动量动量守恒定律基础测试题
动量守恒定律测试题(含答案)
... .word.zl.第16章?动量守恒定律?测试题一、单项选择题〔每题只有一个正确答案〕1.质量为m ,速度为v 的棒球,与棒相互作用后以被原速率弹回,那么小球动量的变化量为〔取作用前的速度方向为正方向〕〔〕A .0B .-2mvC .2mvD .mv2.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,那么碰撞前的瞬间〔 〕A .A 车的动量一定大于B 车的速度 B .A 车的速度一定大于B 车的动量C .A 车的质量一定大于B 车的质量D .A 车的动能一定大于B 车的动能3.将质量为m 的铅球以大小为v 0、仰角为θ的初速度抛入一个装着沙子的总质量为m '的静止小车中,如以下图,小车与地面间的摩擦力不计,那么最后铅球与小车的共同速度等于〔〕A .0cos mv m m θ+'B .0sin mv m m θ+'C .0mv m m+' D .0tan mv m m θ+' 4.物体在恒定合力F 作用下做直线运动,在1t ∆速度由0增大到1E ,在2t ∆速度由v 增大到2v.设2E 在1t ∆做功是1W ,冲量是1I ;在2t ∆做功是2W ,冲量是2I ,那么( )A .1212I I W W <=,B .1212I I W W <<,C .1212,I I W W ==D .1212I I W W =<,5.沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图象如以下图。
那么以下判断错误的选项是〔〕A .碰撞前后A 的运动方向相反B .A 、B 的质量之比为1:2C .碰撞过程中A 的动能变大,B 的动能减小D .碰前B 的动量较大6.如以下图,质量M=3kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动。
质量m=2kg 的小球(视为质点)通过长L=0.5m 的轻杆与滑块上的光滑轴O 连接,开场时-滑块静止,轻杆处于水平状态,现让小球从静止开场释放,取g=10m/s2,以下说确的的是〔〕A.小球m从初始位置到第一次到达最低点的过程中,轻杆对小球的弹力一直沿杆方向B.小球m从初始位置到第一次到达最低点时,小球m速度大小为C.小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.2mD.小球m上升到的最高位置比初始位置低7.蹦极是一项刺激的极限运动,如图,运发动将一端固定的弹性长绳绑在腰或踝关节处,从几十米高处跳下(忽略空气阻力)。
动量-动量守恒定律专题练习(含答案)
动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。
F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。
以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。
A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。
物理动量守恒定律题20套(带答案)
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q
物理动量守恒定律题20套(带答案)及解析
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理动量守恒定律题20套(带答案)及解析
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
动量守恒定律题目
动量守恒定律题目一、两小球在光滑水平面上沿同一直线相向运动,碰撞后两球均静止,则可以断定碰撞前( )A. 两球的速度大小相等B. 两球的质量相等C. 两球的动量大小相等、方向相反D. 两球的动量相等(答案:C)二、在光滑的水平面上,有甲、乙两辆小车,甲车上放一物体,用水平力F甲推甲车,同时用相同的水平力F乙推乙车,两车均从静止开始运动,在相同的位移内( )A. 甲车对物体的做功较多B. 乙车对物体的做功较多C. 甲、乙两车对物体做功一样多D. 无法确定(答案:A)三、一静止的原子核发生α衰变,生成一新原子核,已知衰变前后原子核的质量数分别为A和A−4,电荷数分别为Z和Z−2,则( )A. 衰变过程中释放的核能转变为新原子核的动能B. 衰变过程中释放的核能转变为α粒子和新原子核的动能之和C. 衰变前后原子核的质量亏损为Δm=4u(u为质子和中子的质量)D. 衰变前后核子数减少,所以质量数和电荷数都减小(答案:B)四、在光滑水平面上,有两个小球A、B沿同一直线相向运动,碰撞后有一球静止,则( )A. 若A球质量大于B球质量,则B球一定静止B. 若A球初速度大于B球初速度,则B球一定静止C. 若A球动量大于B球动量,则一定是A球静止D. 以上说法均不正确(答案:A)五、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F1推A,同时用水平力F2推B,当它们相距一定距离时,两力同时撤去,则两物体( )A. 一定相碰B. 一定不相碰C. 若F1>F2,则一定相碰D. 若F1<F2,则一定相碰(答案:B)六、在光滑的水平面上停着一辆小车,小车上有一木块,现用一水平力拉小车,使小车和木块一起加速运动,则( )A. 