中考总复习——二次根式精品PPT教学课件
合集下载
二次根式复习课(29张PPT)

特殊二次根式
总结词
特殊二次根式是指具有特殊形式或意义的二次根式,如算术平方根、完全平方 根等。
详细描述
算术平方根是指非负数的平方根,即$sqrt{a}$($a geq 0$);完全平方根是 指一个数的平方等于给定值的平方根,即$sqrt{x^2}$。此外,还有一些特殊的 二次根式,如勾股定理中的勾股数、几何图形中的边长等。
二次根式的加减法
总结词
掌握二次根式的加减法规则
示例
$sqrt{2} + sqrt{3}$ 不能合并;$sqrt{2} + sqrt{2} = 2sqrt{2}$。
04
二次根式的应用
实际问题中的二次根式
计算物体的高度和长度
通过已知的长度和角度,利用二次根式计算物体的 高度或长度。
速度和加速度的计算
03
二次根式的化简与运算
二次根式的化简
总结词
掌握化简二次根式的方法
示例
$sqrt{25x^{2}}$ 可以化简为 $5x$;$sqrt{9a^{2} + 6ab + b^{2}}$ 可以化简为 $3a + b$。
二次根式的乘除法
总结词
掌握二次根式的乘除法规则
示例
$sqrt{2} times sqrt{3} = sqrt{6}$;$frac{sqrt{2}}{sqrt{3}} = frac{sqrt{2} times sqrt{3}}{sqrt{3} times sqrt{3}} = frac{sqrt{6}}{3}$。
与平面几何的结合
03
在解决平面几何问题时,有时需要用到二次根式的性质和运算
法则。
05
习题与解答
习题
二次根式的ppt课件

将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
二次根式PPT精品课件

1
__6_____
③ 52 42 _3_______
④在直角坐标系中,点P(1, 3 )到原点的
距离是_2________
基础题B组 2.化简下列各式
① (3)2 (3 2)2
② 24÷ 3 2
③ 27 ( 12 3 1)
3
④( 2 3)(2 2 1)
3、计算下列各题,并概括二次根式的 运算的一般 步骤:
考考您?
“泡泡男孩“从1971年出生起就生活在一个无菌的塑料隔离罩中, 因为他的体内没有任何免疫系统,没有任何抵御细菌、病毒的能力。 对他来说,泡泡外面的世界充满着致命的威胁,甚至连母亲一个充 满疼爱的吻或者拥抱,都可能会给他带来可怕的后果。1983年医生 为“泡泡男孩”移植了姐姐凯瑟琳的骨髓干细胞,但手术后,凯瑟 琳骨髓内潜伏的致命病毒也随之侵入并肆意繁殖,1984年2月22日, 与病魔和孤独斗争了12年半的“泡泡男孩”静静地离开了人世
乙肝 疫苗 第一次 第二次
第三次
脊髓灰质 百白破混 炎活疫苗 合制剂
第一次 第二次 第三次
第一次 第二次 第三次
加强
加强 加强
麻疹 疫苗
初种
课堂练习4
医生给肾功能衰竭的病人移植了一个健康的肾脏, 尽管医生的手术做得相当成功,但是几周后,这 个移植的肾仍然坏死了,这是人体免疫反应所造 成的,在这个免疫反应下,移植的肾属于
欧洲 哥廷 根小 型猪
课堂练习2
人体发生花粉过敏时,由于毛细血管壁
通透性增加,血浆蛋白渗出,会造成 B
A. 血浆量增加
B. 组织液增加
C. 组织液减少
D. 淋巴减少
课堂练习3
自身免疫病的产生的原因是 C
A、人体免疫系统对病原菌的免疫反应 B、人体免疫系统第一过敏原的反应 C、人体免疫系统对人体正常组织细胞的免疫反应 D、自身免疫功能不足引起
初中数学精品课件:第一章《二次根式》复习课件共18张ppt

a,a<0 • ab a b(a 0,b 0) • a a (a 0,b 0)
bb • a b a b(a 0,b 0) • a a (a 0,b 0)
bb
练习: 1.计算 ( 3)2 的结果是… … … … … …( C )
(A) -3 (B) ±9 (C) 3 (D) 9
二次根式复习课
课前2分钟朗读内容:
• 42
• 8 2 2 • 45 3 6
• 93 • 16 4 • 25 5
• 12 2 3 • 18 3 2 • 20 2 5
• 48 4 3 • 80 4 5 • 1 2
22
• 36 6 • 49 7 • 64 8 • 81 9
• 24 2 6 • 27 3 3 • 32 4 2
ABFG的面积为a,b,则它们的 G F
边长分别可用 a, b 表示.
