钢结构雨棚图纸及计算式

合集下载

钢结构雨棚设计计算书

钢结构雨棚设计计算书

钢结构雨棚设计计算书一、计算依据:1.《建筑结构荷载规》2.《钢结构设计规》GB50017-20033.《玻璃幕墙工程技术规》4.《建筑抗震设计规》二、计算基本参数: 1.本工程位于市,基本风压ω0=0.700(kN/m2),考虑到结构的重要性,按50年一遇考虑乘以系数1.1,故本工程基本风压ω=1.1x0.7=0.77(kN/m2)。

2. 地面粗糙度类别按C类考虑,风压高度变化系数取5.0米处(标高最高处),查下页表1-1知,该处风压高度变化系数为:z=0.74。

依据《玻璃幕墙工程技术规》,风荷载体形系数,对于挑檐风荷载向上取μs=2.0,瞬时风压的阵风系数βz=2.25 。

3. 本工程耐火等级一级,抗震设防七度。

三、结构受力分析该处雨棚是以钢架作为承重结构的悬臂体系。

四、设计荷载确定原则:作用于垂直雨棚平面的荷载主要是风荷载、地震作用及雨棚结构自重,其中风荷载引起的效应最大。

在进行雨棚构件、连接件承载力计算时,必须考虑各种荷载和作用效应的分项系数,即采用其设计值;进行位移和挠度计算时,各分项系数均取1.0,即采用其标准值。

1、风荷载根据《玻璃幕墙工程技术规》,垂直于雨棚平面上的风荷载标准值,按下列公式(1.1)计算:W k = z s z Wo ················(1.1)式中: W k ---风荷载标准值 (kN/m2);z---瞬时风压的阵风系数;βz=2.25s---风荷载体型系数;向上取μs=2.0z---风荷载高度变化系数,并与建筑的地区类别有关;按《建筑结构荷载规》GBJ9-87取值;W o---基本风压(kN/m2) 按《技术要求》W o =1.1x0.700=0.770(kN/m2)按《玻璃幕墙工程技术规》要求,进行建筑幕墙构件、连接件和锚固件承载力计算时,风荷载分项系数应取γw= 1.4表1-1高度(m) z(C 类)5 0.74 10 0.74 15 0.74 200.85即风荷载设计值为: W= γW W K = 1.4W K ··············(1.2)2、地震作用雨棚平面外地震作用标准值计算公式如下: qEK =Emax Gk A·················(1.3)雨棚平面地震作用标准值计算公式如下: PE =E max G ·················(1.4)式中, qEK 为垂直雨棚平面的分布地震作用;(kN/m2) PE 为平行于雨棚平面的集中地震作用;(kN) E 为地震动力放大系数;取E=3.0max 为水平地震影响系数最大值;取max=0.08(7度抗震设计) G 为幕墙结构自重(kN)Gk A 为单位面积的幕墙结构自重(kN/m2) ;取GkA=0.4kN/m2按规要求,地震作用的分项系数取γE= 1.3,即地震作用设计值为:qE=γEqEK = 1.3 qEK ·············(1.5)3、雨棚结构自重按规要求,幕墙结构自重的分项系数取γG=1.2。

钢雨棚计算书

钢雨棚计算书

钢结构雨棚设计计算书一、计算依据:1.《建筑结构荷载规》2.《钢结构设计规》GB50017-20033.《玻璃幕墙工程技术规》4.《建筑抗震设计规》二、计算基本参数: 1.本工程位于市,基本风压ω0=0.700(kN/m2),考虑到结构的重要性,按50年一遇考虑乘以系数1.1,故本工程基本风压ω=1.1x0.7=0.77(kN/m2)。

2. 地面粗糙度类别按C类考虑,风压高度变化系数取5.0米处(标高最高处),查下页表1-1知,该处风压高度变化系数为:μz=0.74。

依据《玻璃幕墙工程技术规》,风荷载体形系数,对于挑檐风荷载向上取μs=2.0,瞬时风压的阵风系数βz=2.25 。

3. 本工程耐火等级一级,抗震设防七度。

三、结构受力分析该处雨棚是以钢架作为承重结构的悬臂体系。

四、设计荷载确定原则:作用于垂直雨棚平面的荷载主要是风荷载、地震作用及雨棚结构自重,其中风荷载引起的效应最大。

在进行雨棚构件、连接件承载力计算时,必须考虑各种荷载和作用效应的分项系数,即采用其设计值;进行位移和挠度计算时,各分项系数均取1.0,即采用其标准值。

1、风荷载根据《玻璃幕墙工程技术规》,垂直于雨棚平面上的风荷载标准值,按下列公式(1.1)计算:W k = βz μs μz Wo ················(1.1)式中: W k ---风荷载标准值 (kN/m2);βz---瞬时风压的阵风系数;βz=2.25μs---风荷载体型系数;向上取μs=2.0μz---风荷载高度变化系数,并与建筑的地区类别有关;按《建筑结构荷载规》GBJ9-87取值;W o---基本风压(kN/m2) 按《技术要求》W o =1.1x0.700=0.770(kN/m2)按《玻璃幕墙工程技术规》要求,进行建筑幕墙构件、连接件和锚固件承载力计算时,风荷载分项系数应取γw= 1.4表1-1即风荷载设计值为: W= γW W K = 1.4W K ··············(1.2)2、地震作用雨棚平面外地震作用标准值计算公式如下: qEK =βE αmax GkA·················(1.3)雨棚平面地震作用标准值计算公式如下: PE =βE αmax G ·················(1.4)式中, qEK 为垂直雨棚平面的分布地震作用;(kN/m2) PE 为平行于雨棚平面的集中地震作用;(kN) βE 为地震动力放大系数;取βE=3.0αmax 为水平地震影响系数最大值;取αmax=0.08(7度抗震设计) G 为幕墙结构自重(kN)Gk A 为单位面积的幕墙结构自重(kN/m2) ;取GkA=0.4kN/m2按规要求,地震作用的分项系数取γE= 1.3,即地震作用设计值为:qE=γEqEK = 1.3 qEK ·············(1.5)3、雨棚结构自重按规要求,幕墙结构自重的分项系数取γG=1.2。

雨棚计算

雨棚计算

一个雨篷的后置埋件计算书基本思路:假定刚性板,n脚埋件,先算出雨篷梁支座反力:弯矩M、剪力V可以肯定的是:埋板底部肯定受压破坏形式主要有三种:1、锚筋拉断 2、锚筋不断,被拨出 3、锚筋剪断查资料得出锚筋与结构化学作用的握固力Nw(化锚产家提供)由公式Ntb=(πde2/4)*ftb计算出单根锚筋抗拉强度由公式Nvb=nv*(πd2/4)*fvb计算出单根锚筋抗剪强度由公式Nmax=M*y1/∑yi2计算出弯矩作用下最外侧(最外侧所受拉力最大)单根锚筋所受拉力if Nmax>Ntb or Nmax>Nw then {即其中任一项不成立均不满足}抗拉不满足else抗拉满足!;由公式Nv=V/n计算出剪力作用下单根锚筋所受剪力if Nv>Nvb then抗剪不满足else抗剪满足!;说明:式中所有公式均来自钢结构教材例:六脚锚板一、经结构计算已知埋件所受力如下:M=22 kN•mV=10 KN二、强度校核:校核依据:抗剪强度校核:Nv<Nvb式中:Nv—单根锚筋所受剪力Nvb—锚筋抗剪承载力设计值抗拉强度校核:Nmax< Ntb式中:Nmax—单根锚筋所受最大拉力Ntb—锚筋抗拉承载力设计值强力植筋胶FISV360S在植入深度为12cm时承载力设计值为48.4KN。