小车对木块的摩擦力使木块加速B. 小车对木块的摩擦力方向与车加速度方向相同C. 小车受到的拉力与木块对小车的摩擦力是一对平衡力D. 小车受到的拉力与小车对木块的摩擦力是一对作用力与反作用力(答案:A)七、在光滑的水平面上,一质量为m1的小球A沿水平方向以速度v0与质量为m2的静止小球B发生正碰,碰撞后,A球的动能变为原来的1/9,则小球B的速度可能是( )A. v0/3B. 2v0/3C. v0/9D. 8v0/9(答案:A;B)八、在光滑的水平面上,有两个质量相等的物体,中间用弹簧相连,开始时弹簧处于原长,现给它们一个大小相等、方向相反的水平恒力,当它们的距离增大到某一值时,保持恒力不变,突然撤去弹簧,则( )A. 两物体的速度均增大B. 两物体的速度均减小C. 两物体的加速度均增大D. 两物体的加速度均不变(答案:D)九、在光滑的水平面上,一质量为m的球A沿水平方向以速度v与原来静止的质量为2m的球B发生正碰,碰撞后,A球的动能变为原来的1/9,则球B的速度可能是( )A. v/3B. v/6C. 2v/3D. 2v/9(答案:A;C)十、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F推A,同时用与F相同大小的水平力推B,当它们分别通过相同的位移时( )A. 若A、B均做匀加速直线运动,则力F对A、B所做的功一样多B. 若A做匀加速直线运动,B做匀速直线运动,则力F对A做的功较多C. 若A做匀加速直线运动,B做匀速直线运动,则力F对B做的功较多D. 若A、B均做匀速直线运动,则力F对A、B都不做功(答案:A;D)。
(完整word)动量守恒定律经典习题(带答案)
动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0。
2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1。
6kg,木块与小车之间的摩擦系数为0。
2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1。
分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=即为所求。
《动量守恒定律》测试题(含答案)
《动量守恒定律》测试题(含答案)一、动量守恒定律选择题1.—粒钢珠从静止状态开始自由下落,然后陷入泥潭中静止.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ, 不计空气阻力,则( )A.过程Ⅰ中的钢珠动量的改变量的大小大于过程Ⅱ中合力的冲量的大小B.过程Ⅱ中合力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ中重力做功D.过程Ⅰ中的钢珠动量的改变量小于过程Ⅱ中钢珠的重力的冲量2.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是()A.物块与木板相对静止时的速率为1m/sB.物块与木板间的动摩擦因数为0.3C.木板的长度至少为2mD.从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J3.如图所示,质量为m的小球从距离地面高度为H的A点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零不计空气阻力,重力加速度为g。
则关于小球下落过程中,说法正确的是A.整个下落过程中,小球的机械能减少了mgHB.整个下落过程中,小球克服阻力做的功为mg(H+h)C.在陷入泥潭过程中,小球所受阻力的冲量大于mD.在陷入泥潭过程中,小球动量的改变量的大小等于m4.如图所示,A、B、C三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A=2kg,m B=3kg,m C=1kg,初状态三个小球均静止,BC球之间连着一根轻质弹簧,弹簣处于原长状态.现给A 一个向左的初速度v 0=10m/s,A 、B 碰后A 球的速度变为向右,大小为2m/s ,下列说法正确的是A .球A 和B 碰撞是弹性碰撞B .球A 和B 碰后,球B 的最小速度可为0C .球A 和B 碰后,弹簧的最大弹性势能可以达到96JD .球A 和B 碰后,弹簧恢复原长时球C 的速度可能为12m/s5.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==6.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J7.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒8.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值9.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J10.如图所示,足够长的光滑水平面上有一质量为2kg 的木板B ,质量为1kg 的木块C 叠放在B 的右端点,B 、C 均处于静止状态且B 、C 之间的动摩擦因数为μ = 0.1。
最新动量守恒定律和能量守恒定律检测题
