(学案)函数的应用(二)

合集下载

2020-2021高中数学人教版第一册学案:4.5.1 函数的零点与方程的解含解析

2020-2021高中数学人教版第一册学案:4.5.1 函数的零点与方程的解含解析

2020-2021学年高中数学新教材人教A版必修第一册学案:4.5.1 函数的零点与方程的解含解析4.5函数应用(二)【素养目标】1.结合学过的函数图象,了解函数零点与方程解的关系.(直观想象,数学抽象)2.结合具体连续函数及其图象的特点,了解函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.(逻辑推理,数学运算)3.理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.在实际情境中,会选择合适的函数模型刻画现实问题的变化规律.(数学建模)【学法解读】本节在学习中首先利用方程的解引出函数的零点,体现数学素养中的数学抽象,再把函数的零点、方程的解与函数的图象与x轴交点横坐标三者统一,结合函数的图象及性质会判断函数零点问题,对函数的实际应用问题,学生应学会对问题进行分析,灵活运用所学过的数学知识,建立“量”与“量"之间的函数关系,把实际问题转化为函数问题,通过对函数问题的解决达到解决实际问题的目的.4。

5。

1函数的零点与方程的解必备知识·探新知基础知识知识点1函数的零点(1)函数f(x)的零点是使f(x)=0的__实数x__。

(2)函数的零点、函数的图象、方程的根的关系.思考1:(1)函数的零点是点吗?(2)函数的零点个数、函数的图象与x轴的交点个数、方程f(x)=0根的个数有什么关系?提示:(1)不是,是使f(x)=0的实数x,是方程f(x)=0的根.(2)相等.知识点2函数的零点存在定理(1)条件:函数y=f(x)在区间[a,b]上的图象是__连续不断的曲线__,f(a)f(b)〈0;(2)函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b)使f(c)=0,这个c也就是f(x)=0的根.思考2:(1)函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,f(a)f(b)<0时,能否判断函数在区间(a,b)上的零点个数?(2)函数y=f(x)在区间(a,b)上有零点,是不是一定有f(a)f(b)〈0?提示:(1)只能判断有无零点,不能判断零点的个数.(2)不一定,如f(x)=x2在区间(-1,1)上有零点0,但是f(-1)f(1)=1×1=1>0.基础自测1.函数f(x)=4x-6的零点是(C)A.错误!B.(错误!,0)C.错误!D.-错误![解析]令4x-6=0,得x=错误!,∴函数f(x)=4x-6的零点是错误!.2.(2020·广州荔湾区高一期末测试)函数f(x)=x-2+log2x,则f(x)的零点所在区间为(B)A.(0,1)B.(1,2)C.(2,3) D.(3,4)[解析]f(1)=-1+log21=-1,f(2)=log22=1,∴f(1)·f(2)<0,故选B.3.若函数f(x)=x2+2x+a没有零点,则实数a的取值范围是(B)A.a<1 B.a>1C.a≤1D.a≥1[解析]函数f(x)=x2+2x+a没有零点,即方程x2+2x+a=0没有实数根,所以Δ=4-4a<0,得a>1.4.二次函数y=ax2+bx+c中,a·c<0,则函数有__2__个零点.[解析] 令ax 2+bx +c =0,Δ=b 2-4ac ,∵a ·c 〈0,∴b 2-4ac >0,∴方程ax 2+bx +c =0有两个不相等实根,∴二次函数y =ax 2+bx +c (a ·c 〈0)有2个零点.5.求下列函数的零点.(1)f (x )=x 2-5x -6;(2)f (x )=x 3-7x +6;(3)f (x )=(12)x -4;(4)f (x )=ln x -1。

中等教育数学(基础模块上)3.1.2 函数的表示方法 (二)(学案)

中等教育数学(基础模块上)3.1.2 函数的表示方法 (二)(学案)

(3) f(a)与 f(-a)相等吗?有怎样的关系?
(4) 函数图象是轴对称图形还是中心对称图形?
如果有问题,赶紧记下来,做为质疑的问题,你的问题越多,你的收获越多! 1
高 一
年级
数学
学科
导学案
使用时间:
2014 年
主编:
李晓霏
审核:
职高二备课组
【探究学习三】 例 3 作出函数 y=|x|+1 的图像。
【知识拓展】作出下列函数的图像 1、y=-x
3
2、y= x 1
思考:函数图象的图像特征?
1 3、y= 2 x +1
【探究学习四】 例 4
作出下列函数 f(x)=


1, x 1,0 的图象。 2, x 0,1
(三)、总结提升
(四)、课后作业 思考:函数的图像特征? 1、y=-3x+4 3、y=|x|
作出下列函数图像 2、y=2x -5 4、y= x
2
如果有问题,赶紧记下来,做为质疑的问题,你的问题越多,你的收获越多!
2
3 2
(2)函数值 y 随 x 的增大有怎样的变化?
(3)f(a)与 f(-a)相等吗?有怎样的关系?
(4)函数图象是轴对称图形还是中心对称图形?
1 【探究学习二】 例 2 作函数 y= 2 的图象. x
1 (1) 函数 y= 2 的定义域、值域是什么? x
(2) 在第一象限中, 函数值 y 随 x 的增大有怎样的变化?在第二象限中呢?
高 一
年级
数学
学科
导学案
使用时间:
2014 年
主编:
李晓霏
审核:
职高二备课组

高一数学学案函数应用

高一数学学案函数应用

潍坊一中高一学案 学科:数学导引式学案二十三《函数的应用Ⅱ》编者:姜瑶 审核:张尚敏 时间:2013-10-29【学习目标】1、培养数学建模能力与数学实践能力2、实际问题数学化【学习重、难点】建立数学模型【课前自主预习】1、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B 地停留2小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离y 表示为事件x (小时)的函数表达式是2、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是( )A .y ={0.9576}100xB .y ={0.9576}100xC .y =(1009576.0)x D .y =1-(0.0424)100x 【课堂思维展示】(一)指数函数型应用问题1.1995121.25%例年我国人口总数是亿,如果人口的自然增长率控制在,问哪一年我国人口总数将超过14亿?潍坊一中高一学案伦琴说:“第一是数学,第二是数学,第三是数学”例2、一中放射性元素,最初的质量为500g,按每年10%衰减:(1)求t年后,这种放射性元素质量w的表达式;(2)由求出的函数表达式,求这种放辐射性元素的半衰期(精确到0.1)。

(二)幂函数型应用问题例3、某城市现有人口100万,若20年后该城市人口总数为120万,那么年增长率为多少?若不超过120万呢?例4、深圳特区1980年的生产总值为2.7亿,1999年生产总值为1436.51亿元,问19年中每年平均增长百分之几?(精确到0.01)小结:如何解决函数应用问题?潍坊一中高一学案学科:数学【课后巩固提高】1、一种产品的成本是a元,在今后的m年内,计划成本每年比上一年降低p%,写出成本随着年数变化的函数关系式2、工厂1992年底某种产品年产量为a,若该产品的年平均增长率为x,2000年底该厂这种产品的年产量为y,那么y与x的函数关系式是3、已知镭经过100年,剩留原来质量的95.76%,计算它约经过多少年剩留一半(结果保留4个有效数字)。

【6】一次函数第六课时 - 一次函数的应用2

【6】一次函数第六课时 - 一次函数的应用2

孙疃中心学校”st”互助学习“三步九环节”学案
年级八学科数学主备教师曹磊审核人年级组长签名班级姓名时间
孙疃中心学校”st”互助学习“三步九环节”学案之研学案
孙疃中心学校”st ”互助学习“三步九环节”学案之测学案
班级 姓名
1、已知两个一次函数y=x+3k 和y=2x -6的图象交点在y 轴上,则k 值为 。

2、如图,l 1表示某机床公司一天的销售收入与机床销售量的关系,l 2表示该公司一天的销售成本与机床销售量的关系。

(1)当x=1时,销售收入= 万元,销售成本= 万
元。

利润(收入-成本)= 万元。

(2)一天销售 件时,销售收入等于销售成本。

(3)l 1对应的函数表达式是 。

(4)你能写出利润与销售量间的函数表达式吗?
3. 某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.
(1)分别写出甲、乙两厂的收费y 甲(元)、y 乙(元)与印制数量x (本)之间的关系式;
(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.
4.A 、B 两家旅行社推出家庭旅游优惠活动,两家旅行社的票价均为一人90元,但优惠办法不同。

A 旅行社的优惠办法是:全家有一个购全票,其余的半价优惠;B 旅行社的优惠办法是:每人均按3
2
票价优惠。

你将选择哪家旅行社?
x/件。

6.3 一次函数图像的应用(二)

6.3 一次函数图像的应用(二)