一根Ⅱ级钢筋抗拉、抗剪强度设计值分别为:Ntb=(πde2/4)*ftb=(π0.0122/4)*310000 =35 KN Nvb=nv*(πd2/4)*fvb=1*(π0.0122/4)*(310000*0.8)=28 KN先假定雨篷钢梁绕锚板形心转动,此时最底排锚筋必定受压,所以构件绕底排锚筋转动,顶排锚筋受拉力最大,计算顶排单根锚筋所受拉力为:Nmax=M*y1/∑yi2=22*0.18/(0.182+0.182+0.092+0.092)=48>Ntb=35KN抗拉强度不满足!每个锚筋所受剪力均为:Nv=V/n=10/6=1.67KN<28KN 抗剪安全!举个例子:计算项目: 后置板_侧面埋板计算[ 基本信息 ]预埋板型号: 四脚埋板锚栓直径: 12 mm最大弯矩: 0.38 kN-m水平支座反力: 14.63 kN垂直支座反力: 3.758 kN外层锚栓中心距: 110 mm[ 锚栓承载力计算 ]:计算假定: 刚性板弯矩作用下:混凝土受压区高度取0.5×L T = M / ( 2×( L-0.25×L ) )= 380 / ( 2×0.75×110 ) = 2.3 kN水平力作用下:T = N / 4 = 14.63 / 4= 3.65 kN垂直力作用下:S = V / 4 = 3.758 / 4= 0.93 kN外力共同作用下:T = 2.3 + 3.65 = 5.95 kNS = 0.93 kN锚栓允许拉力和剪力分别为:[T] = 14 kN[S] = 14 kN经过计算:( T/[T] )^2 +( S/[S] )^2 < 1.0强度满足!关于幕墙的计算主要用到的知识是力学。

(整理)青岛钢雨棚计算书(修改)

(整理)青岛钢雨棚计算书(修改)

钢结构雨篷计算书雨棚计算简图如下图:一、计算依据: 1.《建筑结构荷载规范》 2.《钢结构设计规范》GB50017-20033.《玻璃幕墙工程技术规范》4.《建筑抗震设计规范》 二、计算基本参数: 1.本工程位于青岛市市,基本风压按50年一遇取值,ω0=0.6 KN/m 2。

基本雪压载按50年一遇取值, S 0= 0.2KN/m 2。

2. 地面粗糙度类别按B 类考虑,风压高度变化系数取4.5米处(标高最高处),查表知,该处风压高度变化系数为:μz =1.0。

依据《玻璃幕墙工程技术规范》,风荷载体形系数,对于挑檐风荷载向上取μs=-2.0,瞬时风压的阵风系数βz=1.88。

按《建筑结构荷载规范》GB50009-2010, 第8.3.4条 μS :风荷载体型系数,取μS=-2.0,因构件丛属面积1.7×2.6=4.42m2〈 25m2, 65.042.4log = 负风压时:48.1]65.0)0.26.00.2(0.2[)(1-=⨯-⨯+-=A s μ正风压时:0.1)(1=A s μ三、结构受力分析该处雨棚是以钢架作为承重结构的悬臂体系。

四、荷载组合取值1、面板(8+1.52+8钢化夹胶玻璃)自重荷载: 自重荷载标准:GK1=16×10-3×26.5=0.42 KN/m2考虑其他构件,玻璃面板自重面荷载标准值取GGK=0.72 KN/m2 2、风荷载标准值: Wk=βz ×μz ×μs ×W0其中: βz---瞬时风压的风震动系数,取为 1.88μz---风压高度变化系数,按地面粗糙B 类取1.0μs---风荷载体型系数,正风时取1.0,负风时取-1.48 W0---青岛地区基本风压,根据规范取0.6KN/m2, 则Wk=1.88×2×1.0×0.6=2.26 KN/m2 负风压时:WK1=βgz·μS ·μZ·W0=1.88×-1.48×1.0×0.6=-1.67KN/m2 正风压时:WK2=βgz·μS ·μZ·W0=1.88×1.0×1.0×0.6=1.13KN/m2 负风压线荷载: -1.67X1.7=-2.84 KN/m 正风压线荷载: 1.13X1.7=1.921 KN/m3、活荷载,按0.5 KN/m2考虑,活荷载产生的线荷载为0.5X1.7=0.85 KN/m4、考虑检修荷载作用,对单根钢梁取最不利位置处集中荷载为2KN (按1.7米跨内考虑 1.0X2=2.0KN ) 5 、荷载组合雨篷按照悬挑2.6m 计算。

轻钢雨棚钢梁重量计算公式

轻钢雨棚钢梁重量计算公式

轻钢雨棚钢梁重量计算公式轻钢雨棚是一种常见的建筑结构,它通常由轻钢结构组成,其中的钢梁是承担主要荷载的部件之一。

在设计和施工轻钢雨棚时,需要准确计算钢梁的重量,以确保结构的稳定性和安全性。

本文将介绍轻钢雨棚钢梁重量的计算公式,并对其进行详细解析。

轻钢雨棚钢梁重量计算公式如下:钢梁重量 = 钢梁截面积×钢材密度×钢梁长度。

其中,钢梁截面积可以根据钢梁的型号和规格进行计算,钢材密度通常为7850千克/立方米,钢梁长度为实际使用的长度。

下面我们将对这三个参数进行详细的解释。

首先是钢梁截面积,钢梁的截面积是指钢梁横截面的面积,通常以平方厘米或平方米为单位。

钢梁的截面积可以根据钢梁的型号和规格直接查表得出,也可以通过钢梁的几何尺寸进行计算。

在实际应用中,通常会根据设计要求选择合适的钢梁型号和规格,然后通过查表或计算得出其截面积。

其次是钢材密度,钢材的密度是指单位体积内的质量,通常以千克/立方米为单位。

钢材的密度通常为7850千克/立方米,这是一个常用的数值,在实际计算中可以直接采用这个数值。

最后是钢梁长度,钢梁的长度是指钢梁的实际使用长度,通常以米为单位。

在实际计算中,需要根据设计图纸或实际测量得出钢梁的长度。

通过以上公式,我们可以准确计算出轻钢雨棚钢梁的重量。

在实际应用中,为了确保计算结果的准确性,通常会对钢梁的重量进行多次计算和核对,以及与实际测量结果进行对比。

在轻钢雨棚的设计和施工中,准确计算钢梁的重量对于保证结构的稳定性和安全性至关重要。

因此,设计人员和施工人员需要熟练掌握钢梁重量的计算方法,并在实际应用中严格执行,以确保轻钢雨棚的质量和安全性。

除了上述公式外,还有一些其他因素也会对轻钢雨棚钢梁的重量产生影响,比如连接件的重量、附加荷载的影响等。

在实际计算中,需要综合考虑这些因素,以得出更加准确的钢梁重量。

总之,轻钢雨棚钢梁重量的计算是轻钢结构设计和施工中的重要环节,通过合理的计算和核对,可以保证轻钢雨棚结构的稳定性和安全性。

钢结构雨棚建筑面积计算规则

钢结构雨棚建筑面积计算规则

钢结构雨棚建筑面积计算规则
钢结构雨棚是一种常见的建筑结构,其建筑面积的计算规则对于设计和施工具有重要意义。

下面将介绍钢结构雨棚建筑面积计算的基本规则。

1. 面积计算基本原理:
钢结构雨棚的建筑面积由雨棚的水平投影面积组成,即雨棚在平面上所占的面积总和。

通常情况下,可以通过测量雨棚的长度和宽度,然后进行面积计算。

2. 面积计算步骤:
步骤一:测量雨棚的长度(L)和宽度(W)。

步骤二:使用下式计算雨棚的水平投影面积(A):
A = L * W
步骤三:根据需要考虑其他因素进行适当的修正。

例如,如果雨棚有错台或斜坡,需要对面积进行修正。

3. 面积计算案例:
现有一钢结构雨棚,长度为10米,宽度为5米。

按照上述步骤进行计算:
A = 10 * 5 = 50 平方米
因此,该钢结构雨棚的建筑面积为50平方米。

结论:
钢结构雨棚的建筑面积计算应遵循以上基本原理和步骤,通过准确测量雨棚的长度和宽度,计算出正确的水平投影面积。

这对于准确设计和施工具有重要意义,确保雨棚工程的顺利进行。

钢雨棚计算

钢雨棚计算

钢结构雨篷设计计算书一、计算依据:1.《建筑结构荷载规范》2.《钢结构设计规范》GB50017-20033.《建筑抗震设计规范》4.《钢雨篷(一)》07SG528-1图集二、计算基本参数: 1.本工程位于xx市,基本风压ω0=0.750(kN/m2),考虑到结构的重要性,按50年一遇考虑乘以系数1.0,故本工程基本风压ω=1.0x0.75=0.75(kN/m2)。

