《信号检测与估计》复习纲要与复习题参考答案
《信号检测与估计》第九章习题解答

T x 2 (t )dt −2 A
0
Tx(t
0
)sin
(ω
0
t
+θ
)dt
+
A
2
T 0
sin
2
(ω
0
t
+θ
)dt
⎟⎞ ⎠
由于 ∫0Tsin 2 (ω0t
+ θ )dt
=
1 2
∫0T(1 − cos 2(ω0t
+ θ ))dt
=
T 2
,得到
( ) ∫ ∫ f
x A,θ
−1
= Fe N0
T x 2 (t )dt 2 A
ω0
ω0
s(t
)
=
⎪ ⎨
A
⎪
⎪ ⎪⎩
A(1
+
cos
ω0t)
− 2mπ < t ≤ 2mπ
ω0 2mπ
<t
≤
(2ωm0 +1)π
ω0
ω0
试证明时延τ
的无偏估计量的方差为
σ
2 τˆ
≥
3 + 4m
(2E / N0 )ω02
。其中 E 为信号能量。
解:略
9.4 接收信号 x(t) = s(t) + n(t),s(t)的到达有时延τ ,求时延τ 的无偏估计量τˆ 的最小方差。其中 n(t)
⎤ ⎥⎦
∫ ∫ ∫ ∫ [ ] = 4
N
2 0
T / 2 ∂s(t −τ )
−T / 2 ∂τ
T /2
E
−T / 2
n(t )n(u )
∂s(u −τ ) dudt
《信号检测与估计》第十章习题解答

《信号检测与估计》第十章习题解答10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()ττ-e =S R ,()ττ-2e=N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。
解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即()()()()+⎦⎤⎢⎣⎡−⋅⋅=s B s P s B s H xs w112opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。
考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率谱。
对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。
()t s 的复功率谱为()()()20s -10s 1-s --121111e e e e s s s d d d s P S −=−++=+==∫∫∫∞−+∞++∞∞−τττττττ ()t n 的复功率谱为()2s -2-44e es d s P N −==∫+∞∞−τττ因此,观测数据的复功率谱为()()()()()()()()()s s s s ss ss s P s P s P N S X −+−++=−+−=+=2211-226441122 取12=w σ()()()()s s ss B +++=2126()()()()()()()()()s s s s s s s s B s P s B s P N xs +=−==1-2-262-2-1-2612--2令()()()s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。
要求()τf 是因果的,可将s 平面右半平面的极点扔掉,()()()[]12e 61,e Re e21-s s +=−==∫τττπτs F s ds s F jf C给()τf 取因果,并做拉普拉斯变换,得到()s d s F +⋅+=⋅⋅+=∫∞++11126e e 1260s --τττ()()()()()()())()()122261112626211112opt +++=+×+×+++×=⎦⎤⎢⎣⎡−⋅⋅=+ss ss s s s B s P s B s H xs wσ10.2 设已知()()()n n n s n x +=,以及()()()z z z G S 4.014.0192.01−−=−,()1=z G N ,()0=z G sn ()n s 和()n n 不相关。
信号检测估计复习资料

信号检测估计复习资料第二章随机信号及其统计描述1.两个随机过程不相关一定独立。