初一下 数学教学案42 §6.3 一次函数图像的应用(二)【学习目标】1. 进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;【教学重点】一次函数图象的应用【教学难点】从函数图象中正确读取信息考考你1、在直角坐标系中, 点P(-2,3)向右平移3个单位长度后的坐标为( )A. (-2,6)B. (1,3)C. (1,6)D. (3,3)2、下列函数①x y -=;②112+=x y ;③12++=x x y ;④xy 1=中,是一次函数的有( ) A 、4个 B 、3个 C 、2个 D 、1个3、已知一次函数5+=kx y 的图象经过点(-1,2),则k =____________4、 一次函数48+-=x y 的图象与x 轴交点坐标是_______,与y 轴交点坐标是_______,图 象与坐标轴所围成的三角形的面积是___________二、自主学习,合作探究(预习书本P152-P153)活动一1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图意填空:(1)当销售为2吨时,销售收入= 元,销售成本= 元; 当销售收入为6吨时,销售收入= 元,销售成本= 元;(1)当销售等于 时,销售收入等于销售成本;(2)当销售量 时,该公司赢利(收入大于成本);当销售量 时,该公 司亏损(收入小于成本);(5)1l 对应的函数表达式是 ,2l 对应的函数表达式是 。

活动二我国边防局接到情报,近海出有一可疑船只A正向公海方向行驶。

边防局迅速派出快艇B追赶。

图中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系。

根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15分内B能否追上A?(4)如果一直追下去,那么B能追上A吗?三、堂中测评内容:观察甲、乙两图,解答下列问题1.填空:两图中的()图比较符合传统寓言故事《龟免赛跑》中所描述的情节。

人教A版高中同步学案数学必修第一册 第四章 指数函数与对数函数 函数的应用(二)函数的零点与方程的解

人教A版高中同步学案数学必修第一册 第四章 指数函数与对数函数 函数的应用(二)函数的零点与方程的解

所示.由图象可知,两个函数图象只有一个交点,故函数()只有一
个零点.
1

(3)() = 2 + lg( + 1) − 2.
解(方法1)∵ (0) = 1 + 0 − 2 = −1 < 0,(2) = 4 + lg 3 − 2 = 2 + lg 3 > 0,
∴ () = 0在(0,2)内必定存在实根.
C.(−1,1)和(1,2)D.(−∞, −3)和(4, +∞)
[解析]易知() = + + ( ≠ )的图象是一条连续不断的曲线,又
(−)(−) = × (−) = − < ,所以()在(−, −)内有零点,即方程
+ + = ( ≠ )在(−, −)内有根,同理,方程 + + = ( ≠ )在

( )


( )









= + = − < ,( ) = + = − < ,











= + = − + = − ,() =






> ,∴ > ,即 − > ,∴ ( ) > ,
() = − − 有2个不同的实根,即函数()的图象与直线
= − − 的图象有2个交点.作出直线 = − − 与函数
1 = ()和2 = ℎ()的图象,则两个图象公共点的个数就是函数 = ()零点的个数.

高三数学二轮复习教学案一体化:函数的性质及应用(2)

高三数学二轮复习教学案一体化:函数的性质及应用(2)

专题1 函数的性质及应用(2)高考趋势1.函数历来是高中数学最重要的内容,不仅适合单独命题,而且可以综合运用于其它内容.函数是中学数学的最重要内容,它既是工具,又是方法和思想.在江苏高考文理共用卷中,函数小题(不含三角函数)占较大的比重,其中江苏08年为3题,07年为4题.2.函数的图像往往融合于其他问题中,而此时函数的图像有助于找出解决问题的方向、粗略估计函数的一些性质。

另外,函数的图像本事也是解决问题的一种方法。

这些高考时常出现。

图像的变换则是认识函数之间关系的一个载体,这在高考中也常出现。

通过不同途径了解、洞察所涉及到的函数的性质。

在定义域、值域、解析式、图象、单调性、奇偶性、周期性等方面进行考察。

在上述性质中,知道信息越多,则解决问题越容易。

考点展示1. “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是B2.函数xy 1=的图像向左平移2个单位所得到的函数图像的解析式是 21+=x y3. 函数)(x f 的图像与函数2)1(2---=x y 的图像关于x 轴对称,则函数)(x f 的解析式是2)1(2+-x4. 方程223x x -+=的实数解的个数为 25. 函数)1(x f y+=的图像与)1(x f y -=的图像关于 x=0 对称函数图象对称问题是函数部分的 一个重要问题,大致有两类:一类是同一个函数图象自身的对称性;一类是两个不同函数之间的对称性。

定理1 若函数y=f(x) 对定义域中任意x 均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线2a bx +=对称。

定理2 函数()y f a x ω=+与函数()y f a x ω=-的图象关于直线2b ax ω-=对称特殊地,函数y=f(a+x)与函数y=f(b-x)的图象关于直线2b ax -=对称。

5.4一次函数的应用(2)

5.4一次函数的应用(2)

自主空间
学习 目标
学习重 难点
预 习 导 航
制定了每月用水 4 吨以内(包括 4 吨)和用水 4 吨以上两种收费标准 8 (收费标准:指每吨水的价格) ,用 户每月应交水费 y(元)是用水量 x 4.8 (吨)的函数,其函数图象如图所示。 x(吨) 4 6 ⑴观察图象,求出函数在不同范围内 的解析式; ⑵说出自来水公司在这两个月用水范围内的收费标准; ⑶若一用户 5 月份交水费 12.8 元,求他用了多少吨水.
合 作 探 究
和蔬菜加工厂自己加工制作纸箱的费用 y2 (元)关于 x (个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
1、某蔬菜基地要把一批新鲜蔬菜运住外地,有两种运输方式可供选 择,主要参考数据台下: 运 输 方式 汽车 火车 运 输 速 度 (km/h) 60 100 装 卸 费 用(元) 200 410 途中综合费用 (元/h) 270 240
学习反思:
5.4(2) 当堂达标:1. y1
270 x 240 x 200 , y 2 410 ;当 x>100 时,用火车运输好;当 60 100
x=100 时,两种方式一样好;当 x<100 时,用汽车运输好。 2.共 3 种方案:方案一、A30 件,B20 件; 方案二、A31 件,B19 件;方案三、A32 件,B18 件;设 A 种产品 x 件,y=700x+900(50-x) 即 y=-200x+45000 因-200<0,所以 y 随 x 的减小而增大,即当 x=30 时利润最大。所以,用 方案一可获最大利润为 39000 元。
1 y (元)
2
销售量(万件)
合 作 探 究

人教B版高中同步学案数学必修第二册精品课件 第4章 函数的应用(二)——分层作业

人教B版高中同步学案数学必修第二册精品课件 第4章 函数的应用(二)——分层作业
2
=
5 1
m2-m1=2lg ,
2
2
2
1
10.1
(m
.
2-m1)= (-1.45+26.7)=10.1, =10
5
5
2
故选 A.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
11.如图是某受污染的湖泊在自然净化过程中,某种
有害物质的剩留量y与净化时间t(单位:月)的近似函
解得

1
t=
6
1-
22-
2(-5)
2
=
1
6
1
m= ,∵x≥9,∴m∈
-5
1
1
m=34,且34

1
0, 4
1-
,
17-(-5)
1
0,
4
1
17
1
2 =-12
2 - -5 -2
2(-5)
(-5)
,在
.
1
t=- (17m2-m-2)中,其图象的对称轴为直线
12
,且图象开口向下,所以当
1
19
m=4时,t 取得最小值192,此时
3
B.s=2log2t
1 2 1
C.s= t 2 2
D.s=2t-2
t-3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
解析 画出数据点如图所示.
由上图可知该函数是增函数,但增长速度较慢,则排除选项A;此函数的图象
不是直线,排除选项D;此函数的图象不符合对数函数的图象,排除选项B;经

=10,
11
5
5
1-lg11

函数的应用(2)

函数的应用(2)

精彩点评
展示内容
问题导学1 例1 例2 深化提高11
深化提高1 深化提高3
地点 展示
前黑板 前黑板 前黑板 前黑板 5组 4组 3组 2组
点评
自愿点评
后黑板 1组 后黑板 9组
自愿点评 自愿点评
自愿点评
深化提高8
后黑板 8组
深化提高10(1)后黑板 7组
深化提高10(2)后黑板 6组
目标: ⑴先点评对 错;再点评 思路方法, 应该注意的 问题,力争 进行必要的 变形拓展。 ⑵其他同学 认真倾听、 积极思考、 记好笔记、 大胆质疑。
自主学习
1.独立思考, 完成“合作探究”部分的学习 内容,列出问题的思路、要点。
2.学案自纠,明确自己的疑问,以备小组合 作讨论解决。 3.学有余力的同学力争做好“深化提高”。
合作探究
内容: 1.写出解实际应用问题的步骤? 2.解题过程中注意什么问题? 3. 例1、例2、深化3/8/9/10 目标: (1)人人参与,热烈讨论,大声表达自己的思想。 (2)组长控制好讨论节奏,先一对一分层讨论,再小组内 集中讨论,AA、BB解决好全部展示问题(即完成12 0%),CC解决例题1 2(即完成100%)。 (3)讨论时,手不离笔,没解决的问题组长记录好,准备 展示质疑。
高效展示
展示内容
问题导学1 例1 例2
地点
前黑板
前黑板 前黑板
展示
5组
4组 3组
深化提高11 深化提高1 深化提高3
深化提高8
前黑板 后黑板 后黑板
后黑板
2组 1组 9组
8组
深化提高10(1) 后黑板
深化提高10(2) 后黑板
7组
6组
目标: ⑴口头展示,声 音洪亮、清楚; 书面展示要分 层次,书写要 认真、 规范。 ⑵非展示同学巩 固基础知识、 整理落实学案, 做好拓展。不 浪费一分钟, 小组长做好安 排和检查。