2. 地面粗糙度类别按B类考虑,风压高度变化系数取5.0米处(标高最高处),查荷载规范知,取: z=1.00,对于雨篷风荷载向上取μs=-2.0,向瞬时风压的阵风系数βz=1.70 。

3. 本工程耐火等级二级,抗震设防六度。

三、结构平面布置结构平面布置图:初步估计主梁采用:HN400×200×8×13次梁采用:HN250×125×6×9拉压杆采用:Φ152×5.0钢材均采用Q235级钢四、荷载计算1、风荷载垂直于雨篷平面上的风荷载标准值,按下列公式(1.1)计算:W k = βz μs μz Wo ················(1.1)式中: W k ---风荷载标准值 (kN/m2);βz---瞬时风压的阵风系数;βz=1.70μs---风荷载体型系数;参照07GSG528-1图集说明5.1.4条,向上取μs=-2.0,向下取μs=1.0。

μz---风荷载高度变化系数;按《建筑结构荷载规范》GB5009-2012取值μz=1.0;W o---基本风压(kN/m2) ,查荷载规范,北海市风压取 W o =0.750(kN/m2)正风:Wk+=1.70×1.0×1.0×0.75=1.28 kN/m2负风:Wk-=1.70×(-2.0)×1.0×0.75=-2.55 kN/m2简化为作用在主梁上的集中荷载,荷载作用面积A=5.08×1.1=5.59㎡正风时,W k1=1.28×5.59=7.12 kN/m负风时,W k2=-2.55×5.59=-14.25kN/m2、恒荷载07GSG528-1图集说明5.1.1条,正风时,雨篷玻璃永久荷载0.8 kN/m2,负风时取0.3 kN/m2。

(完整word版)钢雨棚计算书

(完整word版)钢雨棚计算书

钢结构雨篷设计计算书一、计算依据:1。

《建筑结构荷载规范》2.《钢结构设计规范》GB50017-20153.《建筑抗震设计规范》4.《钢雨篷(一)》07SG528—1图集二、计算基本参数:1.本工程位于xx市,基本风压ω0=0。

750(kN/m2),考虑到结构的重要性,按50年一遇考虑乘以系数1.0,故本工程基本风压ω=1。

0x0.75=0。

75(kN/m2)。

2. 地面粗糙度类别按B类考虑,风压高度变化系数取5.0米处(标高最高处),查荷载规范知,取:z=1。

00,对于雨篷风荷载向上取μs=—2.0,向瞬时风压的阵风系数βz=1。

70 。

3。

本工程耐火等级二级,抗震设防六度。

三、结构平面布置结构平面布置图:初步估计主梁采用:HN400×200×8×13次梁采用:HN250×125×6×9拉压杆采用:Φ152×5。

0钢材均采用Q235级钢四、荷载计算1、风荷载垂直于雨篷平面上的风荷载标准值,按下列公式(1.1)计算:W k = z s z Wo ················(1。

1)式中: W k —--风荷载标准值 (kN/m2);z—--瞬时风压的阵风系数;βz=1。

70s--—风荷载体型系数;参照07GSG528-1图集说明5.1。

4条,向上取μs=-2。

0,向下取μs=1。

0。

z——-风荷载高度变化系数;按《建筑结构荷载规范》GB5009-2012取值μz=1.0;W o———基本风压(kN/m2) ,查荷载规范,北海市风压取 W o =0.750(kN/m2)正风:Wk+=1.70×1.0×1。

0×0。

75=1。

28 kN/m2负风:Wk-=1.70×(—2。

钢结构雨棚面积怎么计算

钢结构雨棚面积怎么计算

钢结构雨棚面积的计算方法
钢结构雨棚作为建筑中常见的一种结构形式,其面积的计算是在设计和施工过程中不可或缺的重要环节。

下面将介绍如何计算钢结构雨棚的面积。

1. 组件分析
首先,我们需要了解钢结构雨棚通常由哪些组件构成。

一般来说,钢结构雨棚包括主梁、次梁、支撑柱、覆盖板等部分。

这些组件的尺寸和形状将直接影响雨棚的实际面积。

2. 面积计算公式
计算钢结构雨棚的面积通常采用以下公式:
$$ A = L \\times W $$
其中,A为钢结构雨棚的面积,L为雨棚的长度,W为雨棚的宽度。

3. 面积计算步骤
在实际操作中,我们可以按照以下步骤计算钢结构雨棚的面积:
步骤一:测量雨棚的长度和宽度
首先,使用测量工具准确测量钢结构雨棚的长度和宽度。

在测量时确保准确无误,以避免面积计算出现偏差。

步骤二:代入公式计算面积
将测量得到的长度和宽度代入上述公式中进行计算,得到钢结构雨棚的面积。

在计算过程中,注意单位的统一,避免转换错误导致计算结果不准确。

4. 示例
假设钢结构雨棚的长度为10米,宽度为5米,根据上述公式计算得到:
$$ A = 10 \\times 5 = 50 \\text{平方米} $$
因此,该钢结构雨棚的面积为50平方米。

结语
通过以上步骤,我们可以准确计算钢结构雨棚的面积,为设计和施工提供参考依据。

在实际操作中,我们还需要考虑结构的强度、承重能力等因素,以确保钢结构雨棚的使用安全和稳定。

实例说钢雨篷结构设计(sap2000)

实例说钢雨篷结构设计(sap2000)

首先来说说雨篷的同音(雨篷、雨棚and雨蓬)。

雨蓬是觉得错误的,蓬字压根没这个意思。

雨篷含有悬挑的意思,如果是挑出结构,无论是挑板,挑梁板还是钢结构悬挑的都可以用雨篷。

而雨棚是有自己独立的支撑体系的,独自架立而不需要依附于结构上的。

所以应该从概念上认清这几个名词,避免不必要的笑话。

下面说说自己在设计过程中的几个注意之处:•拉杆吊点位置的选取在sap2000里面对比了不同角度的吊点位置,最后得出还是30°角度结构受力最优,图集给出参考角度为30°~60°。

•风荷载计算详见后续计算书•荷载组合详见后续计算书•长细比对于吊杆,它可能受拉,也可能受压(长细比200),这就决定了它基本是构造控制。

file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/21356db5.bmp file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/50db89e0.bmp (注:下述计算书是最近帮朋友整理的并非本项目的,只是想说明问题)一、玻璃计算参考图纸及说明1、玻璃选用玻璃采用:夹层玻璃,四点支承。