()2.严格的平稳随机过程不一定是宽平稳随机过程。
()3.平稳随机过程的功率谱密度与自相关函数是一对傅里叶变换。
()4.白噪声是一种理想化模型,在实际中是不存在的。
()5.功率谱密度是样本函数x在单位频带内在1欧姆电阻上的平均功率值。
()6.加性噪声按功率谱密度分为()噪声和()噪声。
7.有色噪声的功率谱密度在频率范围内是均匀分布的。
()8.对于白噪声下面哪个量是均匀分布的()。
A.噪声电压B.噪声电流C.噪声功率D.噪声功率谱密度9.在信号检测与估计理论中,通信接收机中的噪声可以近似为平稳随机过程。
()第三章经典检测理论1.什么是二元检测,其本质是什么?画出其理论模型。
2.二元检测中有两类错误的判决概率,两类正确判决概率。
( )3.下面哪种概率是虚警概率()。
A.P(D0|H0)B.P(D1|H0)C.P(D1|H1)D. P(D0|H1)4.二元检测中有先验概率和后验概率,P(H0)是()概率,P (H0|x)是()概率。
5.下面哪个为后验概率密度函数()。
A.f(x|H0)B.f(x|H1,a)C.f(a|x)D.f(a)6.经典检测理论中常用的4个检测准则分别为()、()、()和()。
7.最大后验概率准则和最小错误概率准则判决公式是不同的。
()8.最大后验概率准则为何称为理想观测者准则?9.极大极小风险准则是在先验概率未知的情况下,使可能出现的最大风险达到极小的判别准则。
()10.Neyman-Pearson准则规定,在给定( )概率情况下,使得()概率尽可能大。
11.最大后验估计和最大似然估计的使用条件。
12.下面哪种判决准则是时平均风险最小的准则()。
A.最大后验概率准则B.最小错误概率准则C.Bayes准则D.Neyman-Pearson准则13.当先验概率未知和代价函数均未知时,使用的判决准则是Neyman-Pearson准则。
信号检测与估计理论(复习题解)-精选文档

a ba 0 图 2. 1 (b)
ab y
2 b y x
2 2 y 4 x
第2章 信号检测与估计理论的基础知识 例题解答
例 2 . 3 设连续随机信号 x ( t ) a cos( t ), 其振幅 a 和频率 已知 相位 在 [ , ) 范围内均匀分布。分析 该信号的广义平稳 并求其自 差函数 。 解 : 分析该信号是否满足广 义平稳的条件。 信号的均值 ( t ) E a cos( t ) a cos( t ) p ( ) d x
2 1 ( y b ) / 2 1 x p ( y ) exp 2 2 2 2 2 x x 1 2
2 1 y ( 2 b ) x exp 2 2 8 8 x x 1 2
二. 离散随机信号矢量
1. 概率密度函数描述 。 2. 统计平均量:均值矢量 , 协方差, 协方差矩阵。 3. 各分量之间的互不相关 性和相互统计独立性及 关系。 4. 高斯离散随机信号矢量 的概率密度函数及特 点: x ~ N ( μ , C ), 互不相关等价于相互统 计独立 , 独立同分布 x x
E ( x b ) b
y
2 y
2 2 22 E ( y b ) E ( x b b ) E ( x 0 ) a / 6
第2章 信号检测与估计理论的基础知识 例题解答
当 a b 2 a 时, p ( y ) 的函数曲线如图 2 . 1 (b)所示 。 p ( x) p( y ) 1/ a 1/ a
第 1章
信号检测与估计概论
信号检测与估计试题及答案

(1). 若 为常数,求 的最大似然估计。
ˆ 1 N ln xiБайду номын сангаасN i 1
(2). 判断 的最大似然估计是否是有效估计? 因为
ˆ HX B ,其中 H C M N , B C M 1
(1). 用最小均方误差准则确定矩阵 H , B 。 (用 , x 的一阶和二阶统计量表 示。 )
H cov( , x ) cov1 ( x , x ) B E ( ) cov( , x ) cov 1 ( x , x ) E ( x)
2 ) ,做 H1 判决,反之做 H 0 判决。 ln 2 3
2
4. 求解下列问题 (1). 什么是序贯检测?