在Rt△ACD和 Rt△CAG中, A B
C
AD2 ( a b)2 ( a )2
CG 2 ( a b)2 ( b)2 ∴AD2-CG2=a-b 由已知得 a+b=7 解得 a=5
a-b=3
b=2
∴ AC与EF的乘积=( 5 2)•( 5 2) 5 2 3
E
D
<分析>
本例先设两个正方形的面 G F
积为a,b,则它们的边长分别
可用 a, b 表示.
AB
C
这样利用图形的性质就得到以a,b为未知数的
简单方程,从而使问题得到解决.
16.如图,正方形ABFG与正方形BCDE的面积
和为7,AD2-CG2=3,求AC与EF的乘积.
E
D
解:设正方形BCDE和正方形
A
垂足为D.
bb • a b a b(a 0,b 0) • a a (a 0,b 0)
bb
练习: 1.计算 ( 3)2 的结果是… … … … … …( C )
(A) -3 (B) ±9 (C) 3 (D) 9
二次根式复习课
课前2分钟朗读内容:
• 42
• 8 2 2 • 45 3 6
• 93 • 16 4 • 25 5
• 12 2 3 • 18 3 2 • 20 2 5
• 48 4 3 • 80 4 5 • 1 2
22
• 36 6 • 49 7 • 64 8 • 81 9
• 24 2 6 • 27 3 3 • 32 4 2
ABFG的面积为a,b,则它们的 G F
边长分别可用 a, b 表示.
在Rt△ACD和 Rt△CAG中, A B
C
AD2 ( a b)2 ( a )2
CG 2 ( a b)2 ( b)2 ∴AD2-CG2=a-b 由已知得 a+b=7 解得 a=5
a-b=3
b=2
∴ AC与EF的乘积=( 5 2)•( 5 2) 5 2 3
E
D
<分析>
本例先设两个正方形的面 G F
积为a,b,则它们的边长分别
可用 a, b 表示.
AB
C
这样利用图形的性质就得到以a,b为未知数的
简单方程,从而使问题得到解决.
16.如图,正方形ABFG与正方形BCDE的面积
和为7,AD2-CG2=3,求AC与EF的乘积.
E
D
解:设正方形BCDE和正方形
A
垂足为D.
二次根式ppt课件

02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。
九年级数学总复习课件:二次根式(共29张PPT)

2 问: ( 1) 请仿照例中的分类讨论的方法, 分析二次根式 a 的各种展开的情况;
2 ( 2) 猜想 a 与| a| 的大小关系.
2 【思路点拨】 (1)仿照例题的文字描述分类讨论 a 的三种情况.
2 (2)比较 a 与| a| 的三种情况, 得出结论.
复习目标
知识回顾
重点解析
探究拓展
真题演练
复习目标
知识回顾
重点解析
探究拓展
真题演练
8. (2012·厦门九上质检)计算: 2 × ( 3+ 2) -2 6 . 【解析】 原式= 6 +2-2 6 =2- 6 .
x 1 2 6 9 x 9. (2011·福州九上质检)计算: 3 + 4 -2x x .
第 四 讲 第 五 讲 第 六 讲
【解析】
b 3. 二次根式的除法: a =
( a≥0, b>0) .