支承点间玻璃面板尺寸1600×1414 mm,与水平面夹角0 度。

玻璃外片厚度为8 mm,内片厚度为8 mm。

玻璃大面强度为58 MPa,侧面强度为41 MPa。

弹性模量 E = 0.72x105 MPa,泊松比v = 0.2。

玻璃密度ρ = 25.6 kN/m3。

2、荷载计算(1)自重计算Gk':恒载标准值(kN/m2),方向竖直向下Gk:恒载标准值(kN/m2),垂直于板面的恒载分量Gk' = 25.6×(8+8)×10-3 = 0.410 kN/m2Gk = 0.410×cos0o = 0.410 kN/m2(2)风荷载计算所在高度:6m所在部位:雨篷地面粗糙度类别:B类风荷载标准值应按下式计算,并且负风荷载标准值不应小于1.5kN/m^2,正风荷载标准值不应小于0.5kN/m^2:阵风系数:βgz=1.7体型系数(负风):μsl1=-2体型系数(正风):μsl2=1风压高度变化系数:μz=1.0基本风压:W0=0.45kN/m^2风荷载标准值(负风):W1k=min(-1.5kN/m^2,βgz*μsl1*μz*W0)=-1.53kN/m^2风荷载标准值(正风):W2k==max(0.5kN/m^2,βgz*μsl2*μz*W0)=0.765kN/m^2 (3)雪荷载SK:雪荷载标准值(kN/m2),方向垂直于板面,取0.8 kN/m2(4)检修荷载WOK:检修荷载标准值(kN/m2),方向垂直于板面,取1 kN/m2(5)其他活载OTK:其他活载标准值(kN/m2),方向垂直于板面,取0.5 kN/m23、荷载组合(1)、参与组合的荷载项<1>、恒载(自重垂直于玻璃的分量) Gk = 0.410 kN/m2组合系数1.0 分项系数1.0 / 1.2 / 1.35<2>、风荷载(垂直于玻璃) Wk = 0.76 / 1.53 kN/m2组合系数0.6 / 0.2 分项系数1.4<3>、活载(取雪荷载/检修荷载/其他活载之大值,垂直于玻璃) Qk = 1 kN/m2组合系数0.7 分项系数1.0 / 1.4(2)、由以下组合算得最大的荷载组合标准值(用于刚度校核)恒载恒载+风载恒载+活载恒载+风载+0.7活载恒载+活载+0.6风载最大的荷载组合标准值qk = 1.52 kN/m2(3)、由以下组合算得最大的荷载组合设计值(用于强度校核)1.35恒载1.2恒载+1.4活载1.35恒载+0.7×1.4活载1.2恒载+1.4正风压1.35恒载+0.6×1.4正风压1.2恒载+1.4正风压+0.7×1.4活载1.2恒载+1.4活载+0.6×1.4风载1.35恒载+0.6×1.4正风压+0.7×1.4活载1.0恒载-1.4负风压最大的荷载组合设计值q = +2.38 / -1.71 kN/m24、板块校核外片厚度t1 = 8 mm内片厚度t2 = 8 mm等效厚度te=(t13+t23)-3 = 10.079 mm外片承受自身的恒荷载+ 其他荷载×t13/(t13+t23)外片所承受荷载组合标准值= 0.76kN/m2外片所承受荷载组合设计值= 1.19 kN/m2内片承受自身的恒荷载+ 其他荷载×t23/(t13+t23)内片所承受荷载组合标准值= 0.76 kN/m2内片所承受荷载组合设计值= 1.19 kN/m2(1)、强度校核支承点间面板长边边长b = 1600 mm查表(JGJ 102-2003 表8.1.5-1)得弯矩系数m = 0.147外片强度校核:查表(JGJ 102-2003 表6.1.2-2)得折减系数η = 0.891应力σ = 6mqb2η/t2= 6×0.147×1.19×16002×0.891/82×10-3= 36MPa强度满足!内片强度校核:查表(JGJ 102-2003 表6.1.2-2)得折减系数η = 0.891应力σ = 6mqb2η/t2= 6×0.147×1.19×16002×0.891/82×10-3= 36 MPa强度满足!(2)、刚度校核刚度D = Ete3/12/(1-v2) = 6400000.000 N•mm查表(JGJ 102-2003 表8.1.5-2)得挠度系数μ = 0.02101查表(JGJ 102-2003 表6.1.2-2)得折减系数η = 0.913挠度d = μqkb4η/D= 0.02101×0.76×16004×0.913/6400000.000×10-3= 15 mm挠度限值dmax = b/60 = 1600/60 = 26.667 mm挠度满足!二、结构计算参考图纸及说明1、计算模型file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image.png拉杆:PIPE102x5的圆钢管(Q235B)——紫色杆件主梁:HN250x125x6x9(Q235B)——青色杆件次梁:160x80x4钢方通(Q235B)——绿色、灰色杆件2、荷载计算2.1风荷载计算所在高度:6m所在部位:雨篷地面粗糙度类别:B类风荷载标准值应按下式计算,并且负风荷载标准值不应小于1.5kN/m^2,正风荷载标准值不应小于0.5kN/m^2:阵风系数:βgz=1.7体型系数(负风):μsl1=-2体型系数(正风):μsl2=1风压高度变化系数:μz=1.0基本风压:W0=0.45kN/m^2风荷载标准值(负风):W1k=min(-1.5kN/m^2,βgz*μsl1*μz*W0)=-1.53kN/m^2风荷载标准值(正风):W2k==max(0.5kN/m^2,βgz*μsl2*μz*W0)=0.765kN/m^2 Wind-file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image(1).pngWind+file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image(2).png2.2、雪荷载计算(Snow)雪荷载作用标准值应按下式计算:积雪分布系数:μr=2基本雪压:So=0.4kN/m^2雪荷载标准值:Sk=0.8kN/m^2file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image(3).png2.3、活荷载计算(live)根据《建筑结构荷载规范》GB50009-2012第5.3.1条,雨篷属于不上人屋面。

钢结构雨棚计算书范本

钢结构雨棚计算书范本

钢结构雨棚计算书范本
1. 引言
在建筑工程中,钢结构雨棚是一种常见的构筑物,具有承载荷载、遮挡风雨等功能。

本文将根据典型的钢结构雨棚设计要求,提供一份计算书范本,以指导工程师进行钢结构雨棚的设计计算。

2. 荷载计算
2.1 风荷载计算
根据《建筑结构荷载规范》,钢结构雨棚的风荷载计算应考虑风速、风向等因素。

采用公式:
$$F_{wind} = C_f \\times A \\times P$$
其中,F wind为风荷载,C f为风压系数,A为风压面积,P为大气压。