动量守恒定律和能量守恒定律检测题动量守恒定律和能量守恒定律检测题一、选择题(每小题3分,共30分)1. 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为(A) 2 m/s . (B) 4 m/s .(C) 7 m/s . (D) 8 m/s. [ ]2. 一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F +=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F对它所作的功为(A) 20R F . (B) 202R F . (C) 203R F . (D) 204R F .[ ]3. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ ]4. 如图所示,砂子从h =0.8 m 高处下落到以3 m /s 的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下.(B) 与水平夹角53°向上.(C) 与水平夹角37°向上.(D) 与水平夹角37°向下. [ ]5. 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头. 不计水和空气的阻力,则在此过程中船将(A) 不动. (B) 后退L .(C) 后退L 21. (D) 后退L 31. [ ] 6. 如图示.一质量为m 的小球.由高H处沿光滑轨道由静止开始滑入环形轨道.若H 足够高,则小球在环最低点时环对它的作用力与小球在环最高点时环对它的作用力之差,恰为小球重量的(A) 2倍. (B) 4倍.(C) 6倍. (D) 8倍. [ ]7. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F 拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是 (A) 在两种情况下,F 做的功相等.(B) 在两种情况下,摩擦力对箱子做的功相等.(C) 在两种情况下,箱子获得的动能相等.(D) 在两种情况下,由于摩擦而产生的热相等. [ ]8. 有一劲度系数为k 的轻弹簧,原长为l 0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l 1.然后在托盘中放一重物,弹簧长度变为l 2,则由l 1伸长至l 2的过程中,弹性力所作的功为 (A) ⎰-21d l l x kx . (B) ⎰21d l l x kx . (C) ⎰---0201d l l l l x kx . (D) ⎰--0201d l l l l x kx . [ ]9. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ]10. 一水平放置的轻弹簧,劲度系数为k ,其一端固定,另一端系一质量为m 的滑块A ,A 旁又有一质量相同的滑块B ,如图所示.设两滑块与桌面间无摩擦.若用外力将A 、B 一起推压使弹簧压缩量为d 而静止,然后撤消外力,则B离开时的速度为(A) 0 (B) m k d2 (C) m k d (D) mk d 2 [ ] 二、填空题(共32分)11. (4分)一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-= (SI)子弹从枪口射出时的速率为 300 m/s .假设子弹离开枪口时合力刚好为零,则 (1)子弹在枪筒中所受力的冲量I =________________,(2)子弹的质量m =__________________.12. (4分)如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________.13. 有一质量为M (含炮弹)的炮车,在一倾角为θ 的光滑斜面上下滑,当它滑到某处速率为v 0时,从炮内射出一质量为m 的炮弹沿水平方向. 欲使炮车在发射炮弹后的瞬时停止下滑,则炮弹射出时对地的速率v =__________.14. (4分)两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101=v cm/s ,)0.50.3(2j i +=v cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v =_________,v 与x 轴的夹角α=__________.15. (4分)已知质点在保守力场中的势能c kr E P +=,其中r 为质点与坐标原点间的距离, k 、c 均为大于零的常量,作用在质点上的力的大小F =___________,该力的方向_______________________________.16. (3分)质量为0.25 kg 的质点,受力i t F = (SI)的作用,式中t 为时间.t = 0时该质点以j 2=v (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是______________. 17. (3分)一质点在二恒力共同作用下,位移为j i r 83+=∆ (SI);在此过程中,动能增量为24 J ,已知其中一恒力j i F 3121-=(SI),则另一恒力所作的功为__________.18. (3分)质量为m 的物体,初速极小,在外力作用下从原点起沿x 轴正向运动.