大数据电商个性化推荐系统分析.docx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要现阶段,大数据技术被广泛应用到多个行业,尤其是大数据带来的个性化推荐服务系统,在电子商务行业得到了普及并且取得了卓越成绩。
本文针对大数据背景下电子商务个性化推荐服务系统实施基础工作进行了具体阐述,以期促进电子商务服务个性化与智能化的发展实践。
关键词大数据;电子商务;个性化推荐当前,电子商务在各个行业领域的广泛应用,针对基于大数据的个性化信息推荐的服务模式也受到了学者的高度关注。
电子商务类网站除了可以为用户提供商品与服务,并且也增加了消费者在大量信息中快速、精准搜索到符合其要求的产品信息难度。
在大数据技术应用中个性化信息推荐功能可以随时、主动向用户推荐其所需求的商品和服务,不仅充分满足了用户对个性化消费需求,还在电子商务网站增加其消费者粘性、提升其服务品质以及市场竞争力等方面有着积极推进作用。
相关基础理论大数据的定义。
大数据,表示在新处理方法下可以使其决策能力、洞察外界环境变化能力和流程优化能力的大批量、高增长率等方面表现更佳,大数据在对大批量信息的获取以及对这些数据进行重新分配中提高其应用效率,大数据的具体分类如表1所示。
大数据的特征。
大数据的特征可以总结为4,具体为、、、。
用来解释数据规模较大,现有的数据规模级用来表示,而这一数据单位将会给其它更大的单位所取代,在这里面非结构化的数据会占有非常大的比例。
表述数据类型丰富,从阅读的题目、图片到消费历史再到网络日志等,都可以划分到大数据内容范畴之内。
用来解释价值密度,比如视频在连续的监控中有价值的数据寥寥无几。
用来解释操作效率,针对数据的操作环节这一过程非常迅速,中间的计算环节所需时间非常少,大数据和传统数据的明显区别在于大数据可以通过传统手段对数据进行保存、分析与整理。
电子商务个性化推荐服务的黎超广东白云学院社会与公共管理学院广州510450基金项目2012年广东省哲学社会科学十二五规划项目生命周期视角下的广东中小企业发展研究项目编号1202中图分类号713文献标识码内容摘要现阶段,大数据技术被广泛应用到多个行业,尤其是大数据带来的个性化推荐服务系统,在电子商务行业得到了普及并且取得了卓越成绩。
本文针对大数据背景下电子商务个性化推荐服务系统实施基础工作进行了具体阐述,以期促进电子商务服务个性化与智能化的发展实践。
关键词大数据电子商务个性化推荐定义。
电子商务个性化推荐系统即针对各种消费群体的不同需求为其提供针对性服务,或者电商企业主动结合消费者上网习性的异同为其
提供专业的服务,为消费者创建一个高品质的购物平台。
个性化内容推荐系统构建在消费者对内容的应用习惯上,满足消费者对个性化内容需求的服务。
研究消费的信息应用偏好可以精确地为消费者提供信息服务,推进个性化信息内容服务业务的展开。
电子商务个性化推荐服务的特征。
电子商务个性化推荐服务系统是围绕消费者需求来展开的,其主要特征如下一是服务内容针对性显著。
个性化推荐服务针对性较为显著,能够满足各种消费者的不同需求,同时还可以与消费者实施信息内容交换操作,也就是消费者可以主动为信息提供方提出自身需求,同时还可以对其所接受的服务展开评分操作。
上述信息内容交换模式对信息提供方不断更新以及改进其服务形式有着积极推进作用,使其所提供的服务更大程度满足消费者的个性化需求。
二是服务内容多样化。
客户群体还可以结合自身需要设定信息内容服务形式与信息内容获取时间,电商企业可以结合消费群体这种自定义模式为其呈现出相对应的信息内容服务。
客户群体在信息内容接收模式上主要包括-、音频或者视频等。
除此之外,个性化信息内容服务使得消费者仅仅通过网络就可以随时随地享受个性化服务。
三是服务具有主动性与时效性。
个性化信息内容服务可以主动为客户群体提供服务,为客户群体实时推送最新资讯,保证为客户群体所推送的资讯有着非常强的时效性。
四是服务的智能性。
个性化信息内容服务具备较为显著的智能性特点,其可以根据消费群体的浏览轨迹实时刷新,为客户群体传送最新的个性化内容,并且为客户群体推送的内容都是满足客户群体消费需求的。
五是电子商务个性化推荐服务的意义。
对于客户群体来讲,电子商务个性化推荐可以提高消费者对所需产品的浏览效率,为消费者节省大量时间;关于内容提供对象来讲,电子商务个性化推荐系统可以保持消费者粘性和规模,利用节约时间来保证消费者的访问量,让消费者在短时间内获取更多产品内容,进而保证产品的销售业绩。
随着大数据的应用,电子商务个性化推荐服务系统越来越成熟,不仅提高了电子商务类企业的市场效益,并且也丰富了其信息内容服务模式,为其服务模式有效开展提供发展平台。
主要技术应用一协同过滤方法。
协同过滤主要应用于识别某个既定客户可能感兴趣的商品,其分析依据主要是根据其他消费群体对这些产品的感兴趣程度。
协同过滤方法可以利用对既定消费群体所感兴趣的产品进行研究来辨认某个消费者的所感兴趣的商品。
在电子商务领域该方法受到了技术人员的高度认可,基于某个客户群体的同类消费群体倾向的商品来分析和预测该消费群体可能感兴趣的商品。
该技术是建立在内容这一前提条件下的,其和直接分析手段有着明显区分,系统过滤技术可以在大规模的客户群体中找出和既定客户群体有着相同偏好的消费者客户,并且将这类相同客户群体对某个产品的评论进行整理并剖析,可以直接剖析出这一消费者客户的购物倾向,并且对该消费者客户关于某个产品的感兴趣程度进行精准推测。
当今,越来越多的电子商务公司利用该方法来提高其销售平台的服务水平与服务质量,该方法优势与不足如表2所示。
二客户群体建模技术。
成立高质量的消费者模型对于提升个性化信息内容推荐效率有着不容忽视的作用,为了保证该模型的实用性,可以在消费者感兴趣的信息资料中提炼出相关属性,通过建模方法并对消费者倾向的产品进行管理。
电子商务个性化推荐内容服务是在互联网环境中开展的,该模型和简单的描述性模型有着明显区分,其有着附带相关数据结构模式的功能。
该模型的更新数据服务功能建立在消费者对产品的查找上,如此一来便可以为消费者提供定向、高效率服务。
该模型的刷新主要包括两种模式其一为直接刷新,利用消费者对系统给出的推送产品进行回馈刷新模型,对消费者购物行为产生直接