2.2 雨荷载计算
雨荷载为钢结构雨棚在雨天积聚水的重量,根据设计排水能力计算。

3. 结构计算
钢结构雨棚的结构计算主要包括主梁、次梁、支撑等元件的受力分析和强度验算。

按照受力平衡原理和钢结构设计规范计算各构件的截面尺寸及钢材强度要求。

4. 连接设计
钢结构雨棚的连接设计需要考虑连接件的承载能力和连接方式的可靠性。

根据设计荷载和构件受力情况,选择适当的连接方式和规格,并计算连接件的极限承载能力。

5. 其他要求
除上述要素外,钢结构雨棚设计还需考虑防腐防锈、防雷、抗震等特殊要求,
确保钢结构雨棚在使用过程中安全可靠。

结语
通过本文提供的钢结构雨棚计算书范本,设计人员可以遵循其中的步骤和方法,进行钢结构雨棚的设计计算工作,确保结构的安全稳定性。

愿本文对您有所帮助!。

钢结构雨棚计算书

钢结构雨棚计算书

雨蓬玻璃雨篷设计计算书设计:校对:审核:批准:徐州二〇〇七年十二月二十七日目录1 计算引用的规范、标准及资料 (1)1.1 幕墙设计规范: (1)1.2 建筑设计规范: (1)1.3 铝材规范: (2)1.4 金属板及石材规范: (2)1.5 玻璃规范: (2)1.6 钢材规范: (3)1.7 胶类及密封材料规范: (3)1.8 门窗及五金件规范: (4)1.9 相关物理性能级测试方法: (5)1.10 《建筑结构静力计算手册》(第二版) (5)1.11 土建图纸: (5)2 基本参数 (5)2.1 雨篷所在地区: (5)2.2 地面粗糙度分类等级: (5)3 雨篷荷载计算 (6)3.1 玻璃雨篷的荷载作用说明: (6)3.2 风荷载标准值计算: (6)3.3 风荷载设计值计算: (8)3.4 雪荷载标准值计算: (8)3.5 雪荷载设计值计算: (8)3.6 雨篷面活荷载设计值: (8)3.7 雨篷构件恒荷载设计值: (8)3.8 选取计算荷载组合: (9)4 雨篷杆件计算 (10)4.1 结构的受力分析: (10)4.2 选用材料的截面特性: (11)4.3 梁的抗弯强度计算: (11)4.4 拉杆的抗拉(压)强度计算: (12)4.5 梁的挠度计算: (12)5 雨篷焊缝计算 (12)5.1 受力分析: (12)5.2 焊缝校核计算: (13)6 幕墙玻璃的选用与校核 (13)6.1 玻璃板块荷载组合计算: (13)6.2 玻璃板块荷载分配计算: (14)6.3 玻璃的强度计算: (15)6.4 玻璃最大挠度校核: (16)7 雨篷埋件计算(后锚固结构) (16)7.1 校核处埋件受力分析: (16)7.2 锚栓群中承受拉力最大锚栓的拉力计算: (17)7.3 群锚受剪内力计算: (17)7.4 锚栓钢材破坏时的受拉承载力计算: (18)7.5 混凝土锥体受拉破坏承载力计算: (18)7.6 锚栓钢材受剪破坏承载力计算: (20)7.7 混凝土楔形体受剪破坏承载力计算: (20)7.8 混凝土剪撬破坏承载能力计算: (21)7.9 拉剪复合受力承载力计算: (22)8 附录常用材料的力学及其它物理性能 (23)钢结构雨篷设计计算书1 计算引用的规范、标准及资料1.1幕墙设计规范:《玻璃幕墙工程技术规范》 JGJ102-2003《点支式玻璃幕墙工程技术规程》 CECS127-2001《点支式玻璃幕墙支承装置》 JC139-2001《吊挂式玻璃幕墙支承装置》 JC138-2001《建筑玻璃应用技术规程》 JGJ113-2003《建筑瓷板装饰工程技术规范》 CECS101:98《建筑幕墙》 JG3035-2003《金属与石材幕墙工程技术规范》 JGJ133-2001《全玻璃幕墙工程技术规程》 DBJ/CT014-20011.2建筑设计规范:《采暖通风与空气调节设计规范》 GB50019-2003《地震震级的规定》 GB/T17740-1999《防静电工程技术规范》 DGJ08-83-2000《钢结构防火涂料》 GB14907-2002《钢结构设计规范》 GB50017-2003《高层建筑混凝土结构技术规程》 JGJ3-2002《高层民用钢结构技术规程》 JGJ99-98《高层民用建筑设计防火规范》 GB50045-2001《高处作业吊蓝》 GB19155-2003《工程抗震术语标准》 JGJ/T97-95《工程网络计划技术规程》 JGJ/T121-99《公共建筑节能设计标准》 GB50189-2005《混凝土结构后锚固技术规程》 JGJ145-2004《混凝土结构设计规范》 GB50010-2002《混凝土用膨胀型、扩孔型建筑锚栓》 JG160-2004《既有居住建筑节能改造技术规程》 JGJ129-2000《建筑表面用有机硅防水剂》 JC/T902-2002《建筑材料放射性核素限量》 GB6566-2001《建筑防火封堵应用技术规程》 CECS154:2003《建筑钢结构焊接技术规程》 JGJ81-2002《建筑隔声评价标准》 GB/T50121-2005《建筑工程抗震设防分类标准》 GB50223-2004《建筑工程预应力施工规程》 CECS180:2005《建筑结构荷载规范》 GB50009-2001 2006年版《建筑结构可靠度设计统一标准》 GB50068-2001《建筑抗震设防分类标准》 GB50223-2004《建筑抗震设计规范》 GB50011-2001《建筑设计防火规范》 GBJ16-87(2001年版)《建筑物防雷设计规范》 GB50057-2000 《冷弯薄壁型钢结构设计规范》 GB50018-2002 《民用建筑隔声设计规范》 GBJ118-88《民用建筑热工设计规范》 GB50176-93《民用建筑设计通则》 GB50352-2005 《膜结构技术规程》 CECS158:2004 《夏热冬冷地区居住建筑节能设计标准》 JGJ134-2001《夏热冬暖地区居住建筑节能设计标准》 JGJ75-2003《预应力筋用锚具、夹具和连接器应用技术规程》JGJ85-2002《中国地震动参数区划图》 GB18306-2001 《中国地震烈度表》 GB/T17742-19991.3铝材规范:《变形铝及铝合金化学成份》 GB/T3190-1996 《建筑用隔热铝型材-穿条式》 JG/T175-2005 《建筑用铝型材、铝板氟碳涂层》 JC133-2000《铝合金建筑型材第1部分基材》 GB5237.1-2004 《铝合金建筑型材第2部分阳极氧化、着色型材》 GB5237.2-2004 《铝合金建筑型材第3部分电泳涂漆型材》 GB5237.3-2004 《铝合金建筑型材第4部分粉末喷涂型材》 GB5237.4-2004 《铝合金建筑型材第5部分氟碳漆喷涂型材》 GB5237.5-2004 《铝合金建筑型材第6部分隔热型材》 GB5237.6-2004 《铝合金建筑型材》 GB/T5237-2004 《铝及铝合金彩色喷涂层》 YS/T431-2000 《铝及铝合金彩色涂层板、带材》 YS/T431-2000 《铝及铝合金轧制板材》 GB/T3880-1997 《铝型材截面几何参数算法及计算机程序要求》 YS/T437-2000 《有色电泳涂漆铝合金建筑型材》 YS/T459-20031.4金属板及石材规范:《干挂饰面石材及其金属挂件》 JC830.1、2-2005 《建筑装饰用微晶玻璃》 JC/T872-2000 《铝幕墙板板基》 YS/T429.1-2000 《铝幕墙板氟碳喷漆铝单板》 YS/T429.2-2000 《铝幕墙板》 YS/T429-2001 《铝塑复合板》 GB/T17748-1999 《铝塑复合板用铝带》 YS/T432-2000 《天然板石》 GB/T18600-2001 《天然大理石荒料》 JC/T202-2001 《天然大理石建筑板材》 GB/T19766-2005 《天然花岗石荒料》 JC/T204-2001 《天然花岗石建筑板材》 GB/T18601-2001 《天然石材统一编号》 GB/T17670-1999 《天然饰面石材术语》 GB/T13890-921.5玻璃规范:《镀膜玻璃第二部分低辐射镀膜玻璃》 GB/T18915.2-2002 