所受外力方向沿x 轴正向,大小为F = kx .物体从原点运动到坐标为x 0的点的过程中所受外力冲量的大小为__________________.19. (3分)已知月球的质量为地球质量的 0.013倍,月球中心与地球中心的距离为地球半径的60倍,则地球与月球系统的质心到地心的距离为地球半径的____倍.三、计算题(共38分)20. (10分)如图所示,质量为M 的滑块正沿着光滑水平地面向右滑动.一质量为m 的小球水平向右飞行,以速度v 1(对地)与滑块斜面相碰,碰后竖直向上弹起,速率为v 2(对地).若碰撞时间为t ∆,试计算此过程中滑块对地的平均作用力和滑块速度增量的大小.21. (5分)一个质量为m 的质点在指向中心的平方反比力 F = k/r 2(k 为常数)的作用下,作半径为r 的圆周运动,求质点运动的速度和总机械能(选取距力心无穷远处的势能为零).22. (11分) 如图所示,将一块质量为M 的光滑水平板PQ 固结在劲度系数为k 的轻弹簧上; 质量为m 的小球放在水平光滑桌面上,桌面与平板PQ 的高度差为h .现给小球一个水平初速0v ,使小球落到平板上与平板发生弹性碰撞.求弹簧的最大压缩量是多少?R,放在光滑的桌面上.一小物体,质量为m,可在槽内滑动.起始位置如图所示:半圆槽静止,小物体静止于与圆心同高的A处.求:(1) 小物体滑到任意位置C处时,小物体对半圆槽及半圆槽对地的速度各为多少?(2) 当小物体滑到半圆槽最低点B时,半圆槽移动了多少距离?。
动量守恒定律试题(含答案)
动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
关于从A 、B 、C 三点抛出的小球,下列说法正确的是( )A .在空中运动时间之比为t A ∶tB ∶tC =1∶3∶5B .竖直高度之比为h 1∶h 2∶h 3=1∶2∶3C .在空中运动过程中,动量变化率之比为AC A B P P P t t t::=1∶1∶1 D .到达P 点时,重力做功的功率之比P A :P B :P C =1:4:9 2.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 223E mD .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 3.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 24.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
动量守恒定律试题(含答案)
动量守恒定律试题(含答案)一、动量守恒定律 选择题 1.如图所示,A 、B 两物体质量分别为m A =5kg 和m B =4kg ,与水平地面之间的动摩擦因数分别为μA =0.4和μB =0.5,开始时两物体之间有一压缩的轻弹簧(不拴接),并用细线将两物体拴接在一起放在水平地面上.现将细线剪断,则两物体将被弹簧弹开,最后两物体都停在水平地面上。
下列判断正确的是( )A .在弹簧弹开两物体以及脱离弹簧后两物体的运动过程中,两物体组成的系统动量不守恒B .在弹簧弹开两物体以及脱离弹簧后两物体的运动过程中,整个系统的机械能守恒C .在两物体被弹开的过程中,A 、B 两物体的机械能一直增大D .两物体一定同时停在地面上2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v MB .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 4.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 5.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
(完整版)动量守恒定律单元测试题
(完整版)动量守恒定律单元测试题一、动量守恒定律选择题1.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。
现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425m的竖直放置的光滑半圆形轨道,如图所示。
g取10m/s2。
则下列说法正确的是()A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N·sB.弹簧弹开过程,弹力对m的冲量大小为1.8N·sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.M离开轻弹簧时获得的速度为9m/s2.如图所示,将一光滑的、质量为4m、半径为R的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m的物块.今让一质量也为m的小球自左侧槽口A的正上方高为R处从静止开始落下,沿半圆槽切线方向自A点进入槽内,则以下结论中正确的是()A.小球在半圆槽内第一次由A到最低点B的运动过程中,槽的支持力对小球做负功B.小球第一次运动到半圆槽的最低点B时,小球与槽的速度大小之比为41︰C.小球第一次在半圆槽的最低点B时对槽的压力为133 mgD.物块最终的动能为15mgR3.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是()A.