晶体管单级放大电路实验报告

合集下载

单级放大电路实验报告

单级放大电路实验报告

单级放大电路实验报告摘要:本实验通过搭建单级放大电路并进行测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。

实验结果表明,单级放大电路在合适的设计和调试下能够实现电压信号的有效放大,但也存在一定的局限性。

引言:放大电路是电子技术中的重要组成部分,能够将弱小的电信号放大为更大的信号,以便后续电路进行处理或驱动。

本实验中,我们研究的是单级放大电路,它是放大电路中最基本的一种,并且具有较为简单的电路结构。

材料与方法:实验所需材料如下:1.1个NPN型晶体管2.2个电阻(分别为R1和R2)3.1个直流电源4.1个信号发生器实验步骤如下:1.按照电路图搭建单级放大电路。

2.调节电阻R1和R2的值,使其满足所需的放大倍数。

3.将信号发生器的输出接入放大电路的输入端。

4.通过示波器观察输出信号,并记录相关数据。

结果与讨论:在本实验中,我们设置放大倍数为20,即输出信号的幅度是输入信号的20倍。

调节电路中的电阻值后,我们成功地获得了期望的输出信号。

我们进一步探讨了输入和输出阻抗对于放大电路性能的影响。

实验结果表明,输入阻抗较大时,放大电路能够更好地接受输入信号,减小了信号源与放大电路之间的负载效应。

而当输出阻抗较小时,放大电路能够更好地推动负载电路,使得输出信号更加稳定。

同时,我们还研究了电压放大倍数与电压源频率的关系。

实验结果显示,当电压源频率较低时,放大倍数较高;而当电压源频率超过一定值后,放大倍数会逐渐减小。

这是因为晶体管的内部电容、电感等因素导致了对高频信号的损耗。

结论:本实验通过搭建单级放大电路并测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。

实验结果表明,在合适的设计和调试下,单级放大电路能够实现电压信号的有效放大。

其中,输入和输出阻抗的选择对于放大电路的性能有着重要影响。

此外,电压放大倍数与电压源频率之间存在一定的关联关系,需要根据实际情况进行设计和选择。

晶体管单管放大器实验报告

晶体管单管放大器实验报告

一、实验目的1. 理解晶体管单管放大器的基本原理和组成。

2. 掌握晶体管单管放大器静态工作点的调试方法。

3. 熟悉晶体管单管放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4. 提高对常用电子仪器及模拟电路实验设备的使用能力。

二、实验原理晶体管单管放大器是一种常见的放大电路,主要由晶体管、偏置电阻、负载电阻和耦合电容等组成。

实验电路采用共射极接法,通过输入信号u_i在晶体管的基极输入,放大后的信号u_o从集电极输出。

实验电路中,偏置电阻Rb1和Rb2组成分压电路,为晶体管提供合适的静态工作点。

负载电阻Rl接收放大后的信号,耦合电容C1和C2分别对输入信号和输出信号进行耦合,抑制交流干扰。

三、实验仪器与材料1. 晶体管(例如:3DG6)2. 偏置电阻(例如:Rb1=10kΩ,Rb2=20kΩ)3. 负载电阻(例如:Rl=10kΩ)4. 耦合电容(例如:C1=0.01μF,C2=0.01μF)5. 函数信号发生器6. 双踪示波器7. 万用电表8. 直流稳压电源9. 实验电路板四、实验步骤1. 按照实验电路图连接电路,将各元件和导线接到实验电路板上。

2. 将函数信号发生器输出端连接到双踪示波器,设置信号频率为1kHz,幅值为1V。

3. 将直流稳压电源连接到电路板,调节输出电压为12V。

4. 调节偏置电阻Rb1和Rb2,使晶体管处于合适的静态工作点。

使用万用电表测量晶体管的集电极电流Ic和集电极电压Uc,使其满足Ic=2mA,Uc=6V。

5. 在晶体管基极输入信号,观察双踪示波器上输入信号和输出信号的波形,记录电压放大倍数。

6. 测量输入电阻Ri和输出电阻Rl,计算放大器的输入电阻和输出电阻。

7. 调节输入信号幅值,观察输出波形,记录最大不失真输出电压。

五、实验数据及分析1. 静态工作点调试结果:Ic=2mA,Uc=6V。

2. 电压放大倍数:A_v=20。

3. 输入电阻:Ri=2kΩ。

模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告实验目的:1. 理解晶体管的结构与基本特性2. 掌握晶体管单级放大电路的构成方法与基本性能3. 学习测量电路中的关键参数4. 熟悉使用实验仪器(万用表、示波器、信号发生器等)实验原理:晶体管是由三个层(P、N、N或P、P、N)构成的半导体三极管。

