解域分解成若干小域,有限元模型由单元组成,单元之间通过节点连接,并承受载荷,节点自由度是随着连接该点单元类型变化的。

1.1分析前准备(1)研读相关理论基础;(2)参考别人的分析方法和思路;(3)考虑时间和设备,做适当的简化假设,设定条件、材料并决定分析方式;(4)了解力学现象、分析关键位置并预先评估。

1.2 Von Mises 应力Von Mises 应力是非负值,应力表达式可表示为:1.3结果的分析(1)建立疏密不同的三至五种网络,选择适中密度,不能以存在应力集中点处的结果做对比;(2)检验网格,分析结果的合理性,选择安全系数,并且要分析应力集中的真实性与危险性。

(3)接触收敛速度的提高:在不影响结构的前提下,控制或减少接触单元生成数目,并采用线性搜索,与打开自适应开关来提高收敛速度。

2、模态分析中的几个基本概念物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。

模态这个概念一般是在振动领域所用,可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。

2.1主要模态一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。

模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。

将特征值从小到大排列就是阶次。

实际的分析对象是无限维的,所以其模态具有无穷阶。

full法和模态叠加法

full法和模态叠加法

Full法和模态叠加法1. 引言在工程领域中,我们经常需要对结构物进行分析和设计。

为了保证结构的安全性和可靠性,我们需要进行不同类型的分析。

其中,full法和模态叠加法是两种常用的结构分析方法。

本文将详细介绍这两种方法的原理、应用场景以及比较优劣。

2. Full法Full法是一种基于有限元理论的结构动力学分析方法。

它可以用来计算结构在外部载荷作用下的响应,包括位移、速度、加速度等。

Full法将结构划分为许多小的单元,通过求解线性方程组来得到每个单元的位移响应,并进而得到整个结构的响应。

2.1 Full法原理Full法基于以下假设:•结构可以看作由许多小单元组成;•每个小单元内部满足线性弹性力学关系;•结构整体满足动力学平衡方程。

Full法的求解过程主要包括以下几个步骤:1.网格划分:将结构划分为许多小单元,并建立节点与单元之间的连接关系。

2.单元刚度矩阵的计算:根据单元的几何形状和材料性质,计算每个单元的刚度矩阵。

3.总刚度矩阵的组装:将所有单元的刚度矩阵按照节点自由度的顺序组装成总刚度矩阵。

4.边界条件处理:根据结构的边界条件,将总刚度矩阵进行修正。

5.求解位移:通过求解线性方程组,得到结构的位移响应。

6.计算其他响应:利用位移响应,可以计算出结构的速度、加速度等其他响应。

2.2 Full法应用场景Full法适用于以下情况:•结构较为复杂,无法简化为简单的解析模型;•考虑了结构内部各个小单元之间相互作用的影响;•需要考虑非线性效应或动力学效应。

Full法在工程领域中广泛应用于建筑、桥梁、航空航天等领域。

它可以帮助工程师评估结构在不同载荷下的响应情况,并优化设计方案。

3. 模态叠加法模态叠加法是一种基于结构的固有振动特性进行分析的方法。

它通过将结构的响应表示为各个模态振型的叠加,来计算结构在外部载荷作用下的响应。

3.1 模态叠加法原理模态叠加法基于以下假设:•结构的振动可以由一组正交模态振型来表示;•每个模态振型都是一个固有形状,与载荷大小无关;•结构的响应可以看作各个模态振型响应的线性叠加。

ansys模态分析详解

ansys模态分析详解

ANSYS动力学分析指南作者: 安世亚太第一章模态分析§1.1模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS产品家族中的模态分析是一个线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。

阻尼法和QR阻尼法允许在结构中存在阻尼。

后面将详细介绍模态提取方法。

§1.2模态分析中用到的命令模态分析使用所有其它分析类型相同的命令来建模和进行分析。

同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。

后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。

而“模态分析实例(GUI方式)”则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。

(要想了解如何使用命令和GUI选项建模,请参阅<<ANSYS建模与网格指南>>)。

<<ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSYS命令说明。

§1.3模态提取方法典型的无阻尼模态分析求解的基本方程是经典的特征值问题:其中:=刚度矩阵,=第阶模态的振型向量(特征向量),=第阶模态的固有频率(是特征值),=质量矩阵。