物块与木板相对静止时的速率为1m/sB.物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J4.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg •m /s ,B 球的动量为7kg •m /s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为( )A .''6/6/AB P kg m s P kg m s =⋅=⋅,B .''3/9/A B P kg m s P kg m s =⋅=⋅,C .''2/14/A B P kg m s P kg m s =-⋅=⋅,D .''5/17/A B P kg m s P kg m s =-⋅=⋅,5.如图,固定的光滑斜面倾角θ=30°,一质量1kg 的小滑块静止在底端A 点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t =2s ,运动到B 点,此时速度大小为v 1,到B 点时撤去F 再经过2s 的时间,物体运动到AB 的中点C ,此时速度大小为v 2,则以下正确的是A .v 2=2v 1B .B 点到C 点的过程中,物体动量改变量为2kg·m/sC .F =7ND .运动过程中F 对小滑块做功28J6.关于系统动量守恒的说法正确的是 ( )①只要系统所受的合外力为零,系统动量就守恒②只要系统内有摩擦力,动量就不可能守恒③系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒④系统如果合外力的冲量远小于内力的冲量时,系统可近似认为动量守恒A .①②③B .①②④C .①③④D .②③④7.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s8.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m + D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR Mm M m + 9.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
动量定理、动量守恒定理大题50题(含答案)
1.(18分)如图(a )所示,“”型木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b )所示.已知sin37°=0.6,cos37°=0.8,g 取10m/s 2.求:(1) 斜面BC 的长度;(2) 滑块的质量;(3)2. (11分)甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度 ,水平向后方的乙船上抛一沙袋,其质量为m .设甲船和沙袋总质量为M ,乙船的质量也为M .问抛掷沙袋后,甲、乙两船的速度变化多少?图(a )3.(2011·新课标全国卷)如图,A 、B 、C 三个木块的质量均为m 。
置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连,将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体,现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C 与A ,B 分离,已知C 离开弹簧后的速度恰为v 0,求弹簧释放的势能。
【详解】设碰后A 、B 和C 的共同速度大小为v ,由动量守恒有,3mv=mv 0 ①设C 离开弹簧时,A 、B 的速度大小为v1,由动量守恒有,3mv=2mv 1+mv 0 ②设弹簧的弹性势能为Ep ,从细线断开到C 与弹簧分开的过程中机械能守恒,有, 12 (3m )v 2+Ep=12 (2m )v 12+12mv 02 ③ 由①②③式得弹簧所释放的势能为Ep=13m v 024.一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示。
物理动量守恒定律题20套(带答案)及解析
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
动量及动量守恒定律习题大全(含解析答案)
动量及动量守恒定律习题大全一.动量守恒定律概述1。
动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒.2.动量守恒定律的表达形式(1),即p1 p2=p1/ p2/,(2)Δp1 Δp2=0,Δp1= —Δp2 和3.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象.(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。
(3)确定过程的始、末状态,写出初动量和末动量表达式。
注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.(4)建立动量守恒方程求解。