《镀膜玻璃第一部分阳光控制镀膜玻璃》 GB/T18915.1-2002 《防弹玻璃》 GB17840-1999《防火玻璃》 GB15763-1995 《浮法玻璃》 GB11614-1999 《钢化玻璃》 GB/T9963-1998 《夹层玻璃》 GB9962-1999 《建筑用安全玻璃第2部分钢化玻璃》 GB15763.2-2005 《建筑用安全玻璃防火玻璃》 GB15763.1-2001 《幕墙用钢化玻璃与半钢化玻璃》 GB17841-1999 《普通平板玻璃》 GB4871-1995 《热反射玻璃》 JC693-1998《热弯玻璃》 JC/T915-2003 《压花玻璃》 JC/T511-2002 《中空玻璃》 GB/T11944-2002 《着色玻璃》 GB/T18701-20021.6钢材规范:《不锈钢棒》 GB/T1220-1992 《不锈钢和耐热钢冷扎带钢》 GB/T4239-1991 《不锈钢冷加工钢棒》 GB/T4226-1984 《不锈钢冷扎钢板》 GB/T3280-1992 《不锈钢热扎钢板》 GB/T4237-1992 《不锈钢热扎钢带》 GB/T5090-1985 《不锈钢丝》 GB/T4240-93 《不锈钢丝绳》 GB9944-88《不锈钢小直径无缝钢管》 GB/T3090-2000 《擦窗机》 GB19154-2003 《彩色涂层钢板和钢带》 GB/T12754-2006 《低合金钢焊条》 GB/T5118-1995 《低合金高强度结构钢》 GB/T1591-1994 《钢丝绳铝合金压制接头》 GB6946-1993 《高耐候结构钢》 GB/T4171-2000 《高碳铬不锈钢丝》 YB/T096—1997 《焊接结构用耐候钢》 GB/T4172-2000 《合金结构钢》 GB/T3077-1999 《结构用无缝钢管》 JBJ102《金属覆盖层钢铁制品热镀锌层技术要求》 GB/T13912-1992 《冷拔异形钢管》 GB/T3094-2000 《碳钢焊条》 GB/T5117-1995 《碳素结构钢》 GB/T700-1988 《碳素结构和低合金结构钢热轧薄钢板及钢带》 GB/T912-1989 《碳素结构和低合金结构钢热轧厚钢板及钢带》 GB/T3274-1988 《优质碳素结构钢》 GB/T699-1999 《预应力筋用锚具、夹具和连接器》 GB/T14370-20001.7胶类及密封材料规范:《丙烯酸酯建筑密封膏》 JC484-1992《玻璃幕墙接缝用密封胶》 JC/T882-2001 《彩色钢板用建筑密封胶》 JC/T884-2001 《彩色涂层钢板用建筑密封胶》 JC/T884-2001 《丁基橡胶防水密封胶粘带》 JC/T942-2004 《干挂石材幕墙用环氧胶粘剂》 JC887-2001《工业用橡胶板》 GB/T5574-1994《硅酮建筑密封膏》 GB/T14683-2003《硅酮建筑密封胶》 GB/14683-2003《混凝土接缝用密封胶》 JC/T881-2001《建筑窗用弹性密封剂》 JC485-1992《建筑密封材料试验方法》 GB/T13477.1~20-2002 《建筑用防霉密封胶》 JC/T885-2001《建筑用硅酮结构密封胶》 GB16776-2005《建筑用岩棉、矿渣棉绝热制品》 GB/T19686-2005《建筑用硬质塑料隔热条》 JG/T174-2005《建筑装饰用天然石材防护剂》 JC/T973-2005《聚氨酯建筑密封胶》 JC/T482-2003《聚硫建筑密封胶》 JC483-1992《绝热用岩棉、矿棉及其制品》 GB/T11835-98《硫化橡胶或热塑性橡胶撕裂强度的测定》 GB/T529-1999《幕墙玻璃接缝用密封胶》 JC/T882-2001《石材幕墙接缝用密封胶》 JC/T883-2001《石材用建筑密封胶》 JC/T883-2001《橡胶袖珍硬度计压入硬度试验方法》 GB/T530-1999《修补用天然橡胶胶粘剂》 HGT3318-2002《中空玻璃用弹性密封胶》 JC/T486-2001《中空玻璃用丁基热熔密封胶》 JC/T914-20031.8门窗及五金件规范:《闭门器》 GB/T9305-1988《抽芯锚钉技术条件》 GB12619-90《地弹簧》 GB/T9296-1988《封闭型沉头抽芯铆钉》 GB/T12616-2004《封闭型平圆头抽芯铆钉》 GB/T12615-2004《紧固件螺栓和螺钉》 GB/T5277-1985《紧固件公差螺栓、螺钉、螺柱和螺母》 GB/T3103.1-2002《紧固件机械性能不锈钢螺母》 GB3098.15-2000《紧固件机械性能不锈钢螺母》 GB/T3098.15-2000 《紧固件机械性能不锈钢螺栓、螺钉、螺柱》 GB/T3098.6-2000《紧固件机械性能抽芯铆钉》 GB/T3098.19-2004 《紧固件机械性能螺母、粗牙螺纹》 GB/T3098.2-2000《紧固件机械性能螺母、细牙螺纹》 GB/T3098.4-2000《紧固件机械性能螺栓、螺钉和螺柱》 GB/T3098.1-2000《紧固件机械性能自攻螺钉》 GB/T3098.5-2000《紧固件机械性能》 GB/T3098.1~20-2000 《紧固件术语盲铆钉》 GB/T3099-2004《铝合金窗》 GB/T8479-2003《铝合金窗不锈钢滑撑》 GB/T9300-1988《铝合金窗撑挡》 GB/T9299-1988《铝合金窗锁》 GB/T9302-1988《铝合金门》 GB/T8478-2003《铝合金门插销》 GB/T9297-1988《铝合金门窗工程设计、施工及验收规范》 DBJ15-30-2002《铝合金门窗拉手》 GB/T9301-1988《铝合金门窗型材粉末静电喷涂层技术条件》 JG/T30451-1998《铝合金门锁》 GB/T9303-1988《螺纹紧固件应力截面积和承载面积》 GB/T16823.1-1997《平开铝合金窗执手》 GB/T9298-1988《十字槽盘头螺钉》 GB/T818-2000《推拉铝合金门窗用滑轮》 GB/T9304-19881.9相关物理性能级测试方法:《玻璃幕墙工程质量检验标准》 JGJ/T139-2001《玻璃幕墙光学性能》 GB/T18091-2000《采暖居住建筑节能检验标准》 JGJ132-2001《彩色涂层钢板和钢带试验方法》 GB/T13448-2006《钢结构工程施工质量验收规范》 GB50205-2001《混凝土结构工程施工质量验收规范》 GB50204-2002《建筑防水材料老化试验方法》 GB/T18244-2000《建筑幕墙风压变形性能测试方法》 GB/T15227-94《建筑幕墙抗震性能振动台试验方法》 GB/T18575-2001《建筑幕墙空气渗透性能测试方法》 GB/T15226-94《建筑幕墙平面内变形性能检测方法》 GB/T18250-2000《建筑幕墙物理性能分级》 GB/T15225-94《建筑幕墙雨水渗透性能测试方法》 GB/T15228-94《建筑外窗保温性能分级及检测方法》 GB/T8484-2002《建筑外窗采光性能分级及检测方法》 GB/T11976-2002《建筑外窗抗风压性能分级及检测方法》 GB/T7106-2002《建筑外窗空气隔声性能分级及检测方法》 GB/T8485-2002《建筑外窗气密性能分级及检测方法》 GB/T7107-2002《建筑外窗水密性能分级及检测方法》 GB/T7108-2002《建筑装饰工程施工质量验收规范》 GB50210-2001《金属材料室温拉伸试验方法》 GB/T228-20021.10《建筑结构静力计算手册》(第二版)1.11土建图纸:2 基本参数2.1雨篷所在地区:徐州地区;2.2地面粗糙度分类等级:按《建筑结构荷载规范》(GB50009-2001)A类:指近海海面和海岛、海岸、湖岸及沙漠地区;B类:指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;依照上面分类标准,本工程按C类地区考虑。