2015届中考数学一轮复习教学案:第15课时函数的应用(二)

2015届中考数学一轮复习教学案:第15课时函数的应用(二)

第15课时函数的应用(二)【知识梳理】1.利用二次函数解决“图形最值”问题的一般过程:(1)将实际问题转化为________.(2)利用二次函数的________解题.2.利用二次函数解决“利润最大化”问题的一般过程:(1)将利润表示成_______的二次函数.(2)利用二次函数的最值求出利润的最_______值.(3)写出答案.3.二次函数应用的常用数学思想有________.【考点例析】考点一利用二次函数求最大利润例1某商品的进价为每件20元,售价为每件30元,每个月可买出180件,如果每件商品的售价每上涨1元,那么每个月就会少卖出10件,但每件售价不能高于35元.设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?提示(1)销售利润=每件商品的利润×(180-10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式,从而可得二次函数的最值,再结合实际意义,求得整数解即可;(3)让(1)中的y=1920,解方程求出x的值.考点二利用二次函数求最大面积例2小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x cm的边与这条边上的高之和为40 cm,这个三角形的面积S(cm2)随x( cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,这个三角形的面积S最大?最大面积是多少?提示三角形的边x和这条边上的高之和是40 cm,则该边上的高为(40-x)cm根据三角形的面积公式可写出S=12·x·(40-x),这个二次函数的顶点坐标分别对应x及S的最大值.考点三二次函数与其他函数的综合应用例32012年牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销,经过调查,得到如下数据:(1)把上表中x、y的各组对应值作为点的坐标,在如图所示的平面直角坐标系中描出相应的点,猜想y与x之间的函数关系.并求出函数关系式.(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少(利润=销售总价-成本总价)?(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?提示(1)把表格中的点在平面直角坐标系中画出来,可知这个函数是一次函数,所以设函数关系式为y=kx+b,利用待定系数法求出函数的解析式;(2)利润的最大问题是通过二次函数的知识来解决的,列出利润与销售单价之间的二次函数关系式,然后根据最值问题求解;(3)利用二次函数的性质解题.考点四二次函数与几何图形的综合应用例4如图,在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE.垂足为P,PE交CD于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,CE为y,试确定y与x的函数关系式,当x取何值时,y的值最大?最大值是多少?(3)连接BD,若PE∥BD,试求出此时BP的长.提示(1)在Rt△ABP中,由勾股定理求得BP的长;(2)∵AP⊥PE,易知Rt△ABP∽Rt△PCE,从而构建了y与x的函数关系式.再利用配方法求得y的最大值;(3)由PE∥BD 可知△CPE∽△CBD,从而利用相似三角形构建方程解题.【反馈练习】1.某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,那么每个月少卖10件(每件售价不能高于72元).设每件商品的售价上涨x元(x为整数).每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价定为多少时.每个月可获得最大利润?最大利润是多少?2.如图,在边长为24 cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x cm(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;(2)某广告商要求包装盒的表面(不含下底面)面积5最大,试问,应取何值?3.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示.(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.。

函数复习学案(2)

函数复习学案(2)

高二数学《函数》复习学案(二)2010.5知识梳理(一)函数的单调性2.判断函数单调性的方法①.根据定义;根据图象;利用已知函数的增减性;利用导数.(二)函数的奇偶性1.奇函数与偶函数的概念:(1)一般地,如果对于函数)(x f 的定义域内任意一个x ,都有 ,那么函数)(x f 就叫做奇函数,奇函数图像关于 对称(2)一般地,如果对于函数)(x f 的定义域内任意一个x ,都有 ,那么函数)(x f 就叫做偶函数,偶函数图像关于 对称2.函数奇偶性的判断方法: 1)用定义判断函数奇偶性其步骤是:①考察函数的定义域是否关于原点对称;②若定义域关于原点对称;则函数不具有奇偶性;若定义域关于原点对称,则判断)()(x f x f ±=-是否成立;判定函数的奇偶性2)复合函数的奇偶性:已知))(()(x g f x F y ==,)(x f ,)(x g 具有奇偶性① 若函数)(x f ,)(x g 满足条件 ,则)(x F 是奇函数;② 若函数)(x f ,)(x g 满足条件 ,则)(x F 是偶函数.典例解析题型一:函数单调性的判断、证明例1:利用单调性定义证明函数12++=x x y 在()+∞-,1上是减函数变式:试讨论函数()1,1,1)(2-∈-=x x axx f 的单调性(其中0≠a )题型二:求函数的单调区间(复合函数的单调性)例2:设函数1)1(32)(23+--=x a x x f ,其中1≥a求(1)求)(x f 的单调区间 (2)讨论)(x f 的极值题型三:已知单调性求参数的范围例3:已知()()⎩⎨⎧≥<+-=1,log 1,413x x x a x a x f a 是()+∞∞-,上的减函数,那么a 的取值范围是()A .()1,0B ⎪⎭⎫ ⎝⎛31,0C ⎪⎭⎫⎢⎣⎡31,71D ⎪⎭⎫⎢⎣⎡31,71题型四:抽象函数的单调性例4:设)(x f 是定义在R 上的函数,且对任意实数y x ,都有)()()(y f x f y x f +=+,求证:若当0>x 时,有0)(>x f ,则)(x f 在R 上是增函数。

《4.4一次函数的应用(2)》学案

《4.4一次函数的应用(2)》学案

民乐三中八年级数学教学案科目:数学 执笔:姚兰花 段玉琴 王庆 宋国儒 滕开荣4.4一次函数的应用(二)一、问题引入:1、回顾一次函数的相关知识。

2、如何解答实际情景函数图象的信息?3、一元一次方程与一次函数有什么联系?二、基础训练:1、看图填空:(1)当0y =时,______x =;(2)直线对应的函数表达式是________________.2、由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图所示,根据图象回答下列问题:(1)水库干旱前的蓄水量是_______________(2)干旱持续10天后,蓄水量为______________,连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱__________天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱___________天水库将干涸?3、一元一次方程015.0=+x 的解___________ ,一次函数15.0+=x y ,当0=y 时,相应的自变量x 的值为__________。

4、假定甲乙两人在一次赛跑中,路程S 与时间t 的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.三、例题展示:例:我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(如图),下图中1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分钟)之间的关系.根据图象回答下列问题:(1)哪条线表示B 到海岸的距离与时间之间的关系?(2)A ,B 哪个速度快?(3)15分钟内B 能否追上A ?(4)如果一直追下去,那么B 能否追上A ?(5)当A 逃到离海岸12海里的公海时,B 将无法对其进行检查.照此速度,B 能否在A 逃到公海前将其拦截?(6)1l 与2l 对应的两个一次函数11b x k y +=与22b x k y +=中,1k ,2k 的实际意义各是什么?可疑船只A 与快艇B 的速度各是多少?四、课堂检测:1、某地长途客运公司规定,旅客可随身携带一定质量的行李.如果超过规定,则需购买行李票,行李票费用y (元)是行李质量x (千克)的一次函数,其图象如图所示.(1)写出y 与x 之间的函数关系式,并指出自变量x 的取值范围.(2)旅客最多可免费携带多少千克行李?2、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y (元)与租书时间x (天)之间的关系如下图所示.(1)分别写出用租书卡和会员卡租书的金额y (元)与租书时间x (天)之间的函数关系式.(2)两种租书方式每天租书的收费分别是多少元?(x ≤100).。

人教A版高中同步学案数学必修第一册精品课件 第四章 函数的应用(二)函数的零点与方程的解

人教A版高中同步学案数学必修第一册精品课件 第四章 函数的应用(二)函数的零点与方程的解
象可知 < < .
15.已知函数
() =
1
, ≥ 1,


3 , < 1,若(0 )
−1 ,若关于的方程() = 有两
= −1,则0 =____
(0,1)
个不同的实根,则实数的取值范围为______.
[解析]由方程( ) = −,
≥ ,
得ቐ

1
2
3
4
5
6

123.56
21.45
−7.82
11.45
−53.76
−128.88
则下列说法正确的是( B
)
A.函数 = ()在区间[1,6]上有3个零点
B.函数 = ()在区间[1,6]上至少有3个零点
C.函数 = ()在区间[1,6]上至多有3个零点
D.函数 = ()在区间[1,2]上无零点