ansys模态叠加法

ansys模态叠加法

ansys模态叠加法
ANSYS模态叠加法是一种结构动力学分析方法,其基本原理是将结构的自由振动模态按照一定的比例相加,从而得到结构在外力作用下的响应。

该方法通常用于求解结构的自由振动响应、地震响应以及材料疲劳寿命等问题。

在ANSYS中,模态叠加法可通过建立有限元模型、求解结构的固有频率和振动模态、以及进行模态叠加计算等步骤实现。

具体而言,该方法包括以下步骤:
1. 建立有限元模型:将结构分割成若干个有限元,并对其进行网格剖分和材料属性定义。

2. 求解结构的固有频率和振动模态:在ANSYS中,利用求解器求解结构的固有频率和振动模态。

3. 进行模态叠加计算:将结构的不同振动模态按照一定的比例相加,得到结构在外力作用下的响应。

ANSYS模态叠加法具有计算精度高、计算速度快等优点,可以广泛应用于结构动力学分析和相关工程领域。

- 1 -。

ansys workbench静动叠加求解

ansys workbench静动叠加求解
谱分析是一种将模态分析结果和已知载荷谱联系起来的计算结构响应的分析方 法。主要用于确定结构对随机载荷(频域)或随时间变化载荷(时间-历程) (地震、海洋波浪、火箭发动机振动等)的动力响应。 • 主要应用包括核电站(建筑和部件),机载电子设备(飞机/导弹),建筑
框架和桥梁等。
谱分析类型 • 响应谱分析( Response Spectrum analysis) • 随机振动分析(PSD):确定结构在具有随机性质的载荷作用下的响应。 • 动力设计分析(DDAM):是一种用于分析船舶装备抗震性的技术
• 创建隧道模型,可对一 些设计参数进行参数化 处理,完成建模,不用 单独保存模型文件,直 接关闭SCDM。
8
案例演示
Training Manual
分析流程 Static Structure、Modal、Response Spectrum、Design Assessment
静力学分析:
• 建立静力学分析系统: 拖放Static structure到A2, 使静力学分析系统接受 上游几何信息
7
案例演示
Training Manual
分析流程 Static Structure、Modal、Response Spectrum、Design Assessment
静力学分析: • 建模:在组件系统双击
组件系统下Geometry, 右键单击A2 Geometry > New SpaceClaim Geometry…
加载; 多点谱分析:结构载荷为多个(最多20个)不同位置的频谱载荷。 分析步骤: 进行模态分析 确定响应谱分析项:单点谱;模态组合类型。 加载载荷 求解计算 后处理
5
目标
Training Manual

ansys模态分析详解

ansys模态分析详解

ANSYS动力学分析指南作者: 安世亚太第一章模态分析§1.1模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS产品家族中的模态分析是一个线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。

阻尼法和QR阻尼法允许在结构中存在阻尼。

后面将详细介绍模态提取方法。

§1.2模态分析中用到的命令模态分析使用所有其它分析类型相同的命令来建模和进行分析。

同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。

后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。

而“模态分析实例(GUI方式)”则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。

(要想了解如何使用命令和GUI选项建模,请参阅<<ANSYS建模与网格指南>>)。

<<ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSYS命令说明。

§1.3模态提取方法典型的无阻尼模态分析求解的基本方程是经典的特征值问题:其中:=刚度矩阵,=第阶模态的振型向量(特征向量),=第阶模态的固有频率(是特征值),=质量矩阵。

ANSYS模态分析详细解释

ANSYS模态分析详细解释

Ansys模态分析详细论述1、有限元概述将求解域分解成若干小域,有限元模型由单元组成,单元之间通过节点连接,并承受载荷,节点自由度是随着连接该点单元类型变化的。

1.1分析前准备(1)研读相关理论基础;(2)参考别人的分析方法和思路;(3)考虑时间和设备,做适当的简化假设,设定条件、材料并决定分析方式;(4)了解力学现象、分析关键位置并预先评估。

1.2 Von Mises 应力Von Mises应力是非负值,应力表达式可表示为:1.3结果的分析(1)建立疏密不同的三至五种网络,选择适中密度,不能以存在应力集中点处的结果做对比;(2)检验网格,分析结果的合理性,选择安全系数,并且要分析应力集中的真实性与危险性。

(3)接触收敛速度的提高:在不影响结构的前提下,控制或减少接触单元生成数目,并采用线性搜索,与打开自适应开关来提高收敛速度。

2、模态分析中的几个基本概念物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。

模态这个概念一般是在振动领域所用,可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。

2.1主要模态一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。

模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。

将特征值从小到大排列就是阶次。

实际的分析对象是无限维的,所以其模态具有无穷阶。

(完整版)ANSYS模态分析实例和详细过程

(完整版)ANSYS模态分析实例和详细过程

均匀直杆的子空间法模态分析1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped),QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。

ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。

2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。

(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。

(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。

指定分析类型,Main Menu-Solution-Analysis Type-New Analysis,选择Modal。

指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。

瞬态动力学分析的求解方法

瞬态动力学分析的求解方法

瞬态动力学分析的求解方法ANSYS提供了两种方法求解方程式,即中心差分时间积分法和Newmark时间积分法(包括改进的HHT方法)。

中心差分时间积分法用于ANSYS LS-DYNA的显示瞬态动力学分析,读者可参阅LS-DYNA的相关书籍,而Newmark时间积分法用于ANSYS隐式瞬态动力学分析。

ANSYS使用Newmark时间积分方法在离散的时间点上求解这些方程,两个连续时间点间的时间增量称为积分时间步长(integration time step)。

ANSYS提供了3种Newmark时间积分方法,即完全法、缩减法及模态叠加法,分别介绍如下:(1)完全法完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减),允许包括各类非线性特性(如塑性、大变形和大应变等),它是3种方法中功能最强、最容易使用的方法。

完全法的优点是:1)容易使用,不必关心选择主自由度或振型。

2)允许各种类型的非线性特性。

3)采用完整矩阵,不涉及质量矩阵近似。

4)一次分析就能得到所有的位移和应力。

5)允许施加所有类型的载荷,如节点力、外加的(非零)位移和单元载荷(压力和温度),还允许通过TABLE 数组参数指定表边界条件。

6)允许在实体模型上施加载荷。

完全法的主要缺点是它比其他方法开销大。

(2)缩减法缩减法通过采用主自由度及缩减矩阵压缩问题规模。

计算出主自由度处的位移之后,ANSYS 可将解扩展到原有的完整自由度集上,这种方法的优点是比完全法快且开销小。

缩减法的缺点是:1)初始解只计算主自由度的位移,需进行扩展计算,以得到完整空间上的位移、应力和力。

2)不能施加单元载荷(如压力和温度等),但允许施加加速度。

3)所有载荷必须施加在用户定义的主自由度上。

4)整个瞬态分析过程中时间步长必须保持恒定,不允许采用自动时间步长。

5)唯一允许的非线性是简单的点-点接触(间隙条件)。

(3)模态叠加法模态叠加法通过对模态分析得到的振型(特征向量)乘上因子并求和来计算结构的响应,它的优点是:1)对于许多问题,它比缩减法或完全法更快、开销更小。

ansys 模态叠加法 频率 位移曲线

ansys 模态叠加法 频率 位移曲线

ansys 模态叠加法频率位移曲线ANSYS是一款广泛应用的有限元分析软件,它可以用于结构动力学、流体力学、电磁场、声学等多种领域的仿真计算。

在结构动力学中,ANSYS可以进行模态分析、谐响应分析、随机响应分析、响应谱分析等多种类型的动力学分析。

本文主要介绍ANSYS中的谐响应分析,特别是模态叠加法的原理和方法,以及如何绘制频率位移曲线。

## 谐响应分析的原理谐响应分析是一种分析结构在正弦激励下的动态响应的方法,它可以用于评估结构的振动特性、应力分布、疲劳寿命等。

谐响应分析的基本假设是:- 结构的物理性质和几何形状不随时间变化;- 结构的外载荷是随时间正弦变化的,且具有相同的频率; - 结构的响应也是随时间正弦变化的,且具有相同的频率和相位角;- 结构的响应是稳态的,即不考虑初始条件和瞬态效应。

基于以上假设,结构的运动方程可以表示为:$$[M]\ddot{u}+[C]\dot{u}+[K]u=F\sin(\omega t+\phi)$$其中,$[M]$是结构的质量矩阵,$[C]$是结构的阻尼矩阵,$[K]$是结构的刚度矩阵,$u$是结构的位移向量,$F$是结构的外载荷幅值,$\omega$是结构的外载荷频率,$\phi$是结构的外载荷相位角。

由于结构的响应也是正弦变化的,可以假设:$$u=U\sin(\omega t+\theta)$$其中,$U$是结构的响应幅值,$\theta$是结构的响应相位角。

将上式代入运动方程,并利用三角函数的恒等式,可以得到: $$[-\omega^2[M]+i\omega[C]+[K]]U=F\cos(\phi-\theta)$$其中,$i$是虚数单位,满足$i^2=-1$。