钢结构玻璃雨棚施工图,图纸已经转T3

钢结构玻璃雨棚施工图,图纸已经转T3
102mm厚不锈钢天沟+ 托梁托梁接GL1处割背处理,双面角焊缝围焊,hf=6托梁接GL1处割背处理,双面角焊缝围焊,hf=6落水口落水口2mm厚不锈钢天沟+ 托梁10剖面图雨棚玻璃分格平面布置图A128023201000260036003600100300143314331788GL1GL11%XC1余同8+1.52pvb+8夹胶钢化玻璃硅酮密封胶余同硅酮密封胶220系列不锈钢玻璃驳接爪余同4955梁梁铰接梁梁刚接余同玻璃胶缝5030014331433143312881433%%c95X5.0热轧无缝钢管Q235BXC1斜 撑37320220系列不锈钢玻璃驳接爪余同余同220系列不锈钢玻璃驳接爪硅酮密封胶余同硅酮密封胶8+1.52pvb+8夹胶钢化玻璃余同XC11%GL1GL112881433143314331433300100360036002600100023201280A1%1%t=2mm不锈钢天沟余同8+1.52pvb+8夹胶钢化玻璃180018001800180018001800180018001800180018001800360036003600360036003600300143314331433143312887200720072002160073201004567A25025046002720GL1GL1GL1GL1+XC1GL1+XC1GL1+XC1GL1+XC1GL1GL1GL1GL1GL1GL1GL1GL1GL2GL2GL2GL2GL2GL2GL2GL2GL2GL2GL2GL1GL1GL1GL1GL127204600250250A765410073202160ห้องสมุดไป่ตู้720072007200热轧型钢Q235BHN300X150X6.5X9GL1备 注1钢 梁材 料 规 格构件名称序号构件代号主 构 件 表材 质施工图xxx有限公司雨棚结构平面布置图2009.1009-SJ-0121G01顾祖炎顾祖炎xxx2钢 梁GL2HN200X100X5.5X8Q235B热轧型钢t=6封头板JB4JB2t=6封头板封头板t=6XC1XC1t=6封头板封头板t=6t=6JB412012055GL1XC1251207654321GL2GL2t=1010454530406040t=10406040304545101101101101102201515GL1GL1515110110503050160275200GL1GL17016070560GL14590457016070M20摩擦型高强螺栓-10.9s孔径d=21.5GL1454510354570704510215454515454535457070454570704535孔径d=21.5M20摩擦型高强螺栓-10.9st=12t=12GL1GL1GL18050115602152005JB3GL1XC180501151201606090230JB2JB11802404050504040160404016040560封头板5JB2JB1XC1xxx顾祖炎顾祖炎G02109-SJ-0122009.10雨棚节点大样图xxx有限公司施工图20353080°80°150PVC落水管150PVC落水管22112-2剖面图1:5011.1007.5003.9005.1801G022G023G02平面节点示意图1:507G025G026G02R234503G022G021G02R234505.1803.9007.50011.1001-1剖面图1:50雨棚玻璃分格平面布置图1:50雨棚结构平面布置图1:501:106-6剖面图663-3剖面图1:10441:104-4剖面图2-2剖面图1:1022t=8加劲板加劲板t=10JB4JB3JB3加劲板t=8t=10加劲板33玻璃节点大样GL1与GL2铰接大样GL1与GL1刚接大样天沟节点大样GL1与砼柱连接大样XC1与GL1连接大样XC1与砼柱连接大样AAA胶缝内镶嵌建筑硅酮密封胶玻璃胶缝8+1.52pvb+8夹胶钢化玻璃材质316220系列不锈钢驳接爪材质Q235B驳接爪底座建筑硅酮密封胶8+1.52pvb+8夹胶钢化玻璃220系列不锈钢驳接爪材质316中性硅酮密封胶封堵t=2mm不锈钢天沟1:10天沟大样材质316220系列不锈钢驳接爪8+1.52pvb+8夹胶钢化玻璃细石混凝土二次灌浆水泥钉钉牢不锈钢天沟t=2mmt=163-3剖面图1:1055孔径d=1816锚筋t=16孔径d=18416锚筋,锚筋与锚板开孔塞焊10t=1245%%dR50孔径d=27%%c25轴销t=12JB41:10JB31:10R60孔径d=27%%c25轴销t=10%%c25轴销孔径d=271:10JB2孔径d=27%%c25轴销t=12R50%%c25轴销1:10JB11:10%%c25轴销孔径d=27t=8R60416锚筋,锚筋与锚板开孔塞焊孔径d=181:101-1剖面图11t=16孔径d=1816锚筋%%c25轴销孔径d=27M6紧固螺钉孔径d=27%%c25轴销

钢结构雨棚坡度计算公式

钢结构雨棚坡度计算公式

钢结构雨棚坡度计算公式
钢结构雨棚坡度计算公式是指在设计钢结构雨棚时所用的一个计算公式,它可以帮助我们合理地计算出这个雨棚的坡度,从而确保雨棚的使用效果与安全性。

首先,我们需要明确什么是钢结构雨棚。

它指的是一种用钢材制成的框架式雨棚,在这种雨棚中,各个构件之间采用螺栓连接,可以根据不同的使用地点和需求进行定制和制作。

钢结构雨棚坡度计算公式的推导基于力学原理,它的主要考虑因素包括雨棚的长度、宽度、设计时所要承受的荷载、雨棚材料的强度和在不同条件下的工作环境等。

计算公式如下:
坡度=(2.5H+L)÷L×100%
其中,H是雨棚高度,L是雨棚长度,单位均为米。

需要说明的是,这个公式只适用于普通的钢结构雨棚,对于涉及更复杂设计的特殊雨棚,还需要根据实际情况进行合理的计算。

在使用这个公式时,还需要注意以下几点:
1.坡度不宜过大,一般建议控制在5%以内,否则会影响施工难度和使用效果。

2.坡度的大小应该根据实际情况进行调整,使其能够满足雨棚所要承担的荷载,同时也要考虑到雨棚的水利和排水情况。

3.在设计时,需要考虑到雨棚的使用环境,包括气候、季节和降雨量等因素,从而选择适合的材料和厚度。

综上所述,钢结构雨棚坡度计算公式是设计和制作钢结构雨棚必不可少的一步。

合理的坡度设计可以确保雨棚的使用效果和安全性,同时还需根据实际情况进行调整和改进,提高雨棚的综合性能和适用性。

钢结构雨棚设计计算书

钢结构雨棚设计计算书

钢结构雨棚设计计算书钢结构雨棚设计计算书一、计算依据:1.《建筑结构荷载规范》2.《钢结构设计规范》GB50017-20033.《玻璃幕墙工程技术规范》4.《建筑抗震设计规范》二、计算基本参数: 1.本工程位于深圳市,基本风压ω0=0.700(kN/m2),考虑到结构的重要性,按50年一遇考虑乘以系数 1.1,故本工程基本风压ω=1.1x0.7=0.77(kN/m2)。

2. 地面粗糙度类别按C类考虑,风压高度变化系数取5.0米处(标高最高处),查下页表1-1知,该处风压高度变化系数为: z=0.74。

依据《玻璃幕墙工程技术规范》,风荷载体形系数,对于挑檐风荷载向上取μs=2.0,瞬时风压的阵风系数βz=2.25 。

3. 本工程耐火等级一级,抗震设防七度。

三、结构受力分析该处雨棚是以钢架作为承重结构的悬臂体系。

四、设计荷载确定原则:作用于垂直雨棚平面的荷载主要是风荷载、地震作用及雨棚结构自重,其中风荷载引起的效应最大。

在进行雨棚构件、连接件承载力计算时,必须考虑各种荷载和作用效应的分项系数,即采用其设计值;进行位移和挠度计算时,各分项系数均取1.0,即采用其标准值。

1、风荷载根据《玻璃幕墙工程技术规范》,垂直于雨棚平面上的风荷载标准值,按下列公式(1.1)计算:W k = βz μs μz Wo ················(1.1) 式中: W k ---风荷载标准值 (kN/m2);βz---瞬时风压的阵风系数;βz=2.25μs---风荷载体型系数;向上取μs=2.0μz---风荷载高度变化系数,并与建筑的地区类别有关;按《建筑结构荷载规范》GBJ9-87取值;W o---基本风压(kN/m2) 按《技术要求》W o =1.1x0.700=0.770(kN/m2)按《玻璃幕墙工程技术规范》要求,进行建筑幕墙构件、连接件和锚固件承载力计算时,风荷载分项系数应取γw= 1.4表1-1即风荷载设计值为:W= γW WK= 1.4WK··············(1.2)2、地震作用雨棚平面外地震作用标准值计算公式如下:qEK =βE αmax GkA ·················(1.3)雨棚平面内地震作用标准值计算公式如下: PE =βE αmax G ·················(1.4) 式中, qEK 为垂直雨棚平面的分布地震作用;(kN/m2)PE 为平行于雨棚平面的集中地震作用;(kN)βE 为地震动力放大系数;取βE=3.0 αmax 为水平地震影响系数最大值;取αmax=0.08(7度抗震设计) G 为幕墙结构自重(kN)GkA 为单位面积的幕墙结构自重(kN/m2) ;取GkA=0.4kN/m2 按规范要求,地震作用的分项系数取γE= 1.3,即地震作用设计值为:qE=γEqEK = 1.3 qEK ·············(1.5)3、雨棚结构自重按规范要求,幕墙结构自重的分项系数取γG=1.2。