A1 , D1 ( x) A0 , D0 other , more obervation
(2). 对二元检测 P D1 H 0 , P D0 H1 若,推导瓦尔特序贯检测的门
1 (2). 若是线性调频信号, 即 s1 (t ) A1 cos(1t t 2 ) 0 t T , 2 / 1 T , 2
是常数,再求 Pe 结果相同。
3. 设有两种假设分别为:
H 0 : P0 ( x)
x2 1 exp 2 2 2 1 x A, A 0 H1 : P 1 ( x) 2 A 0 x >A
(2). ˆ 是否无偏
是无偏估计。
7. 求解下列问题。 (1). 什么是卡尔曼滤波,写出卡尔曼滤波的状态方程,观测方程和滤波方程
《信号检测与估计》第十二章习题解答

《信号检测与估计》第十二章习题解答12.1 采用下式给出的有偏自相关函数的定义,并加窗,得到BT 谱估计器:()()()()()()⎪⎩⎪⎨⎧−−−−−=−+=+=∑∗1,,2,11ˆ1,,1,01ˆL L N N m m R N m m n x n x N m R X X ()⎪⎩⎪⎨⎧−≤=其它011N m m W N()()()()∑−−−=−⋅⋅=11e ˆˆN N m m j X N X m R m W G ωω证明该BT 估计器与周期图相同。
解:()()()()()()()()()()()()()()()()()211111111e 1e e 1e e 1e 1e ˆˆωωωωωωωωj N N m n m j nj N N m nj n m j N N m m j N N N m m j X N XX N m n x n x N m n x n x N m n x n x N m W m R m W G =⋅+⋅⋅=⋅⋅+=⋅⎥⎦⎤⎢⎣⎡+⋅=⋅⋅=∑∑∑∑∑∑∑−−−=+−−∗−−−=−+−∗−−−=−∗−−−=− 12.2 设自相关函数()3,2,1,0,==m m R m X ρ。
试用Levinson-Durbin 递推法求解AR (3)模型参量。
解: ()()ρ−=−=0111X X R R a 110=a()()221121101ρσ−=⋅−=X R a ()()012211122=+−=σX X R a R a ρ−=⋅+=11221121a a a a ()2212222211ρσσ−=⋅−=a因此模型为一阶 ()()[]()012322222133=⋅+−=σX X X R a R a R a021332232=⋅+=a a a aρ−=⋅+=22332131a a a a()2222332311ρσσ−=⋅−=a 所以模型为()()()n w n x n x +−=1ρ12.3 设5=N 的数据记录为:10=x ,21=x ,32=x ,43=x ,54=x ,AR 模型的阶数3=p 试用Levinson-Durbin 递推法求模型参量。
《信号检测与估计》第四章习题解答

(3sinω0T
−
2sin3ω0T
)
则判决规则变为
H1
I
> <
β
H0
两种错误判决的概率分别为
+∞
∫ P(D1 | H0 ) = β f (I | H0 )dI
《信号检测与估计》习题解答
β
∫ P(D0 | H1) = −∞ f (I | H1)dI
平均错误概率 Pe 为
∫ ∫ Pe
= P(H0 )P(D1 | H0 ) + P(H1)P(D0
T 0
[x(t
)−
B
cos(ω2t
+φ
)]2
dt
《信号检测与估计》习题解答
( ) ( ) ( ) f xH0 =
1
∫ − 1
e N0
T 0
[x
(t
)−
s
0
(t
)]2
dt
=
2π σ k
1
∫ − 1
e N0
T 0
[x
(t
)−
A
cos
ω1t
−
B
cos(ω
2
t
+φ
)]2
dt
2π σ k
根据最小差错概率准则有
0 N0
T 2 s2(τ )dτ = 2a2T
0 N0
N0
输出信号
xo (T
)
=
T
∫0
h(t )x(T
−
t )dt
=
∫Ts(T 0
− t)x(T
−
t )dt
=
T
∫0
2 N0
s(τ
)x(τ
《信号检测与估计》第二章习题解答

E[x]
=
0
,
R(t, t
+τ
)
=
R(τ
)
=
a2 2
cos ω0τ
即数学期望与时间无关,自相关函数仅与时间间隔有关,故 X (t) 为广义平稳随机过程
2.7 设有状态连续,时间离散的随机过程 X (t) = sin(2πAt),式中, t 只能取正整数,即 t = 1,2,3,L ,
A 为在区间 (0,1) 上均匀分布的随机变量,试讨论 X (t)的平稳性。
cos
t2
+
1 9
sin
t2