A.(1 ) < 0,(2 ) < 0B.(1 ) < 0,(2 ) > 0
C.(1 ) > 0,(2 ) < 0D.(1 ) > 0,(2 ) > 0
D.3
< 1 < 0 < 2 ,则() B
11.已知函数 = ()的图象是一条连续不断的曲线,有如下的对应值表:
第四章
4.5 函数的应用(二)
4.5.1 函数的零点与方程的解
A级 必备知识基础练
1.函数() = 4 − 2 − 2的零点是() B
1
2
A.(1,0)B.1C. D.−1
2.若函数() = 2 + − 4的零点所在区间为(, + 1)( ∈ ),则 =() A

【平煤高中学案必修一】32函数模型的应用实例

【平煤高中学案必修一】32函数模型的应用实例

3.2.2函数模型的应用实例(2)
学习目标
1. 通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用;
2. 了解分段函数、指数函数、对数函数等函数模型的应用.
新课讲授
例1、某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示:
请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润。

例2、某地区不同身高的未成年男性的体重平均值如下表:
(1)根据上表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式。

(2)若体重超过相同身高男性体重平均值的1.2倍为偏重,低于0.8倍为偏瘦,那么这个地区一名身高为175 cm,体重为78 kg的在校男生的体重是否正常?
随堂训练
1. 向高为H的圆锥形漏斗内注入化学溶液(漏斗下口暂且关闭),注入溶液量V与溶液深度h的大概图象是().
2. 某种生物增长的数量y与时间的关系如下表:
A.21
y x
=-B.21
x
y=-
C.21
y x
=-D.2
1.5
2.52
y x x
=-+
3. 某杂志能以每本1.20的价格发行12万本,设定价每提高0.1元,发行量就减少4万本. 则杂志的总销售收入y万元与其定价x的函数关系是.
4. 某新型电子产品2002年投产,计划2004年使其成本降低36℅. 则平均每年应降低成本%.。

人教A版高中同步学案数学必修第一册精品课件 第四章 函数的应用(二)-4.5.3 函数模型的应用

人教A版高中同步学案数学必修第一册精品课件 第四章 函数的应用(二)-4.5.3 函数模型的应用
所以当 = 时,有害物质的剩余量为 =

( ) =


<

,所以①正确;







第二个月的减少量为 − ( ) = ,显然两者不同,所以②错误;











由已知得( ) = ,( ) = ,( ) = ,所以( ) + = ( ) × ( ) =
(单位:W/m2 )与声强级(单位:dB)的函数关系式为 = ⋅ 10 (,为常数
(.某型号高铁行驶在无村庄区域的声强为10−5.2 W/m2 ,声强级为68 dB,驶进市区附近
降低速度后的声强为10−6.5 W/m2 ,声强级为55 dB,若要使该高铁驶入市区时的声强级
达到安静环境要求,则声强的最大值为() B
则这个函数称为圆的一个“太极函数”,则下列说法正确的是() BD
A.对于圆,其“太极函数”有且只有1个
2 − ( ≥ 0),
B.函数() = ൝ 2
是圆的一个“太极函数”
− − ( < 0)
C.函数() = 3 − 3 不是圆的“太极函数”
D.函数() = ln( 2 + 1 + )是圆的一个“太极函数”
水达到要求?(参考数据:lg 2 ≈ 0.301,lg 3 ≈ 0.477)
解设至少经过次过滤才能使矿泉水达到要求,则
1
3
1
3
% × ( ) ≤ 0.002 %,所以( ) ≤
1
所以lg( )
3
所以 ≥

2
1
lg
,即lg
1 000

反比例函数的应用(二)

反比例函数的应用(二)
中学初三数学组
例 4:一个用电器的电阻 R 是可调节的,其范围为 110-220 欧姆。已知电压 U 为 220 伏,这个用电器的电路图如下图所示。 (1)输出功率 P 与电阻 R 有怎样的函数关系? (公式: PR U 2 ) (2)这个用电器输出功率的范围多大?
解: (1)根据公式: PR U 2 ,把 U=220 代入,得 则 P= ① 函数。 即输出功率 P 是电阻 R 的
学习内容
数学
【自主探究】
例 3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为 1200 牛 顿和 0.5 米. (1)动力 F 与动力臂 l 有怎样的函数关系?当动力臂为 1.5 米时, 撬动石头至少需要多大的力? (2) 若想使动力 F 不超过题 (1) 中所用力的一半, 则动力臂至少要加长多少? (可以参考课本 15 页)
鸡西市第十九中学初三数学组
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
课题 反比例函数的应用(二) 课型 新课 八年级下 2014 年 月 日 人教版 1、进一步运用反比例函数的概念解决实际问题; 2、 运用反比例函数解决实际问题的过程中, 进一步体会数学建模思想 运用反比例函数的意义和性质解决实际问题。
(2)由①式可以看出,电阻越大则功率越 ∴把电阻的最小值 R=110 代入①式,得到输出功率的最 P= = 把电阻的最大值 R=220 代入①式,得到输出功率的最 P= = 【当堂训练】 某蓄水池的排水管每时排水 8m3 ,6h 可将满池水全部排空。 (1)蓄水池的容积是多少? (2)如果增加排水管,使每时的排水量达到 Q( m 3 ),那么将满池水排空所需的 时间 t(h)将如何变化? (3)写出 t 与 Q 之间的关系;

不等式、方程、函数的综合应用(2)

不等式、方程、函数的综合应用(2)

不等式、方程、函数的综合应用(2)【学习目标】在解决问题中体会函数、方程、不等式的综合运用. 【巩固练习】 一、选择题: 1.(10眉山)已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅ 的值( )A .7-B .3-C .7D .3 2.(10黄冈).已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为 ( ) A .1或-2 B .2或-1 C .3 D .4 3.(10绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是 ( ) A. y 3<y 1<y 2 B. y 2<y 1<y 3 C. y 1<y 2<y 3 D. y 3<y 2<y 1 4.(09荆门)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是 ( )A .1a >-B .1a -≥C .1a ≤D .1a <5.如图,等腰Rt △ABC 位于第一象限,AB =AC =2,点A 在直线y =x 上,点A 的横坐标为1,边AB 、AC 分别平行于x 轴、y 轴.若双曲线y = kx 与△ABC 有交点,则k 的取值范围为( )A .1<k <2B .1≤k ≤3C .1≤k ≤4D .1≤k <45.(08芜湖)在平面直角坐标系xoy 中,直线y x =向上平移1个单位长度得到直线l .直线l 与反比例函数k y x=的图象的一个交点为(2)A a ,,则k 的值等于 .6.△ABC 中,∠A =∠B =30°,AB =△ABC 放在平面直角坐标系中, 使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.当点B 在第一象限,2时,求点B 的横坐标 .7. 如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .(1)当AE =5,P 落在线段CD 上时,PD = ;(2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .8.(10宁波)如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角ABC ∠为︒15,则引桥的水平距离BC 的长是_________米(精确到0.1米). 三、解答题:9.(10济宁)如图,正比例函数12y x =的图象与反比例函数k y x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知O AM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.10.(10湖州)如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长; (3)连结EF ,设△BEF 与△BFC 的面积之差为S , 问:当CF 为何值时S 最小,并求出这个最小值.xA。

人教新课标版数学高一必修1学案 函数的表示法(二)

人教新课标版数学高一必修1学案   函数的表示法(二)

1.2.2 函数的表示法(二)自主学习1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题. 2.了解映射的概念及含义,会判断给定的对应关系是否是映射.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.(3)作分段函数图象时,应分别作出每一段的图象. 2.映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