很实用的雨篷计算(范例)

很实用的雨篷计算(范例)

长沙运达综合体幕墙工程瑞吉酒店雨篷计算运达中央广场瑞吉南面雨篷系统计算书设计:校对:审核:批准:中国建筑装饰集团有限公司二零一四年九月目录瑞吉酒店雨篷系统计算 (1)§1、雨篷面荷载确定[标高:4.5m] (1)§2、雨篷8+1.52PVB+8mm夹胶玻璃面板计算 (4)§3、雨篷支撑钢架结构计算 (7)§4、雨篷支撑钢架结构固定钢梁计算 (15)§5、雨篷支撑钢架结构固定钢梁焊缝强度计算 (19)1瑞吉酒店雨篷系统计算§1、雨篷面荷载确定[标高:4.5m]雨篷系统分析包括8+1.52PVB+8mm 夹胶钢化玻璃和3mm 厚铝单板作饰面材料,为保守计算,按玻璃和铝单板自重平均值取,该部位最大计算标高5.0m ,玻璃区域单位面积自重为0.250kN/m 2(该值包括8+1.52PVB+8mm 夹胶钢化玻璃、3mm 铝单板、辅助型材及其它连 接附件,即在8+1.52PVB+8mm 夹胶钢化玻璃的单位面积自重的基础上考虑1.2倍的系数,但不包括支撑钢结构本身的自重,支撑钢结构本身的自重0.30 N/m 2)。

1.1、风荷载计算根据《建筑结构荷载规范》GB50009-2012,,对于粗糙度为B 类的地区,该处的风压高度变化系数为μz =1.0,阵风风压系数βgz =1.7。

(1)、负风压风荷载体型系数取-1.3时的风荷载(用于顶部面板,为保守计算现取值-1.3):根据载荷确定的有关公式可得:=-1.70×1.0×1.3×0.35 =-0.774(kN/m 2)=-1.4×0.774=-1.083(kN/m 2)(2)、正风压风荷载体型系数取+1.3时的风荷载(作用于顶部面板,由于雨棚属于悬挑结构,为保守计算现取值+1.3):=1.70×1.0×1.3×0.350w w s z gz k μμβ=w 0w w s z gz k μμβ=2=0.774(kN/m 2)=1.4×0.774=1.083(kN/m 2)1.2、雪荷载计算根据现行《建筑结构荷载规范》GB50009-2012和《长沙地方规范》取值: 0.7 kN/m 2。

钢结构雨棚抗风吸计算

钢结构雨棚抗风吸计算

钢结构雨棚抗风吸计算摘要:一、钢结构雨棚抗风吸计算的重要性二、抗风吸计算公式及参数选取1.风压2.结构形式3.材料性能4.构件尺寸三、抗风吸设计方法1.确定设计风压2.计算构件受力3.校核材料性能4.验算构件尺寸四、抗风吸计算案例分析五、提高钢结构雨棚抗风吸能力的措施1.优化结构设计2.选用高性能材料3.加强构件连接4.施工质量控制正文:钢结构雨棚在我国建筑领域中应用广泛,其抗风吸能力直接影响着使用安全。

为确保钢结构雨棚在台风、暴雨等恶劣天气下的稳定性,抗风吸计算成为设计的关键环节。

本文将对钢结构雨棚抗风吸计算的方法及注意事项进行详细阐述。

一、钢结构雨棚抗风吸计算的重要性钢结构雨棚在风载作用下,容易产生吸力,导致构件产生弯曲、扭曲等变形。

抗风吸计算能够确保钢结构雨棚在设计风载下的安全稳定,防止风灾事故的发生。

二、抗风吸计算公式及参数选取1.风压:根据工程所在地区的气象资料,确定设计风压。

风压的计算公式为:ω=βz·ω0,其中βz为高度修正系数,ω0为基准风压。

2.结构形式:根据钢结构雨棚的结构形式,选取相应的抗风吸计算公式。

例如,对于悬挑式雨棚,可采用以下公式计算抗风吸力:F=α·β·ω·A,其中α为吸力系数,β为风压高度修正系数,ω为风压,A为雨棚面积。

3.材料性能:根据所选用材料的性能,确定构件的抗弯、抗扭等强度。

通常采用的材料性能指标有屈服强度、抗拉强度、弹性模量等。

4.构件尺寸:根据设计要求,选取合适的构件尺寸。

在抗风吸计算中,需考虑构件的截面形状、厚度等因素。

三、抗风吸设计方法1.确定设计风压:根据工程所在地区的气象资料,确定设计风压。

2.计算构件受力:根据抗风吸计算公式,计算各构件在设计风载下的受力。

3.校核材料性能:将计算得到的受力与材料的强度指标进行比较,确保构件在使用过程中不会发生强度破坏。

4.验算构件尺寸:根据构件的受力及材料性能,验算构件尺寸是否满足安全要求。

钢结构雨棚计算分析

钢结构雨棚计算分析

钢结构雨棚计算分析一、基本信息:1.玻璃容重:一般玻璃22 kn/m2钢化玻璃25 kn/m2钢材容重78.5 kn/m3------------------------------------------------------- --------------------------------------------------------------- 拟定焊接工字钢梁采用220x110x8x12mm (梁截面面积A=4.2080x103mm2)截面特性:I x =bh 3/12=122201103x -12)212220()8110(3⨯-⨯-=33.5X106mm 4 w x =2Ix h =2220100.3356⨯=0.3055x106mm 3二:荷载计算恒:玻璃: 采用8+8双层夹胶钢化玻璃G 1=25KN/m 3*0.016m*2.25m=0.9kN/m钢梁: 采用220*110*8*12焊接工字钢G 2=78.5*0.0042=0.33kN/m活荷载:积灰0.5*2.25=1.125kN/m风荷载:风荷载标准值按式o z sl gz k ωμμβω=,基本风压w 0=0.55KN/m2。

由《荷载规,8.3.3.2》查得0.1sl =μ(正风)和0.2sl -=μ(负风),B 类地区,离地面高度5.0m ,查表8.6.1得 gz β=1.70,z μ=1.0。

正风:W k =1.7*1.0*1.0*0.55*2.25=2.104kN/m负风:W k =1.7*2.0*1.0*0.55*2.25=4.208kN/m荷载组合:正风:恒荷控制:1.35*(0.9+0.33)+1.4*0.7*1.125+1.4*0.6*2.104=4.53kN/m 活荷控制:1.2*(0.9+0.33)+1.4*2.104+1.4*0.7*1.125=5.524kN/m 负风:1.0*(0.9+0.33)-1.4*4.208=-4.67kN/m力学模型A B计算弯矩:正风:M B =-3.3kN*m M AB =6.2kN*m负风:M B =2.8kN*m M AB =-5.5kN*m三:1.钢梁受弯强度验算:(由以上结果可知,钢梁截面由正风活荷载控制组合控制)xx x W M *γσ==20.4 N/mm 2>215N/mm 2 满足抗弯要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档