➡特别提醒: 二次根式的运算结果一定要化成最简二次根式. 【答案】 一、1. a ( a≥0) 2. 因数或因式 3. 被开方数
b 4. a
a 3. b
二、1. a≥0 2. -a 3. a · b
三、1. 最简二次根式 同类
2. ab
复习目标
第 四 讲 第 五 讲 第 六 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
所以综合起来一个数的绝对值要分三种情况, 即:
a | a | 0 a
(当a 0) (当a 0) (当a 0)
.
第 四 讲 第 五 讲 第 六 讲
这种分析方法渗透了数学的分类讨论思想.
复习目标
知识回顾
重点解析
(a 1) 2
2 ( 2) 猜想 a 与| a| 的大小关系.
2 【思路点拨】 (1)仿照例题的文字描述分类讨论 a 的三种情况.
2 (2)比较 a 与| a| 的三种情况, 得出结论.
复习目标
知识回顾
重点解析
探究拓展
真题演练
复习目标
知识回顾
重点解析
探究拓展
真题演练
8. (2012·厦门九上质检)计算: 2 × ( 3+ 2) -2 6 . 【解析】 原式= 6 +2-2 6 =2- 6 .
x 1 2 6 9 x 9. (2011·福州九上质检)计算: 3 + 4 -2x x .
第 四 讲 第 五 讲 第 六 讲
【解析】
b 3. 二次根式的除法: a =
( a≥0, b>0) .
➡特别提醒: 二次根式的运算结果一定要化成最简二次根式. 【答案】 一、1. a ( a≥0) 2. 因数或因式 3. 被开方数
b 4. a
a 3. b
二、1. a≥0 2. -a 3. a · b
三、1. 最简二次根式 同类
2. ab
复习目标
第 四 讲 第 五 讲 第 六 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
所以综合起来一个数的绝对值要分三种情况, 即:
a | a | 0 a
(当a 0) (当a 0) (当a 0)
.
第 四 讲 第 五 讲 第 六 讲
这种分析方法渗透了数学的分类讨论思想.
复习目标
知识回顾
重点解析
(a 1) 2
《二次根式》PPT课件 (共31张PPT)

练习:
x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
2 x为全体实数
(5) x
3
x0
1 a< 2
1 (4) x
x0
1 (7) 1 2a
1 (6) x0 2 x 3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2 2
x=5,y=11
(2 x - y)
2011
=- 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、( a) =a (a 0)
2
2、( a )=|a| =
2
a (a>0) 0 (a=0)
-a (a<0)
( a ) 与 a 有区别吗?
2
2
( a) 与 a
1:从运算顺序来看,
2
2
a
a
2
2
先开方,后平方
先平方,后开方
2.从取值范围来看, 2 a≥0 a
a
2
a取任何实数
3.从运算结果来看:
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
二次根式的双重非负性
a 吵0, a 0.
二次根式的性质
中考复习5二次根式 PPT

_a_(a 0),
a2 =|a|= __a_(a<0) ab =___a_·__b_(a≥0,b≥0).
商的算术平方根
a = __a_ (a≥0,b>0).
b __b_
三、二次根式的运算 1.二次根式的加减:先将各根式化为_最__简__二__次__根__式__, 然后合并被开方数_相__同__的二次根式.
(2) a2 与( a )2的异同: a2 中的a可以取任何实数,而( a )2中的a必须取非负
数,只有当a取非负数时, a2 =( a )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如
图所示,化简|a|+ a b2 的结果是 ( )
A.-2a+b B.2a-b C.-b
a 22 +|1-a|的值是 (
A.-1 B.1 C.2a-3
) D.3-2a
(2)(2016·自贡中考)若 于( )
a +1b2-4b+4=0,则ab的值等
A.-2 B.0
C.1
D.2
【思路点拨】(1)先应用 a=2 |a|性质化简,再根据a的范 围判断a-2与1-a的正负,去绝对值计算. (2)应用二次根式及绝对值的非负性列方程组,求出a,b 的值,代入代数式进行计算.
a
b b
a
a
b
a bga b a 1 a b , ab ab ab ab ab
当a 1 3,b 1 3时,
原式 1 3 1 3 3 3 . 1 3 1 3 2 3 6
【名师点津】二次根式运算中需注意的三个问题
(1)二次根式乘法、除法法则也可逆用, ab a g b (a≥0,b≥0), a a (a≥0,b>0),利用这两个等式可
a2 =|a|= __a_(a<0) ab =___a_·__b_(a≥0,b≥0).