4.注重动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒.碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧分析:在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到Ⅲ位位置恰好分开。
(1)弹簧是完全弹性的。
压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证实A、B的最终速度分别为:。
(这个结论最好背下来,以后经常要用到.)(2)弹簧不是完全弹性的。
压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。
专题跟踪检测(十) 动量定理 动量守恒定律
专题跟踪检测(十)动量定理动量守恒定律1.如图所示,带立杆的小车放在光滑水平面上,小球P用轻绳系在立杆上,把小球拉开一定角度,然后将小球P和小车同时由静止释放。
在小球P从静止开始摆到最低点的过程中()A.小球P的机械能守恒B.小球P和小车组成的系统动量守恒C.细线的拉力对小球P始终不做功D.小球P重力的瞬时功率先增大后减小解析:选D小球P和小车组成的系统在水平方向不受外力,竖直方向所受外力不为零,系统只在水平方向动量守恒,故B错误;由于车和球这个系统水平方向上动量守恒,所以当小球下摆时,车子也会随之反方向移动,动能增加,绳对车的拉力对车做正功,系统机械能守恒,则绳对小球的拉力做负功,小球的机械能减少,故A、C错误;小球在刚释放时,速度为零,重力瞬时功率为零,在最低点时,重力方向与速度方向垂直,则重力瞬时功率为零,可知小球P从静止开始摆到最低点的过程中,重力的功率先增大后减小,故D正确。
2.垫球是排球运动中通过手臂的迎击动作,使来球从垫击面上反弹出去的一项击球技术。
若某次从垫击面上反弹出去竖直向上运动的排球,之后又落回到原位置,设整个运动过程中排球所受阻力大小不变,则()A.球从击出到落回的时间内,重力的冲量为零B.球从击出到落回的时间内,空气阻力的冲量为零C.球上升阶段阻力的冲量小于下降阶段阻力的冲量D.球上升阶段动量的变化量等于下降阶段动量的变化量解析:选C整个过程中,重力不为零,作用时间不为零,根据I G=mgt可知,重力冲量不为零,选项A错误;由于整个过程中,阻力都做负功,所以上升阶段的平均速度大于下降阶段的平均速度,即上升过程所用时间比下降过程所用时间少,根据I f=ft可知上升阶段阻力冲量小于下降阶段阻力冲量,整个过程中阻力冲量不为零,选项B错误,C正确;设初速度为v0,上升阶段,初速度为v0,末速度为零,动量变化量为Δp1=0-m v0=-m v0;下降阶段,初速度为零,末速度小于v0,动量变化量为Δp2<m v0-0=m v0,两者不相等,选项D错误。
物理动量守恒定律题20套(带答案)
物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高二物理:动量与动量守恒定律练习题(含参考答案)
高二物理:动量与动量守恒定律练习题(含参考答案)的物体A。
物体A向右以速度v撞击平板车B,撞击后物体A和平板车B一起向右运动。
假设撞击过程中没有能量损失,则撞击后平板车B的速度为:()A。
v/2B。
vC。
2v/3D。
3v/41.一名跳水运动员从峭壁上水平跳入湖水中。
已知运动员的质量为70kg,初速度为5m/s。
经过1秒后速度为5m/s。
不计空气阻力,求此过程中运动员动量的变化量。
A。
700 kg·m/s B。
350 kg·m/s C。
350(-1) kg·m/s D。
350(+1) kg·m/s2.质量相等的A、B两球在光滑水平面上沿同一直线、同一方向运动。
A球的动量为9kg•m/s,B球的动量为3kg•m/s。
当A追上B时发生碰撞,求碰后A、B两球的动量可能值。
A。
pA′=6 kg•m/s,pB′=6 kg•m/s B。
pA′=8 kg•m/s,pB′=4 kg•m/s C。
pA′=﹣2 kg•m/s,pB′=14 kg•m/s D。
pA′=﹣4 kg•m/s,pB′=17 kg•m/s3.A、B两物体发生正碰。
碰撞前后物体A、B都在同一直线上运动,其位移—时间图象如图所示。
由图可知,物体A、B的质量之比为:A。
1∶1 B。
1∶2 C。
1∶3 D。
3∶14.在光滑水平地面上匀速运动的小车和砂子总质量为M,速度为v。
在行驶途中有质量为m的砂子从车上漏掉,求砂子漏掉后小车的速度。
A。
v B。
(M-m)v/M C。
mv/(M-m) D。
(M-m)v/m5.在光滑水平面上,质量为m的小球A正以速度v匀速运动。
某时刻小球A与质量为3m的静止小球B发生正碰,两球相碰后,A球的动能恰好变为原来的1/4.求碰后B球的速度大小。
A。
2v B。
6v C。
2v/3 或 6v/7 D。
无法确定6.在光滑水平面上停放质量为m装有弧形槽的小车。
现有一质量也为m的小球以v的水平速度沿与切线水平的槽口向小车滑去(不计摩擦)。
第一章《动量守恒定律》测试题(含答案)-高二上学期物理人教版(2019)选择性必修第一册