上式是一个复数方程,可以分解为实部和虚部两个方程,分别表示结构的响应幅值和相位角与外载荷频率的关系,即:$$[-\omega^2[M]+[K]]U=F\cos(\phi-\theta)$$$$\omega[C]U=F\sin(\phi-\theta)$$上述两个方程可以用矩阵求解法或者迭代求解法求解,得到结构在不同频率下的响应幅值和相位角,进而可以得到结构的位移、速度、加速度、应力等响应。

ansys workbench 瞬态动力学 模态叠加法

ansys workbench 瞬态动力学 模态叠加法

ansys workbench 瞬态动力学模态叠
加法
模态叠加法是通过对模态分析得到的振型乘上因子并求和来计算结构的响应,是ANSYS/Professional程序中唯一可用的瞬态动力学分析法。

其优点为:对于许多问题,它比缩减法或完全法更快、开销更小;只要模态分析不采用PowerDynamics方法,通过LVSCALE 命令将模态分析中施加的单元载荷引入到瞬态分析中;允许考虑模态阻尼(阻尼比作为振型号的函数)。

模态叠加法的缺点为:整个瞬态分析过程中时间步长必须保持恒定,不允许采用自动时间步长;唯一允许的非线性是简单的点点接触(间隙条件);不能施加强制位移(非零)位移。

在进行瞬态动力学分析时,需要根据具体问题选择合适的方法。

如果有需要,可以咨询专业的工程师或查阅相关文献资料来获取更详细的信息。

ansys模态分析详解

ansys模态分析详解

ANSYS动力学分析指南作者: 安世亚太第一章模态分析§1.1模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS产品家族中的模态分析是一个线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。

阻尼法和QR阻尼法允许在结构中存在阻尼。

后面将详细介绍模态提取方法。

§1.2模态分析中用到的命令模态分析使用所有其它分析类型相同的命令来建模和进行分析。

同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。

后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。

而“模态分析实例(GUI方式)”则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。

(要想了解如何使用命令和GUI选项建模,请参阅<<ANSYS建模与网格指南>>)。

<<ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSYS命令说明。

§1.3模态提取方法典型的无阻尼模态分析求解的基本方程是经典的特征值问题:其中:=刚度矩阵,=第阶模态的振型向量(特征向量),=第阶模态的固有频率(是特征值),=质量矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面来比较这两种方法
模态叠加 定义和目的 (接上页)
模态叠加法
• 运动方程是去耦的,求解速度很快
• 当仅需少量模态来描述响应时有效
直接积分法 • 完全耦合的运动方程,求解很费时间
• 对大多数问题都有效
• 需要模态解中的特征向量
• 不需要特征向量然而大多数动力分析是从 模态求解开始的
• 只用于线性分析,不能有非线性性质
– 求解器忽略模态求解中 的载荷,但是将载荷向量 写入 . mode文件
模态叠加
获得模态解的命令 (接上页)
DK,… DL,… DA,
SFL,… SFA,…
BFK,… BFL,… BFA,… BFV,…
SOLVE
! 或 D 或 DSYM ! 或 SF 或 SFE ! 或 BF 或 BFE
模态叠加
模态叠加
施加载荷并求解(接上页)
瞬态分析中的初始静态解 • 在模态叠加法瞬态分析中的初始静态解(时间=0)通常是一个静态
解(使用波前求解器) • 对大模型需花很长的时间和磁盘空间 • 为了避免发生这种情况(并且得到 {U}t=0 = {0}), 在时间步 = 0时不
要施加任何载荷
模态叠加
施加载荷并求解命令(接上页)
模态叠加
施加载荷并求解
建模 获得模态解 转换成谐分析和瞬态分析
施加载荷并求解 • 只能施加力和加速度载荷,不能施加位移载荷 • 来自模态分析的载荷矢量 (后面讨论) • 在瞬态分析中用于初始静态求解的条件 (后面讨论) • 在整个瞬态分析中的积分时间步长是恒定的 • 开始求解计算 (SOLVE)
模态叠加
•典型命令: /SOLU ANTYPE,MODAL,NEW MODOPT,… MXPAND,
模态叠加
获得模态解 (接上页)
• 载荷和约束条件: – 在这一步中必须施加所有的位移约束,位移约束值只能为零,非零值是不允 许的
– 如果谐分析和瞬态分析中要施加单元载荷(如压力温度和加速度等)时, 它们必须在这一步中定义
施加载荷并求解命令(接上页)
• 谐响应载荷定义命令:
FK,…
!或F
ACEL,…
LVSCALE,…
HARFRQ,…
! 谐响应频率范围
NSUBST,… ! 在频率范围内的求解数目
KBC,1
! 典型的阶梯载荷
模态叠加
施加载荷并求解(接上页)
载荷矢量 • 在模态叠加分析中,载荷矢量是施加
单元载荷(压力、加速度和温度)的 一种方法 • 它是根据模态分析所规定的载荷由模 态求解计算出来的 • 施加载荷矢量时可以带有比例因子 (缺省值为 10)
– 求解的聚类选项用以形成平滑的响应曲线 – 用于打印每个频率的模态模态参与量的选项
模态叠加
转换成谐分析或瞬态分析命令(接上页)
• 谐响应分析典型命令: HROPT,MSUP,… HROUT,… LUMPM,…
• 瞬态应分析典型命令: TRNOPT,MSUP,…
模态叠加
转换成谐分析或瞬态分析(接上页)
第六章
模态ቤተ መጻሕፍቲ ባይዱ加
第六章:模态叠加
第一节:定义模态叠加 第二节:学习如何使用模态叠加的方法 第三节:模态叠加实例
模态叠加
第一节:定义和目的
• 模态叠加是用于瞬态分析和谐分析的一种求解技术模态叠加是将从 模态分析中得到各个振型分别乘以系数后叠加起来以计算动力学响 应
• 它是一个用来求解线性动力学问题的快速、有效的方法 • 另一种可选用的方法是直接积分方法,这种方法需要较多的时间下
• 瞬态载荷定义命令:
DELTIM,… ! 积分时间步长(整个瞬态过程为常数)
TIME,0
!在零时刻求解
! 仅当做非零静力求解时才定义载荷
FK,…
! 或 F,
ACEL,…
LVSCALE,…
SOLVE
! 瞬态求解
*DIM,…
! 载荷-时间数组可以表示力或载荷矢量
! 定义载荷数组