3.映射与函数由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A ,B 必须是非空数集.对点讲练分段函数的求值问题【例1】 已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2 (-1<x <2),2x (x ≥2).(1)求f [f (3)]的值; (2)若f (a .)=3,求a . 的值.分析 本题给出的是一个分段函数,函数值的取得直接依赖于自变量x 属于哪一个区间,所以要对x 的可能范围逐段进行讨论. 解 (1)∵-1<3<2,∴f (3)=(3)2=3. 而3≥2,∴f [f (3)]=f (3)=2×3=6.(2)当a .≤-1时,f (a .)=a .+2,又f (a .)=3,∴a .=1(舍去);当-1<a .<2时,f (a .)=a .2,又f (a .)=3,∴a .=±3,其中负值舍去,∴a .=3;当a .≥2时,f (a .)=2a .,又f (a .)=3, ∴a .=32(舍去).综上所述,a .= 3.规律方法 对于f (a .),究竟用分段函数中的哪一个对应关系,与a . 所在范围有关,因此要对a .进行讨论.由此我们可以看到: (1)分段函数的函数值要分段去求;(2)分类讨论不是随意的,它是根据解题过程中的需要而产生的.变式迁移1 设f (x )=⎩⎨⎧12x -1 (x ≥0),1x (x <0),若f (a .)>a .,则实数a .的取值范围是________.答案 a .<-1解析 当a .≥0时,f (a .)=12a .-1,解12a .-1>a .,得a .<-2与a .≥0矛盾,当a .<0时,f (a .)=1a ,解1a>a .,得a .<-1.∴a .<-1.分段函数的图象及应用【例2】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 化简f (x )的解析式 →化简f (x )的解析式 →把f (x )表示为分段函数形式→画出f (x )的图象→求f (x )的值域 解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )=⎩⎨⎧1 (0≤x ≤2)1-x (-2<x <0).(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).规律方法 对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时要特别注意区间端点处对应点的实虚之分.变式迁移 2 设函数f (x )=⎩⎪⎨⎪⎧|x +1| (x <1)-x +3 (x ≥1),使得f (x )≥1的自变量x 的取值范围是______________________. 答案 (-∞,-2]∪[0,2] 解析在同一坐标系中分别作出f (x )及y =1的图象(如图所示),观察图象知,x 的取值范围是(-∞,-2]∪[0,2].映射概念及运用【例3】 判断下列对应关系哪些是从集合A 到集合B 的映射,哪些不是,为什么?(1)A={x|x 为正实数},B={y|y ∈R[},f :x →y=±x(2)A=R ,B={0,1},对应关系f :x,→y =⎩⎪⎨⎪⎧1, x ≥0;0, x<0;(3)A=Z ,B=Q ,对应关系f :x →y=1x;(4)A={0,1,2,9},B={0,1,4,9,64},对应关系f:a →b=()21a -解 (1)任一个x 都有两个y 与之对应,∴不是映射.(2)对于A 中任意一个非负数都有唯一的元素1和它对应,任意一个负数都有唯一的元素0和它对应, ∴是映射.(3)集合A 中的0在集合B 中没有元素和它对应,故不是映射. (4)在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,∴是映射.规律方法 判断一个对应是不是映射,应该从两个角度去分析:(1)是否是“对于A 中的 每一个元素”;(2)在B 中是否“有唯一的元素与之对应”.一个对应是映射必须是这两个方面都具备;一个对应对于这两点至少有一点不具备就不是映射.说明一个对应不是映射,只需举一个反例即可. 变式迁移3 下列对应是否是从A 到B 的映射,能否构成函数? (1)A=R ,B=R,f:x →y =1x +1;(2)A ={a.|a.=n ,n ∈N +},B =⎩⎨⎧⎭⎬⎫b|b =1n ,n ∈N +,f :a.→b =1a;(3)A=[)0,+∞,B=R ,f:x→y 2=x ;(4)A ={x|x 是平面M 内的矩形},B ={x|x 是平面M 内的圆},f :作矩形的外接圆. 解 (1)当x =-1时,y 的值不存在, ∴不是映射,更不是函数.(2)是映射,也是函数,因A 中所有的元素的倒数都是B 中的元素.(3)∵当A 中的元素不为零时,B 中有两个元素与之对应,∴不是映射,更不是函数. (4)是映射,但不是函数,因为A ,B 不是数集.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.判断一个对应是不是映射,主要利用映射的定义:(1)集合A 到B 的映射,A 、B 必须是非空集合(可以是数集,也可以是其他集合); (2)对应关系有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;(3)与A 中元素对应的元素构成的集合是集合B 的子集.课时作业一、选择题1.下列集合A 到集合B 的对应f 是映射的是( ) A .A ={-1,0,1},B ={-1,0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =N *,f :a .→b =(a .+1)2D .A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ) A . f:x→y =12x B. f:x→y =13xC. f:x→y =14xD. f:x→y =16x答案 A由f:x →y =12x ,集合A 中的元素6对应3∉{y |0≤y ≤2},故选项A 不是映射.3.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6)(x ∈N ),那么f (3)等于( )A .2B .3C .4D .5 答案 A解析 由题意知f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.4.已知f (x )=⎩⎪⎨⎪⎧ x 2 (x ≥0)x (x <0),g (x )=⎩⎪⎨⎪⎧x (x ≥0)-x 2 (x <0),则当x <0时,f [g (x )]等于( )A .-xB .-x 2C .xD .x 2 答案 B解析 当x <0时,g (x )=-x 2<0, ∴f [g (x )]=-x 2. 二、填空题5.已知f (x )=⎩⎪⎨⎪⎧0 (x <0)π (x =0)x +1 (x >0),则f (f (f (-1)))的值是__________.答案 π+1解析 f (-1)=0,f (0)=π,f (π)=π+1 ∴f (f (f (-1)))=f (f (0))=f (π)=π+1.6.已知f (x )=⎩⎪⎨⎪⎧1,x ≥00,x <0,则不等式xf (x )+x ≤2的解集是__________.答案 {x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2, 解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2, 解得x ≤2,∴x <0. 综上可知x ≤1. 三、解答题7.若[x ]表示不超过x 的最大整数,画出y =[x ] (-3≤x <3)的图象. 解 作出y =[x ]的图象如下图所示.8.已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.解 根据图象,设左侧射线对应的函数解析式为y =kx +b (x <1).∵点(1,1)、(0,2)在射线上,∴⎩⎪⎨⎪⎧ k +b =1,b =2, 解得⎩⎪⎨⎪⎧k =-1,b =2.∴左侧射线对应的函数解析式为y =-x +2 (x <1). 同理,x >3时,函数的解析式为y =x -2 (x >3). 又抛物线对应的二次函数的解析式为 y =a .(x -2)2+2 (1≤x ≤3,a .<0),∵点(1,1)在抛物线上,∴a .+2=1,a .=-1, ∴当1≤x ≤3时,函数的解析式为 y =-x 2+4x -2 (1≤x ≤3). 综上所述,函数的解析式为 y =⎩⎪⎨⎪⎧-x +2 (x <1),-x 2+4x -2 (1≤x ≤3),x -2 (x >3).【探究驿站】9.已知函数f (x )=⎩⎪⎨⎪⎧1, x ∈[0,1],x -3, x ∉[0,1],求使等式f [f (x )]=1成立的实数x 构成的集合.解 当x ∈[0,1]时,恒有f [f (x )]=f (1)=1, 当x ∉[0,1]时,f [f (x )]=f (x -3),若0≤x -3≤1,即3≤x ≤4时,f (x -3)=1, 若x -3∉[0,1],f (x -3)=(x -3)-3, 令其值为1,即(x -3)-3=1,∴x =7. 综合知:x 的值构成的集合为 {x |0≤x ≤1或3≤x ≤4或x =7}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的应用(二)【学习目标】运用函数性质求方程近似解的基本方法(二分法),再结合实例,更深入地理解用函数构建数学模型的基本过程,学习运用模型思想发现和提出问题、分析和解决问题的方法.【学习重难点】零点存在定理。