第一章《动量守恒定律》测试题一、单选题1.质量为M的小孩站在质量为m的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v,此时滑板的速度大小为.A.mvMB.M vmC.m vm M+D.M vm M+2.两个具有相等动量的物体,质量分别为m1和m2,且m1>m2,则()A.m2动能较大B.m1动能较大C.两物体动能相等D.无法判断3.静止在水平地面上的平板车,当一人在车上行走时,下列说法正确的是()A.只有当地面光滑时,人和小车组成的系统的动量才守恒B.无论地面是否光滑,人和小车组成的系统的动量都守恒C.只有当小车的表面光滑时,人和小车组成的系统的动量才守恒D.无论小车的表面是否光滑,人和小车组成的系统的动量都守恒4.一炮艇总质量为M,一速度v0匀速行驶,从炮艇上以相对海岸的水平速度v向前进方向射出一质量为m的炮弹,发射炮弹后炮艇的速度为v,,若不计水的阻力,则下列关系式中正确的是()A.Mv0=(M-m)v,+mv B.Mv0=(M-m)v,+m(v+v0)C.Mv0=(M-m)v,+m(v+v,)D.Mv0=Mv,+mv5.下列关于力的冲量和动量的说法中,正确的是()A.物体所受的合力为零,它的动量一定为零B.物体所受的合外力的冲量为零,它的动量变化一定为零C.物体所受的合力外的做的功为零,它的动量变化一定为零D.物体所受的合外力不变,它的动量一定不变6.地动仪是世界上最早的感知地震装置,由我国杰出的科学家张衡在洛阳制成,早于欧洲1700多年如图所示,为一现代仿制的地动仪,龙口中的铜珠到蟾蜍口的距离为h,当感知到地震时,质量为m的铜珠(初速度为零)离开龙口,落入蟾蜍口中,与蟾蜍口碰撞的时间约为t,则铜珠对蟾蜍口产生的冲击力大小约为()Amg BCDmg 7.质量为m 的木箱放置在光滑的水平地面上,在与水平方向成θ角的恒定拉力F 作用下由静止开始运动,经过时间t 速度变为v ,则在这段时间内拉力F 与重力的冲量大小分别为( )A .Ft , 0B .Ft , mgtC .mv , mgtD .Ft cos θ, 08.一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v ,在此过程中( )A .地面对他的冲量为mv +mg Δt ,地面对他做的功为12mv 2B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为12mv 2D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零9.某火箭模型含燃料质量为M ,点火后在极短时间内相对地面以速度大小v 0竖直向下喷出一定质量的气体,火箭模型获得的速度大小为v ,忽略喷气过程中重力和空气阻力的影响,则喷出的气体质量为( )A .0Mv vB .0Mv v v +C .0Mv v v -D .02Mv v v + 10.如图所示,木块A 和木块B 用一根弹性良好的轻弹簧连在一起,置于光滑水平面上,一颗子弹水平射入木块A 并留在A 中,则在子弹打击木块A 及弹簧压缩的过程中,对子弹、两木块和弹簧组成的系统( )A .动量守恒,机械能守恒B .动量不守恒,机械能守恒C .动量守恒,机械能不守恒D .无法判断动量、机械能是否守恒11.如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短,则下图列说法中正确的是( )A.从子弹开始射入木块到弹簧压缩至最短的全过程中,子弹与木块组成的系统动量守恒B.子弹射入木块的短暂过程中,子弹与木块组成的系统动量守恒C.从子弹开始射入木块到弹簧压缩至最短的过程中,子弹、木块和弹簧组成的系统动量守恒D.若水平桌面粗糙,子弹射入木块的短暂过程中,子弹与木块组成的系统动量不守恒12.如图所示,是某游乐园的标志性设施一一摩天轮。
高考物理动量守恒定律题20套(带答案)
高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、下列说法中正确的是()A.物体所受合外力越大,其动量变化一
定越大B.物体所受合外力越大,其动量变化一定越快
C.物体所受合外力的冲量越大,其动量变化一定越大
D.物体所受合外力
的冲量越大,其动量一定变化得越快
2、某物体受到一个-6 N·s的冲量作用,则()A.物体的动量一定减小
B.物体的末动量一定是负值
a
b
F
C.物体动量增量的方向一定与规定的正方向相反
D.物体原来动量的方向
一定与这个冲量的方向相反
3、从同一高度自由下落的玻璃杯,掉在水泥地上易碎,掉在软泥地上不
易碎,这是因为 ( )
A 掉在水泥地上,玻璃杯的动量大.
B 掉在水泥地上,玻璃杯的动量变化大.
C 掉在水泥地上,玻璃杯受到的冲量大,且与水泥地的作用时间短,因而受
到水泥地的作用力大.
D 掉在水泥地上玻璃杯受到的冲量和掉在软泥地上一样大,但与水泥地
的作用时间短,因而受到的水泥地的作用力大.
4、如图所示,水平面上叠放着a. b两木块,用手轻推木块b,a会跟着b
一起运动;若用锤子水平猛击一下木块b,a就不会跟着了运动,这说明 ( )A 轻推木块b时,b给a的冲量小 B 轻推木块b时,b给a的冲量大
C 猛击木块b时,b给a的冲量小
D 猛击木块b时,b给a的冲量大
5、一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。
若把它在空
中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,则( )
A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中钢珠所受阻
力的冲量大小等于过程Ⅰ中重力冲量的大小
C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D.