cos t1
=
1 9
+
1 9
sin
t1
+
1 9
cos
t1
+
1 9
sin
t2
+
1 9
cos t2
+
1 9
cos(t1
-
t2
)+
1 9
sin(t1
+
t2
)
2.4 随机过程 X (t)为 X (t) = A cosω0t + B sin ω0t
[ ] [ ] 式中,ω0 是常数,A 和 B 是两个相互独立的高斯随机变量,而且 E[A] = E[B] = 0 ,E A2 = E B2 = σ 2 。
1 ↔ e−aτ u(τ )
jω + a
所以
RX (τ ) = ⎜⎜⎝⎛
1 e− 3
3τ −
1e 3
3τ + 1 e− 22
2τ − 1 e 22
2τ ⎟⎟⎠⎞u(τ )
平均功率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 令 S [s[0], s[1],..., s[ N 1]]T , A ,那么信号模型可以写成如下
1 N 1 x ( n) N n 0 ˆ2 A/ 2 N 1 N 1 1 1 x ( n ) x ( n ) N n 0 N n0
2
8.对于信号模型
A 0 n M 1 s[n] A M n N 1
S T C 1 X 1 S T C 1S N
BLUE 为
x[n]
n 0
N 1
在拉普拉斯分布时,BLUE 并不是最小方差估计量。 b)从题目可以知道, x ~ N ( ,1) 。那么该高斯分布的方差为 var( x ) 1。因此
S I,C I
S T C 1 X 1 BLUE 为 T 1 S C S N
p( x[n] | ) 1 exp 2 ( x[n] ) 2 2 2 1
2
2 在 给定的条件下, x[n] 是相互独立的。均值 具有先验 PDF N ( 0 , 0 ), 2 2 求 的 MMSE 和 MAP 估计量。另外,当 0 0 和 0 时将发生什么情况。
先验已知 P(Hi),i=0,1,„,M-1 是 代价已知 Cij 是 Cij=dij 否 数据PDF已知 是 否 指定先验PDF 是 尝试广义 ML准则(15) 否 否 否 否
是
贝叶斯风险 (5) 否 数据PDF已知 是 否 指定先验PDF 是
P(Hi)=1/M
是
MAP(4)
数据PDF已知 是
否
指定先验PDF 是
是
是 信号参数未知 否 LRT(1) 否 LRT(7) 是 噪声参数未知 信号和噪声 参数未知
线性信号模型
只有未知信号
是 GLRT(6)
是
是 是 LRT(16) 否 线性信号模型 高斯噪声 否
高斯噪声 GLRT(8,11) 噪声IID 线性信号模型 否 Rao(10,13) LMP(14) 是 Rao(21) 白高斯噪声
解:高斯分布的一阶矩和二阶矩为
E[ X ] E[ X 2 ] 2 2
那么
ˆ
1 N 1 x ( n) N n 0
1 x ( n) n 0 N
N 1 2
1 ˆ N
2
x ( n) n 0
Nx[n](n 0,1,, N 1) 具有 PDF
n 0
N 1
1 (2 )
2 1/ 2
2 1 exp 2 x[n] A 2
两边求对数,并分别对 A 和 sigma 求导数,可以得到估计参数的 MLE,如下
2 2 1 N 1 1 N 1 1 N 1 [ A, ] x(n), x(n) x(n) N n 0 N n 0 N n 0
Rao(19)
是 MAP(2)
是 数据PDF已知 是 否 指定先验PDF 是 否 GLRT(17)
GLRT(11) Rao(13)
是 GLRT(18)
ML(2)
二元假设检验的最佳贝叶斯方法
二元假设检验的最佳Neyman-Pearson方法
复合二元假设检验的准最佳方法
如何选择一个检测器-多元信号检测
解: 均值 的后验概率为
p( | X )
p( X | ) p( )
p( X | ) p( )d
N
对于分母来说,为定值,一般不作考虑。故而后验
概率可以写成如下形式
p( | X ) p( X | ) p( ) 1 1 exp 2 2 2 2
2011《信号检测与估计》复习参考题
参数估计部分:
1.基本概念理解:最小方差无偏估计,最佳线性无偏估计,最大似然估计,最小 二乘估计,矩方法估计,最小均方误差估计,最大似然估计,线性最小均方误差 估计,一般(经典)线性模型和贝叶斯线性模型。 2.观测数据为 {x[0], x[1],, x[ N 1]} ,其中 x[n] 是独立同分布的且服从 N (0, 2 ) , 利用下式估计方差 2 ,即
解:从题目可以知道,似然函数为
N
P(T ; ) exp( Tn )
n 1
N exp( Tn )
n 1
N
两边取对数