【学习过程】【第1学时】一、自主学习知识点一:函数的零点1.零点的定义对于函数y=f(x),把f(x)=0的实数x,叫做函数y=f(x)的零点.2.方程的根与函数零点的关系状元随笔函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零.知识点二:函数零点的判定如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.状元随笔定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.教材解难:1.教材P142思考能.先构造函数f(x)=ln x+2x-6,再判断函数f(x)是增函数,又f(2)<0,f(3)>0,∴方程ln x +2x -6=0的根在2,3之间.基础自测:1.函数y =3x -2的图象与x 轴的交点坐标及其零点分别是( )A .23;23B .⎝ ⎛⎭⎪⎫23,0;23C .-23;-23D .⎝ ⎛⎭⎪⎫-23,0;-23解析:令3x -2=0,则x =23,∴函数y =3x -2的图象与x 轴的交点坐标为⎝ ⎛⎭⎪⎫23,0,函数零点为23.答案:B2.函数f (x )=ln (x +1)-2x 的零点所在的一个区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解析:f (1)=ln2-2<0,f (2)=ln3-1>0, ∴f (1)·f (2)<0,∴函数f (x )的一个零点区间为(1,2). 答案:B3.函数f (x )=x 3-x 的零点个数是( ) A .0 B .1 C .2 D .3解析:f (x )=x (x -1)(x +1),令x (x -1)(x +1)=0,解得x =0,x =1,x =-1,即函数的零点为-1,0,1,共3个.答案:D4.若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________.解析:由⎩⎨⎧ 22-2a -b =0,32-3a -b =0,得⎩⎨⎧a =5,b =-6∴g (x )=-6x 2-5x -1的零点是-12,-13. 答案:-12,-13 二、素养提升题型一:函数零点的概念及求法例1:(1)下列图象表示的函数中没有零点的是( )(2)判断下列函数是否存在零点,如果存在,请求出. ①f (x )=-x 2-4x -4. ②f (x )=4x +5. ③f (x )=log 3(x +1).解析:(1)由图观察,A 中图象与x 轴没有交点,所以A 中函数没有零点.(2)①令-x 2-4x -4=0,解得x =-2,所以函数的零点为x =-2.②令4x +5=0,则4x =-5<0,即方程4x +5=0无实数根,所以函数不存在零点.③令log 3(x +1)=0,解得x =0,所以函数的零点为x =0.答案:(1)A (2)见解析状元随笔1.由函数图象判断函数是否有零点是看函数的图象与x 轴是否有交点. 2.求函数对应方程的根即为函数的零点. 方法归纳: 函数零点的求法:求函数y =f (x )的零点通常有两种方法:其一是令f (x )=0,根据解方程f (x )=0的根求得函数的零点;其二是画出函数y =f (x )的图象,图象与x 轴的交点的横坐标即为函数的零点.跟踪训练1:若函数f (x )=x 2+x -a 的一个零点是-3,求实数a 的值,并求函数f (x )其余的零点.解析:由题意知f(-3)=0,即(-3)2-3-a=0,a=6.所以f(x)=x2+x-6.解方程x2+x-6=0,得x=-3或2.所以函数f(x)其余的零点是2.由函数f(x)的零点是-3,得f(-3)=0,求a.题型二:确定函数零点的个数(教材P143例1)例2:求方程ln x+2x-6=0的实数解的个数.解析:设函数f(x)=ln x+2x-6,利用计算工具,列出函数y=f(x)的对应值表(表),并画出图象(图).914.1972由表和图可知,f(2)<0,f(3)>0,则f(2)f(3)<0.由函数零点存在定理可知,函数f(x)=ln x+2x-6在区间(2,3)内至少有一个零点.容易证明,函数f(x)=ln x+2x-6,x∈(0,+∞)是增函数,所以它只有一个零点,即相应方程ln x+2x-6=0只有一个实数解.状元随笔可以先借助计算工具画出函数y=ln x+2x-6的图象或列出x,y的对应值表,为观察、判断零点所在区间提供帮助.教材反思:判断函数零点个数的三种方法(1)方程法:若方程f(x)=0的解可求或能判断解的个数,可通过方程的解来判断函数是否存在零点或判定零点的个数.(2)图象法:由f(x)=g(x)-h(x)=0,得g(x)=h(x),在同一坐标系内作出y1=g(x)和y2=h(x)的图象.根据两个图象交点的个数来判定函数零点的个数.(3)定理法:函数y=f(x)的图象在区间[a,b]上是一条连续不断的曲线,由f(a)·f (b)<0即可判断函数y=f(x)在区间(a,b)内至少有一个零点.若函数y=f(x)在区间(a,b)上是单调函数,则函数f(x)在区间(a,b)内只有一个零点.跟踪训练2:(1)函数f(x)=x-x-2的零点个数为()A.0B.1C.2D.3(2)判断函数f(x)=x-3+ln x的零点个数.解析:(1)令f(x)=0得x-x-2=0,设t=x(t≥0),则t2-t-2=0,解得t=2或t=-1(舍).故x=2即x=4,因此方程f(x)=0有一个根4,所以函数f(x)有一个零点.(2)令f(x)=x-3+ln x=0,则ln x=-x+3,在同一平面直角坐标系内画出函数y=ln x与y=-x+3的图象,如图所示:由图可知函数y=ln x,y=-x+3的图象只有一个交点,即函数f(x)=x-3+ln x只有一个零点.答案:(1)B;(2)一个状元随笔思路一:解方程求零点,方程f(x)=0的实数根的个数就是函数f(x)的零点的个数;思路二:画出函数图象,依据图象与x轴的交点的个数来判断函数的零点个数.题型三:判断函数的零点所在的大致区间例3:设x0是函数f(x)=ln x+x-4的零点,则x0所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)解析:因为f(2)=ln2+2-4=ln2-2<0,f(3)=ln3-1>lne-1=0,f(2)·f(3)<0.由零点存在性定理,得x0所在的区间为(2,3).答案:C状元随笔根据零点存在性定理,对照选项,只需验证区间端点函数值的符号,或可借助于图象分析.方法归纳:判断函数零点所在区间的三个步骤:(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.跟踪训练3:函数f(x)=2x-1+x-5的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)解析:f(2)=22-1+2-5<0,f(3)=23-1+3-5>0,故f(2)·f(3)<0,又f(x)在定义域内是增函数,则函数f(x)=2x-1+x-5只有一个零点,且零点所在的区间为(2,3).答案:Cf(x)单调的条件下,利用f(a)·f(b)<0求零点区间.解题思想方法:数形结合思想例:已知关于x的方程|x2-4x+3|-a=0有三个不相等的实数根,则实数a的值是________.解析:如图,由图象知直线y =1与y =|x 2-4x +3|的图象有三个交点, 则方程|x 2-4x +3|=1有三个不相等的实数根,因此a =1. 答案:1反思与感悟:求解这类问题可先将原式变形为f (x )=g (x ),则方程f (x )=g (x )的不同解的个数等于函数f (x )与g (x )图象交点的个数,分别画出两个函数的图象,利用数形结合的思想使问题得解. 三、学业达标(一)选择题1.下列函数不存在零点的是( )A .y =x -1x B .y =2x 2-x -1 C .y =⎩⎨⎧ x +1x ≤0,x -1 x >0D .y =⎩⎨⎧x +1x ≥0,x -1x <0解析:令y =0,得A 中函数的零点为1,-1;B 中函数的零点为-12,1;C 中函数的零点为1,-1;只有D 中函数无零点.答案:D2.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2B .0,12 C .0,-12 D .2,-12解析:∵2a +b =0,∴g (x )=-2ax 2-ax =-ax (2x +1).∴零点为0和-12. 答案:C3.函数f (x )=πx +log 2x 的零点所在区间为( )A .⎣⎢⎡⎦⎥⎤14,12B .⎣⎢⎡⎦⎥⎤18,14C .⎣⎢⎡⎦⎥⎤0,18D .⎣⎢⎡⎦⎥⎤12,1解析:因为f ⎝ ⎛⎭⎪⎫14=π4+log 214<0,f ⎝ ⎛⎭⎪⎫12=π2+log 212>0,所以f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,故函数f (x )=πx +log 2x 的零点所在区间为⎣⎢⎡⎦⎥⎤14,12.答案:A4.已知函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)解析:本题主要考查函数的零点及函数的图象.g (x )=f (x )+x +a 存在2个零点等价于函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0与h (x )=-x -a的图象存在2个交点,如图,当x =0时,h (0)=-a ,由图可知要满足y =f (x )与y =h (x )的图象存在2个交点,需要-a ≤1,即a ≥-1.故选C .答案:C (二)填空题5.函数f (x )=x 2-3x -18在区间[1,8]上________(填“存在”或“不存在”)零点. 解析:方法一:∵f (1)=12-3×1-18=-20<0,f (8)=82-3×8-18=22>0,∴f (1)·f (8)<0, 又f (x )=x 2-3x -18在区间[1,8]上的图象是连续的, 故f (x )=x 2-3x -18在区间[1,8]上存在零点. 方法二:令f (x )=0,得x 2-3x -18=0, ∴(x -6)(x +3)=0. ∵x =6∈[1,8],x =-3∉[1,8],∴f (x )=x 2-3x -18在区间[1,8]上存在零点. 答案:存在6.函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0,-2+ln x ,x >0零点的个数为________.解析:x ≤0时,令x 2+2x -3=0, 解得:x =-3.x >0时,f (x )=ln x -2在(0,+∞)上递增, f (1)=-2<0,f (e 3)=1>0, ∵f (1)f (e 3)<0,∴f (x )在(0,+∞)上有且只有一个零点. 总之,f (x )在R 上有2个零点. 答案:27.已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________. 