商的算术平方根
a = __a_ (a≥0,b>0).
b __b_
三、二次根式的运算 1.二次根式的加减:先将各根式化为_最__简__二__次__根__式__, 然后合并被开方数_相__同__的二次根式.
(2) a2 与( a )2的异同: a2 中的a可以取任何实数,而( a )2中的a必须取非负
数,只有当a取非负数时, a2 =( a )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如
图所示,化简|a|+ a b2 的结果是 ( )
A.-2a+b B.2a-b C.-b
a 22 +|1-a|的值是 (
A.-1 B.1 C.2a-3
) D.3-2a
(2)(2016·自贡中考)若 于( )
a +1b2-4b+4=0,则ab的值等
A.-2 B.0
C.1
D.2
【思路点拨】(1)先应用 a=2 |a|性质化简,再根据a的范 围判断a-2与1-a的正负,去绝对值计算. (2)应用二次根式及绝对值的非负性列方程组,求出a,b 的值,代入代数式进行计算.
a
b b
a
a
b
a bga b a 1 a b , ab ab ab ab ab
当a 1 3,b 1 3时,
原式 1 3 1 3 3 3 . 1 3 1 3 2 3 6
【名师点津】二次根式运算中需注意的三个问题
(1)二次根式乘法、除法法则也可逆用, ab a g b (a≥0,b≥0), a a (a≥0,b>0),利用这两个等式可
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. ( )a2=a(a≥0).
2020/12/8
a2
a(a0) |a|a(a0)
4
三、最简二次根式
满足下列三个条件的二次根式,叫做最简二次根式. (1)被开方数的因数是整数,因式是整式. (2)被开方数中不含开方开得尽方的因数或因式. (3)分母不能含有根号。 化简时应注意把被开方数分解因式或分解因数.
2020/12/8
6
五、分母有理化:
1、定义: 把分母中的根号化去。
2、方法: 分子、分母同时乘以分母的有理化因式。
3、有理化因式: 两个含有二次根式的代数式相乘,如果它们 的积中不含二次根式 ,我们说这两个二次根 式互为有理化因式。
4、常见的互为有理化因式:
2020/12/8
7Leabharlann 1) a的有理化因式为 : a
2)a b的有理化因式为: a b
3)a b c d的有理化因式:为a bc d
4) a b 的有理化因式是 a b a b的有理化因式是 a b
2020/12/8
8
➢ 典型例题解析
【例1】
已知 xy0,则 x2y 化简后为( B )
A. x y B. x y C. x y
D. x y
a 3a
= ab ab
3
二次根式的乘除运算可以考虑先将被开
方数进行乘除法计算,再化简二次根式,
而不一定要先将二次根式化成最简二次
2020/12/8
根式再约分.
10
【例3】 求代数式的值. ➢ 典型例题解析
(1) 若 a2 2 3 3,b2 2 3 3,求 aa 2b 2 a b22b的.值
(2) 若x2-4x+1=0,求
二、二次根式的运算
1.积的算术平方根
(1)积的算术平方根,等于积中各因式的算术平方根的
积.
(2)公式 ab= a •(ab≥0,b≥0).
2020/12/8
3
2.二次根式的乘法 (1)公式 a =• b (a≥ab0,b≥0). (2)二次根式的运算结果,应该尽量化简,有理数的运算 律在实数范围内仍可使用。
8.在
1 50
、1
27
、75
、2
1 6
中与 12 是同类二次根式的是
1
27 、 75 .