L(T , ) ln P(T ; ) N ln Tn
n 1
N
求导数
L(T , ) N N Tn 0 n1
2011《信号检测与估计》复习纲要
“信号检测与估计” 理论是现代信息科学的一个重要组成部分, 它是把所要处理的问题, 归纳为一定的“数学模型”→运用“概率论” 、 “随机过程” 、 “数理统计”等数学工具→以普 遍化的形式提出,以寻求普遍化的答案和结论,并且理论与工程实践相结合,以雷达系统、 通信系统、声纳系统为主要研究对象,主要内容包括: 随机信号与噪声理论(The Theory of Random Signals and Noise)——分析随机信号与噪声 的数学工具 统计判决(检测)理论(Statistical Decision Theory)——研究在噪声干扰背景中,所关 心的信号是属于哪种状态的最佳判决问题(Detection of Signals in Noise) 参量估计理论(Estimation Theory of Signal Parameters)——研究在噪声干扰背景中, 通 过 对 信 号 的 观 测 , 如 何 构 造 待 估 计 参 数 的 最 佳 估 计 量 问 题 (Estimation of Signal Parameters) 滤波理论(Filtering Theory)——为了改善信号质量,研究在噪声干扰中所感兴趣信号波 形的最佳恢复问题,或离散状态下表征信号在各离散时刻状态的最佳动态估计问题 (Estimation of Signal Waveform) 复习重点:信号检测与参量估计 信号检测:根据有限观测, “最佳”区分一个物理系统不同状态的理论 参量估计:根据有限观测, “最佳”找出一个物理系统不同参数的理论
求两种情况下均值 的 BLUE。解释一下 的 MVU 估计。
解 : a ) 从 题 目 可 以 知 道 , x ~ Laplace( ,1) 。 那 么 该 拉 普 拉 斯 分 布 的 方 差 为
var( x)
2
2
2 /1 2 。因此 S I , C 2I (S 为比例项,C 为协方差)
1 ( MA ( N M ) A) A N 2 ˆ ) 1 M 2 N M 2 Var ( A N N ˆ) E( A
ˆ ~ N ( A, 由此可见 A
2
N
)。
9.如果 N 个 IID 观测 {x[0], x[1],, x[ N 1]} 服从 N (, 2 ) ,求 [ , 2 ]T 的矩方 法估计量。
S H
其中 H 为观测矩阵,且 H 那么
1M T , 1M 表示 M 维 [1,1,1...,1] 。 1 N M
( H T H )1 ( M N M )1
1 N
ˆ ˆ ( H T H )1 H T x 则 A
最小 LS 误差为
如何选择一个估计量&估计量选择的决策过程
信号处理 问题
是 是一个多维问题 否 先验知识 否 是 是 先验知识 否 新的数据模型或取 更多的数据 否 是
PDF已知 是 满足CRLB 否 完备充分统计量 存在 否 计算MLE 否 计算矩法估计量 否 是 是
否
噪声中的信号 是
否 PDF已知
否 前二阶矩已知 否 是 MMSE 估计量
否
ML(4)
多元假设检验的最佳贝叶斯方法
*注:
ARMA:自回归滑动平均 BLUE:最佳线性无偏估计 CFAR:恒虚警率 CRLB :Cramer-Rao 下限 EM:数学期望最大化 GLRT:广义似然比检验 IID:独立同分布 LLR:对数似然比 LMMSE:线性最小均方误差 LMP:局部最大势 LRT:似然比检验 LSE:最小二乘估计 LSI:线性时不变 MAP:最大后验概率 MLE:最大似然估计 MMSE:最小均方误差估计 MVU:最小方差无偏 NP:Neyman-Pearson 准则 PRN:伪随机噪声 RBLS:Rao-Blackwell-Lehmann-Scheffe 定理 ROC:接收机工作特性 UMP:一致最大势 WGN:白色高斯噪声 WSS:广义平稳
N 1 1 M 1 x ( n ) x ( n) N n 0 nM
J min
N 1 1 M 1 x ( n) x ( n) x ( n) N n0 n 0 nM N 1 2
2
下面讨论 LSE 的分布:
那么 的 MLE 为
N
T
n 1
N
n
7.从 PDF N ( A, 2 ) 观测到 N 个 IID 样本,其中 A, 2 皆未知,求 SNR A2 / 2 的 MLE。
解:从题目可以知道,估计参数为 [ A, 2 ] 似然函数可以表示为
P( X ; )
存在请求出它的方差。
4.
解答:
5.观测数据样本 {x[0], x[1],, x[ N 1]} 是 IID 的,服从如下分布: (1)拉普拉斯