解析:由题意f (1)·f (0)<0.∴a (2+a )<0.∴-2<a <0. 答案:(-2,0) (三)解答题8.判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x ; (2)f (x )=x 2+2x +4; (3)f (x )=2x -3;(4)f (x )=1-log 3x .解析:(1)令x +3x =0,解得x =-3,所以函数f (x )=x +3x 的零点是-3. (2)令x 2+2x +4=0,由于Δ=22-4×4=-12<0,所以方程x 2+2x +4=0无解,所以函数f (x )=x 2+2x +4不存在零点.(3)令2x -3=0,解得x =log 23,所以函数f (x )=2x -3的零点是log 23. (4)令1-log 3x =0,解得x =3,所以函数f (x )=1-log 3x 的零点是3.9.已知函数f (x )=x 2+3(m +1)x +n 的零点是1和2,求函数y =log n (mx +1)的零点.解析:由题可知,f (x )=x 2+3(m +1)x +n 的两个零点为1和2. 则1和2是方程x 2+3(m +1)x +n =0的两根. 可得⎩⎨⎧1+2=-3m +1,1×2=n ,解得⎩⎨⎧m =-2,n =2.所以函数y =log n (mx +1)的解析式为 y =log 2(-2x +1),要求其零点,令 log 2(-2x +1)=0,解得x =0. 所以函数y =log 2(-2x +1)的零点为0. 尖子生题库:10.已知二次函数f (x )=x 2-2ax +4,在下列条件下,求实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内.解析:(1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在性定理得⎩⎨⎧-2a2-16≥0,f 1=5-2a >0,a >1,解得2≤a <52.即a 的取值范围为⎣⎢⎡⎭⎪⎫2,52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在性定理得f (1)=5-2a <0,解得a >52.即a 的取值范围为⎝ ⎛⎭⎪⎫52,+∞.(3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内,结合二次函数的单调性与零点存在性定理得⎩⎨⎧f 0=4>0,f1=5-2a <0,f6=40-12a <0,f8=68-16a >0,解得103<a <174.即a 的取值范围为⎝ ⎛⎭⎪⎫103,174.【第二学时】一、自主学习知识点一:用二分法求方程的近似解 1.二分法对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.给定精确度ε,用二分法求函数f (x )零点近似值的步骤 第一步:确定闭区间[a ,b ],验证f (a )·f (b )<0,给定精确度ε. 第二步:求区间(a ,b )的中点c . 第三步:计算f (c ).(1)若f (c )=0,则c 就是函数的零点; (2)若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c )); (3)若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b )).第四步:判断是否达到精确度ε,即若|a -b |<ε,则得到零点近似值a (或b ),否则重复第二步至第四步.状元随笔二分就是将所给区间平均分成两部分,通过不断逼近的办法,找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.知识点二:常见的增长模型 1.线性函数模型线性函数模型y =kx +b (k >0)的增长特点是直线上升,其增长速度不变.2.指数函数模型能利用指数函数(底数a>1)表达的函数模型叫指数函数模型.指数函数模型的特点是随自变量的增大,函数值的增长速度越来越快,常形象地称为指数爆炸.3.对数函数模型能用对数函数(底数a>1)表达的函数模型叫做对数函数模型,对数函数增长的特点是随自变量的增大,函数值增长速度越来越慢.4.幂函数模型幂函数y=x n(n>0)的增长速度介于指数增长和对数增长之间.状元随笔函数模型的选取(1)当描述增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型.(3)幂函数模型y=x n(n>0)则可以描述增长幅度不同的变化,n值越小(n≤1)时,增长较慢;n值较大(n>1)时,增长较快.教材解难:教材P149思考因为人口基数较大,人口增长过快,与我国经济发展水平产生了较大矛盾,所以我国从20世纪70年代逐步实施了计划生育政策.因此这一阶段的人口增长条件并不符合马尔萨斯人口增长模型的条件,自然就出现了依模型得到的结果与实际不符的情况.基础自测:1.以下每个图象表示的函数都有零点,但不能用二分法求函数零点近似值的是()解析:根据二分法的基本方法,函数f(x)在区间[a,b]上的图象连续不断,且f(a)·f (b)<0,即函数的零点是变号零点,才能将区间[a,b]一分为二,逐步得到零点的近似值.对各图象分析可知,选项A、B、D都符合条件,而选项C不符合,因为图象在零点两侧函数值不异号,因此不能用二分法求函数零点的近似值.答案:C2.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为()A.0.6B.0.75C.0.7D.0.8解析:已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72].又0.68=0.64+0.722,且f(0.68)<0,所以零点在区间[0.68,0.72]上,因为|0.68-0.72|=0.04<0.1,因此所求函数的一个正实数零点的近似值约为0.7,故选C.答案:C3.某同学最近5年内的学习费用y(千元)与时间x(年)的关系如图所示,则可选择的模拟函数模型是()A.y=ax+bB.y=ax2+bx+cC.y=a·e x+bD.y=a ln x+b解析:由散点图和四个函数的特征可知,可选择的模拟函数模型是y=ax2+bx+c.答案:B4.已知函数y=f(x)在区间(2,4)上连续,验证f(2)·f(4)<0,取区间(2,4)的中点x1=2+42=3,计算得f(2)·f(x1)<0,则此时零点所在的区间为________.解析:∵f(2)·f(3)<0,∴零点在区间(2,3)内.答案:(2,3)二、素养提升题型一:二分法概念的理解[经典例题]例1:(1)下列函数中,必须用二分法求其零点的是()A.y=x+7B .y =5x -1C .y =log 3xD .y =⎝ ⎛⎭⎪⎫12x -x(2)下列函数图象与x 轴均有交点,其中不能用二分法求图中函数零点的是( )解析:(1)(2)利用二分法求函数零点必须满足零点两侧函数值异号.在B 中,不满足f (a )·f (b )<0,不能用二分法求零点,由于A 、C 、D 中零点两侧函数值异号,故可采用二分法求零点.答案:(1)D ;(2)B状元随笔(1)在无法通过解方程f (x )=0求出方程根的情况下,需用二分法求函数的零点.(2)可以用二分法求出的零点左右函数值异号. 方法归纳: 二分法的适用条件:判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.跟踪训练1:用二分法求方程2x +3x -7=0在区间[1,3]内的根,取区间的中点为x 0=2,那么下一个有根的区间是________.解析:设f (x )=2x +3x -7,f (1)=2+3-7=-2<0,f (3)=10>0,f (2)=3>0,f (x )零点所在的区间为(1,2),所以方程2x +3x -7=0有根的区间是(1,2).答案:(1,2)状元随笔先构建函数f (x )=2x +3x -7,再判断f (1),f (2),f (3)的符号,寻找函数值与f(2)异号的自变量.题型二:用二分法求函数零点的近似值例2:用二分法求函数f(x)=x3-x-1在区间[1,1.5]内的一个零点.(精确度0.01)解析:经计算f(1)<0,f(1.5)>0,所以函数在[1,1.5]内存在零点x0.取(1,1.5)的中点x1=1.25,经计算f(1.25)<0,因为f(1.5)·f(1.25)<0,所以x0∈(1.25,1.5),因为|1.328125-1.3203125|=0.0078125<0.01,所以函数f(x)=x3-x-1精确度为0.01的一个近似零点可取为1.328125.状元随笔方程x3-x-1=0的正解对应函数f(x)=x3-x-1的图象与x轴正半轴交点的横坐标,确定出解的初始区间,利用二分法求出近似解.方法归纳:(1)用二分法求函数零点的近似值应遵循的原则①需依据图象估计零点所在的初始区间[m,n](一般采用估计值的方法完成).②取区间端点的平均数c,计算f(c),确定有解区间是[m,c]还是[c,n],逐步缩小区间的“长度”,直到区间的两个端点符合精确度要求,终止计算,得到函数零点的近似值.(2)二分法求函数零点步骤的记忆口诀定区间,找中点,中值计算两边看.同号丢,异号算,零点落在异号间.重复做,何时止,精确度来把关口.跟踪训练2:利用计算器求方程x2-2x-1=0的正解的近似值(精确度0.1).解析:设f(x)=x2-2x-1.∵f(2)=-1<0,f(3)=2>0,又f(x)在(2,3)内递增,∴在区间(2,3)内,方程x2-2x-1=0有唯一实数根,记为x0.取区间(2,3)的中点x1=2.5,∵f(2.5)=0.25>0,∴x0∈(2,2.5).再取区间(2,2.5)的中点x2=2.25,∵f(2.25)=-0.4375<0,∴x0∈(2.25,2.5).同理可得,x0∈(2.375,2.5),x0∈(2.375,2.4375).∵|2.375-2.4375|=0.0625<0.1,故方程x2-2x-1=0的一个精确度为0.1的近似正解可取为2.4375.状元随笔本题用求根公式可以求得x1=1+2,x2=1-2,取精确到0.1的近似值是x1≈2.4,x2≈-0.4.这与用二分法所得结果相同.题型三:函数模型的选择问题(教材P152例6)例3:某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?【解析】借助信息技术画出函数y=5,y=0.25x,y=log7x+1,y=1.002x的图象(图1).观察图象发现,在区间[10,1000]上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.图1下面通过计算确认上述判断.先计算哪个模型的资金总数不超过5万元.