! 终点时间和输出控制
! 划分网格 …
模态叠加
获得模态解
建模
获得模态解 • 与模态分析步骤相同 • 有少量差别,将在后面讨论
模态叠加
获得模态解 (接上页)
• 提取模型: – 只有 Block Lanczos法, 子空间法, 或缩减法是有效的方法 – 提取可能对动力学响应有影响的所有模态 – 模态扩展在查看模态振型时是必要的,但在进行模态叠加求解时并 不需要
• 决定要使用多少个模态是比较困难的,很 少几个模态可能得到良好的位移结果,但 只能得到很差的应力结果
• 在瞬态分析中允许有非线性性质
• 决定积分时间步长 Dt比决定要叠加的模态 个数更为容易
模态叠加
第二节: 步骤
五个主要步骤: • 建模 • 获得模态解 • 转换成谐分析和瞬态分析 • 加载并求解 • 查看结果
转换成谐分析或瞬态分析
建模 获得模态解
进行谐分析或瞬态分析 • 退出并重新进入求解器 • 新分析:谐分析或瞬态分析 • 分析选项: 下面讨论 • 阻尼:下面讨论
典型命令:
FINISH /SOLU ANTYPE,HARMIC ! 或ANTYPE,TRANS
模态叠加
转换成谐分析或瞬态分析(接上页)
分析选项 – 除以下几点外均类同于完全谐分析或瞬态分析: • 求解方法: 模态叠加法 • 最大模态序号: 用于求解的最大模态序号,缺省值为扩展的最高模态序号 • 最小模态序号: 最低模态序号,缺省值为1 • 对于谐分析还有下列选项:
阻尼 • 大多数情况下应该规定某种形式的阻尼 • 对模态叠加可有四种形式:
– Alpha (质量) 阻尼 – Beta (刚度) 阻尼
• 均依赖整体和材料 – 恒定阻尼比
– 依赖于频率的阻尼比 (模态阻尼)
典型命令:
ALPHAD,… BETAD,… DMPRAT,… MDAMP,
! 或MP,DAMP,
模态叠加
建模
模型 • 与模态分析所考虑的问题相同 • 只能用线性单元和材料 忽略各种非线性性质 • 注意密度! 此外,若有与材料相关的阻尼,必须在这一步中定义 • 参见第一章中建模要考虑的问题
建模的典型命令流(接上页)
/PREP7 ET,... MP,EX,... MP,DENS,…
! 建立几何模型 …
TIME,…
OUTRES,… ! 输出控制
模态叠加
施加载荷并求解(接上页)
求解 • 与全瞬态分析和谐分析步骤相同 • 在求解过程中仅计算出位移结果(没有应力和反作用力),位移结
果被写入: jobnamerdsp 瞬态分析 jobnamerfrq 谐分析
相关文档
最新文档