过程Ⅱ中钢珠的动量改变量等于阻力的冲量
6、如图5-3-5所示,木块A的右侧为光滑曲面,曲面下端极薄,其质量
,原来静止在光滑的水平面上,质量
的小球B以v=2m/s的速度从右向左做匀速直线运动中与木块A发生相互作用,则B球沿木块A的曲面向上运动中可上升的最大高度(设B球不能飞出去)是( )
A.0.40m B.0.20m C.0.10m D.0.5m
7、2005年7月26日,美国“发现号”航天飞机从肯尼迪航天中心发射升空,飞行中一只飞鸟撞上了航天飞机的外挂油箱,幸好当时速度不大,航天飞机有惊无险.假设某航天器的总质量为10 t,以8 km/s的速度高速
运行时迎面撞上一只速度为10 m/s、质量为5 kg的大鸟,碰撞时间为
1.0×10-5 s,则撞击过程中的平均作用力约为()
A.4×109 N
B.8×109 N
C.8×1012 N
D.5×106 N
8、某人身系弹性绳自高空P点自由落下,如图所示,a点是弹性绳的原长位置,c是人所到达的最低点,b是人静止地悬吊时的平衡位置.不计空气阻力,则下列说法中正确的是()
A.从P至c过程中重力的冲量大于弹性绳弹力的冲量
B.从P到c过程中重力所做功等于人克服弹力所做的功
C.从P至b过程中人的速度不断增大
D.从a至c过程中加速度方向保持不变
9、如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相等的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是( )
A.A开始运动时 B.A的速度等于v时
C.B的速度等于零时 D.A和B的速度相等时
10、如图所示,小平板车B静止在光滑水平面上,在其左端有一物体A
以水平速度v0向右滑行.由于A、B间存在摩擦,因而A在B上滑行后,A 开始做减速运动,B做加速运动,设车足够长,则B速度达到最大时,
应出现在 ( )
①A的速度最小时 ②A、B的速度相等时 ③A在B上相对静止时 ④B 开始做匀速直线运动时
A.只有①② B.只有③④ C.只有①②③ D.①②③④
11、质量M=100 kg的小船静止在水面上,船首站着质量m甲=40 kg的游泳者甲,船尾站着质量m乙=60 kg的游泳者乙,船首指向左方,若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s的速率跃入水中,则()
A.小船向左运动,速率为1 m/s B.小船向左运动,速率为0.6 m/s C.小船向右运动,速率大于1 m/s D.小船仍静止
12、如图所示,A、B两质量相等的物体,原来静止在平板小车C上,A和B间夹一被压缩了的轻弹簧,
A、B与平板车上表面动摩擦因数之比为3∶2,地面光滑。
当弹簧突然释放后,A、B相对C滑动的过程中
①A、B系统动量守恒 ②A、B、C系统动量守恒 ③小车向左运
动 ④小车向右运动以上说法中正确的是( )
A.①② B.②③ C.③① D.①④
13、小华做“蹦极”运动,用原长15 m的橡皮绳拴住身体从高空跃下,若小华质量为50 kg,从50 m 高处由静止下落,到运动停止所用时间为4 s,则橡皮绳对人的平均作用力约为_____________.(取g=10 m/s2)
14、质量m=2.5kg的物体静止在粗糙的水平面上,在如图所示的水平拉
力F作用下开始运动,则6 s末物体的速度大小为 m/s。
(已知物体与水平面间动摩擦因数0.2,g取10m/s2)
15、在“探究验证”的实验二中,若绳长L,球1、2分别由偏角α和β
静止释放,则在最低点碰撞前的速度大小分别为 、 。
若碰撞后向同一方向运动最大偏角分别为
和
,则碰撞后两球的瞬时速度大小分别为 、 。
16、以速度v0水平抛出一个质量为1kg的物体,若在抛出3s后它未与地
面及其他物体相碰,求它在3s内的动量的变化。
17、起跳摸高是学生常进行的 一项活动。
某中学生身高1.80m,质量70kg。
他站立举臂,手指摸到的高度为2.10m。
在一次摸高测试中,如果他下蹲,再用力瞪地向上跳起,同时举臂,离地后手指摸到高度为2.55m。
设他从蹬地到离开地面所用的时间为0.7s。
不计空气阻力,(g=10m/s2)求;(1)他跳起刚离地时的速度大小;
(2)上跳过程中他对地面平均压力的大小。
18、如图所示,两个质量都为M的木块A、B用轻质弹簧相连放在光滑的水平地面上,一颗质量为m的子弹以速度v射向A块并嵌在其中,求弹簧被压缩后的最大弹性势能。
A
B
v
19、一颗手榴弹在5m高处以v0= 10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)
20、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止在光滑水平地面上的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:
(1)木块和小车相对静止时小车的速度
(2)从木块
滑上小车到它们处于相对静止所经历的时间
(3)从木块滑上小车到它们处于相对静止时木块在小车上滑行的距离。