对于模型y=0.25x,它在区间[10,1000]上单调递增,而且当x=20时,y=5,因此,当x>20时,y>5,所以该模型不符合要求;对于模型y=1.002x,由函数图象,并利用信息技术,可知在区间(805,806)内有一个点x0满足1.002x0=5,由于它在区间[10,1000]上单调递增,因此当x>x0时,y>5,所以该模型也不符合要求;对于模型y=log7x+1,它在区间[10,1000]上单调递增,而且当x=1000时,y=log71000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x∈[10,1000]时,是否有y≤0.25x,即log7x+1≤0.25x成立.令f(x)=log7x+1-0.25x,x∈[10,1000],利用信息技术画出它的图象(图2).图2由图象可知函数f(x)在区间[10,1000]上单调递减,因此f(x)≤f(10)≈-0.3167<0,即log7x+1<0.25x.所以,当x∈[10,1000]时,y≤0.25x,说明按模型y=log7x+1奖励,奖金不会超过利润25%.综上所述,模型y=log7x+1确实能符合公司要求.状元随笔本例提供了三个不同增长方式的奖励模型,按要求选择其中一个函数作为刻画奖金总数与销售利润的关系.由于公司总的利润目标为1000万元,所以销售人员的销售利润一般不会超过公司总的利润.于是,只需在区间[10,1000]上,寻找并验证所选函数是否满足两条要求:第一,奖金总数不超过5万元,即最大值不大于5;第二,奖金不超过利润的25%,即y≤0.25x.不妨先画出函数图象,通过观察函数图象,得到初步的结论,再通过具体计算,确认结果.教材反思数学知识来源于客观实际,服务于实际问题.数学是人们认识世界、改造世界的工具,其中函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要不同的函数模型来描述.面临一个实际问题,选择合适的数学模型是一件非常重要的事情,根据三种不同的增长模型的特点,选择符合自己的模型,才能产生更大的经济效益.跟踪训练3:某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质量好、款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受订单不至于过多或过少,需要估计以后几个月的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人.假如你是厂长,就月份x ,产量为y 给出三种函数模型:y =ax +b ,y =ax 2+bx +c ,y =ab x +c ,你将利用哪一种模型去估算以后几个月的产量?解析:由题意,将产量随时间变化的离散量分别抽象为A (1,1),B (2,1.2),C (3,1.3),D (4,1.37)这4个数据.(1)设模拟函数为y =ax +b 时,将B ,C 两点的坐标代入函数式,得⎩⎨⎧3a +b =1.3,2a +b =1.2,解得⎩⎨⎧a =0.1,b =1. 所以有关系式y =0.1x +1.由此可得结论为:在不增加工人和设备的条件下,产量会每月上升1000双,这是不太可能的.(2)设模拟函数为y =ax 2+bx +c 时,将A ,B ,C 三点的坐标代入函数式,得⎩⎨⎧a +b +c =1,4a +2b +c =1.2,9a +3b +c =1.3,解得⎩⎨⎧a =-0.05,b =0.35,c =0.7.所以有关系式y =-0.05x 2+0.35x +0.7.结论为:由此法计算4月份的产量为1.3万双,比实际产量少700双,而且由二次函数性质可知,产量自4月份开始将每月下降(图象开口向下,对称轴为x =3.5),不合实际.(3)设模拟函数为y =ab x +c 时,将A ,B ,C 三点的坐标代入函数式,得⎩⎨⎧ab +c =1,①ab 2+c =1.2,②ab 3+c =1.3.③由①,得ab =1-c ,代入②③,得⎩⎨⎧b 1-c +c =1.2,b 21-c +c =1.3.则⎩⎪⎨⎪⎧c =1.2-b 1-b ,c =1.3-b 21-b 2,解得⎩⎨⎧b =0.5,c =1.4.则a =1-cb =-0.8.所以有关系式y =-0.8×0.5x +1.4.结论为:当把x =4代入得y =-0.8×0.54+1.4=1.35.比较上述三个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,如:增产的趋势和可能性.经过筛选,以指数函数模拟为最佳,一是误差小,二是由于厂房新建,随着工人技术和管理效益逐渐提高,一段时间内产量会明显上升,但经过一段时间之后,如果不更新设备,产量必然趋于稳定,而该指数函数模型恰好反映了这种趋势.因此选用指数函数y=-0.8×0.5x+1.4模拟比较接近客观实际.通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型.题型四:三类函数图象综合运用例4:判断方程2x=x2有几个实根.解析:设y1=x2,y2=2x,作出这两个函数的图象,由图象知,方程一定有一个负根,当x >0时,开始y1=x2在y2=2x图象的下方,但此时由于y1=x2比y2=2x增长的速度快,所以存在x0当x>x0时,y1=x2的图象就会在y2=2x的上方,故此时产生一个实根x0,但最终还是y2=2x比y1=x2增长得快,故存在x1,当x>x1时,y2=2x的图象又在y1=x2的上方,故又产生一个实根x1,以后就永远是y2=2x比y1=x2增长得快了,故再没有实根了,故此方程有三个实根.状元随笔(1)根据指数函数与幂函数增减得快慢以及图象的上下位置判断出是否有实根.(2)对于较复杂的方程根的个数问题,利用数形结合法较为方便,其解题步骤为:①先设出两个可画图象的函数;②画出两个函数的图象;③由图象观察,其交点横坐标的个数即为方程实数解的个数.方法归纳:由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.跟踪训练4:函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.(1)指出曲线C 1,C 2分别对应哪一个函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f (x ),g (x )的大小进行比较). 解析:(1)由题图知,C 1对应的函数为g (x )=0.3x -1,C 2对应的函数为f (x )=lg x . (2)当x ∈(0,x 1)时,g (x )>f (x ); 当x ∈(x 1,x 2)时,g (x )<f (x ); 当x ∈(x 2,+∞)时,g (x )>f (x ). f (x )=lg x 图象是曲线. g (x )=0.3x -1图象是直线. 三、学业达标(一)选择题1.用二分法求如图所示函数f (x )的零点时,不可能求出的零点是( )A .x 1B .x 2C .x 3D .x 4解析:观察图象可知:零点x 3的附近两边的函数值都为负值,所以零点x 3不能用二分法求出.答案:C2.已知图象连续不断的函数y =f (x )在区间(0,0.1)上有唯一零点,如果用“二分法”求这个零点(精确度0.01)的近似值,则应将区间(0,0.1)等分的次数至少为( )A .3B .4C .5D .6解析:由0.12n <0.01,得2n >10, 所以n 的最小值为4.故选B . 答案:B3.若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如表:那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为()A.1.2B.1.3C.1.4D.1.5解析:由表知f(1.438)>0,f(1.4065)<0且在[1.4065,1.438]内每一个数若精确到0.1都是1.4,则方程的近似根为1.4.答案:C4.如图所示给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是()A.指数函数:y=2t B.对数函数:y=log2tC.幂函数:y=t3D.二次函数:y=2t2解析:由散点图可知,与指数函数拟合最贴切,故选A.答案:A(二)填空题5.用二分法求函数f(x)在区间[0,2]上零点的近似解,若f(0)·f(2)<0,取区间中点x1=1,计算得f(0)·f(x1)<0,则此时可以判定零点x0∈________(填区间).解析:由二分法的定义,根据f(0)f(2)<0,f(0)·f(x1)<0,故零点所在区间可以为(0,x1).答案:(0,x 1)6.据报道,青海湖水在最近50年内减少了10%,如果按此规律,设2013年的湖水量为m ,从2013年起,过x 年后湖水量y 与x 的函数关系是________.解析:设湖水量每年为上年的q %, 则(q %)50=0.9,所以q %=0.9150,所以x 年后湖水量y =m ·(q %)x =m ·0.950x .答案:y =0.950x ·m7.已知二次函数f (x )=x 2-x -6在区间[1,4]上的图象是一条连续的曲线,且f (1)=-6<0,f (4)=6>0,由函数零点的性质可知函数在[1,4]内有零点,用二分法求解时,取(1,4)的中点a ,则f (a )=________.解析:显然(1,4)的中点为2.5,则f (a )=f (2.5)=2.52-2.5-6=-2.25. 答案:-2.25 (三)解答题8.用二分法求方程x 2-5=0的一个近似正解.(精确度为0.1)解析:令f (x )=x 2-5,因为f (2.2)=-0.16<0,f (2.4)=0.76>0, 所以f (2.2)·f (2.4)<0,即这个函数在区间(2.2,2.4)内有零点x 0, 取区间(2.2,2.4)的中点x 1=2.3,f (2.3)=0.29,因为f (2.2)·f (2.3)<0,所以x 0∈(2.2,2.3),再取区间(2.2,2.3)的中点x 2=2.25,f (2.25)=0.0625,因为f (2.2)·f (2.25)<0,所以x 0∈(2.2,2.25),由于|2.25-2.2|=0.05<0.1,所以原方程的近似正解可取2.25.9现有如下5个模拟函数:①y =0.58x -0.16;②y =2x -3.02;③y =x 2-5.5x +8;④y =log 2x ;⑤y =⎝ ⎛⎭⎪⎫12x +1.74.请从中选择一个模拟函数,使它比较近似地反映这些数据的规律. 解析:画出散点图如图所示.由图可知,上述点大体在函数y=log2x上(对于y=0.58x-0.16,可代入已知点验证不符合),故选择y=log2x可以比较近似地反映这些数据的规律.尖子生题库:10.用二分法求方程ln x=1x在[1,2]上的近似解,取中点c=1.5,求下一个有根区间.解析:令f(x)=ln x-1 x,f(1)=-1<0,f(2)=ln2-12=ln2e>ln1=0,f(1.5)=ln1.5-23=13(ln1.53-2).因为1.53=3.375,e2>4>1.53,故f(1.5)=13(ln1.53-2)<13(lne2-2)=0,f(1.5)f(2)<0,下一个有根区间是[1.5,2].。

相关文档
最新文档