2020/12/8
13
➢ 课时训练
9. (2004年·沈阳)下列各式属于最简二次根式的是 ( B )
A. 8 B. x2 1 C. y 3
D.
1 2
10. (1)化简(a-1)
1 1a
的结果是 1 a .
(2)当x>4时,化简 168xx2x4 2x-8 .
x2
1 x2
5的值.
解:(1)
ab2 32 3(2 3)2(2 3)214, 2 3 2 3
ab2 32 31.
2 3 2 3
原式= ab(ab) = 14 7 (ab)22ab 14 2 2 97
(2)由x2-4x+1=0x+ 1 -4=0x+1 =4.
x
x
∴原式= (x1)225 42793
四、同类二次根式
几个二次根式化成最简二次根式以后,若被开方数 相同,这几个二次根式就叫做同类二次根式.
2020/12/8
5
二次根式加减运算的步骤: (1)把各个二次根式化成最简二次根式
(2)把各个同类二次根式合并. 注意:不是同类二次根式的二次根式
(如 2 与 3 )不能合并
如何合并同类二次根式
与合并同类项类似,把同类二次根 式的系数相加减,做为结果的系 数,根号及根号内部都不变。
2.二次根式的乘除运算可以考虑先将被开方数进行乘 除法计算,再化简二次根式,而不一定要先将二次根 式化成最简二次根式,再约分. 3.对有关二次根式的代数式的求值问题一般应对已知 式先进行化简,代入化简后的待求式,同时还应注意 挖掘隐含条件和技巧的运用使求解更简捷.
2020/12/8
15
感谢你的阅览
2020/12/8
1
第一章第六课时:
二次根式
➢ 要点、考点聚焦 ➢ 典型例题解析 ➢ 课时训练
2020/12/8
2
➢ 要点、考点聚焦
一.二次根式的定义 (1)式子 (aa≥0)叫做二次根式. (2)二次根式 中a ,被开方数必须非负,即a≥0, 据此可以确定被开方数为非负数. 具a 有双重非负性。
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
(3)(2002年·天津市)若1<x<4时,则 (x4)2 (x1)2
= 3。
11.(2004
·陕西)计算:
1 2
3
2 76
1 3
解: 2 原 3 3 式 3 6 3 = 2 3 3 3 2 3 2
2020/12/8 ( 2 3 ) 2 3 ) ( 3
14
1.判断几个二次根式是否是同类二次根式的关键是将 几个二次根式化成最简二次根式后,被开方数相同.
范围是
( C)
A.x ≥4 B. x ≤4 C. x >4 D. x <4
2020/12/8
12
➢ 课时训练
5.(2004年·南昌)化简
5 5 5
1
5
2
6. (2004年·南京市)计算:2
3
12 4
7. (2004年·临汾市)若实数a<b,则化简 (a b)2 的
结果是
( D)
A.a+b B.a-b C.-a-b D.-a+b
2020/12/8
x
11
➢ 课时训练
1. (2004年·哈尔滨)函数
y
1 x3
5x中,自
2. 变量x的取值范围是3<x≤5
.
2. (2004年·宁夏)计算: 18• 8 的结果是 12 。
3.若 (x2)2 2x,则的取值范围是 x≤2 。
4.(2004年·甘肃)在函数y
1
x 4 中,自变量x的取值
3.商的算术平方根 (1)商的算术平方根等于被除式的算术平方根除以除式的 算术平方根. (2)公式 a ( a≥a 0,b>0).
bb
4.二次根式的除法 (1)公式 a ( aa≥0,b>0) . (2)二次根式b 的除b法运算,通过采用化去分母中的根号的 方法来进行,把分母中的根号化去叫做分母有理化.
2020/12/8
9
➢ 典型例题解析
【例2】 计算:(1) (348 42)723 (2) 10a2 ab•5 b15a
ab
( 3 ) 22832(322) 1 21
解:(1)原式= (123123)230
(2)原式=(10a2×5÷15)( ab × b × b )= 10a2 •b ab
10
a