由于晶体管有较高的输入电阻和较低的输出电阻,且电压放大系数大,因此被广泛应用于电子放大、开关、调制等方面。

晶体管单级放大电路是将晶体管作为电压放大器的基本电路。

其基本电路图如下:晶体管单级放大电路可以分为两种工作状态:放大状态和截止状态。

当输入信号较小时,晶体管工作于放大状态;当输入信号较大时,晶体管工作于截止状态。

实验步骤:1. 按照电路图连接晶体管单级放大电路,连接好信号源,示波器和万用表。

2. 打开电源并调节工作电压,保证晶体管正常工作。

3. 测量输入电压和输出电压的大小,计算增益。

4. 改变输入信号的频率,观察输出信号的频率变化并做相关测量。

5. 改变负载电阻的大小,观察输出信号的变化并做相关测量。

实验结果:1. 在输入电压为300mv时,输出电压为1.2v,计算增益为4。

2. 在变化输入信号频率时,输出信号的频率也随之变化;当输入信号频率到达10KHz 时,输出信号的频率无法再跟随增加。

3. 在改变负载电阻的大小时,输出信号的电压随之变化,当负载电阻小于100欧时,输出信号失真,不能正常工作。

实验结论:通过本次实验,我们了解了晶体管单级放大电路的基本原理和电路构成方法,在实际操作中熟悉了各种仪器的使用方法。

同时我们还学会了测量了电路中的关键参数,如输入电压、输出电压、增益等。

实验的结果表明,晶体管单级放大电路是一种有效的电压放大器,在实际应用中有着广泛的应用前景。

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告实验目的,通过搭建晶体管单级放大电路,了解晶体管的工作原理,掌握晶体管的放大特性和放大倍数的计算方法。

实验仪器,晶体管(NPN型)、电阻、直流电压表、示波器、直流稳压电源等。

实验原理,晶体管是一种半导体器件,它具有放大电压和电流的功能。

在单级放大电路中,晶体管的基极接入输入信号,发射极接入负载电阻,集电极接入电源。

当输入信号加到基极时,晶体管就开始工作,输出信号通过负载电阻放大,实现信号的放大功能。

实验步骤:1. 按照电路图连接电路,在示波器上观察输入信号和输出信号的波形。

2. 调节直流稳压电源,使得晶体管工作在正常工作区域,观察输出波形的放大效果。

3. 测量输入信号和输出信号的电压值,计算放大倍数。

实验结果:经过实验观察和测量,得到了如下结果:1. 输入信号经过晶体管放大后,输出信号的幅值明显增大,证明晶体管具有放大功能。

2. 测得放大倍数为50倍,说明晶体管单级放大电路具有较高的放大倍数。

3. 调节输入信号的频率,观察输出信号的变化。

发现在一定范围内,输出信号的波形基本不变,说明晶体管单级放大电路具有一定的频率响应特性。

实验分析:晶体管单级放大电路具有简单、稳定、放大倍数高的特点,适用于一些对放大倍数要求较高的场合。

但是,晶体管也存在着温度漂移、频率响应不均匀等问题,需要根据实际情况进行合理的选择和设计。

实验总结:通过本次实验,我们深入了解了晶体管单级放大电路的工作原理和特性,掌握了晶体管的放大倍数计算方法。

实验结果表明,晶体管单级放大电路具有较高的放大倍数和一定的频率响应特性,适用于一些对放大倍数要求较高的场合。

在今后的学习和工作中,我们将进一步加深对晶体管放大电路的理解,不断提高实验技能,为将来的科研和工程实践打下坚实的基础。

单级晶体管放大电路实验报告

单级晶体管放大电路实验报告

竭诚为您提供优质文档/双击可除单级晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一.试验目的(1)掌握multisium11.0仿真软件分析单级放大器主要性能指标的方法。

(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。

(3)测量放大器的放大倍数,输入电阻和输出电阻。

二.试验原理及电路VbQ=Rb2Vcc/(Rb1+Rb2)IcQ=IeQ=(VbQ-VbeQ)/ReIbQ=IcQ/β;VceQ=Vcc-IcQ(Rc+Re)晶体管单级放大器1.静态工作点的选择和测量放大器的基本任务是不失真的放大信号。

为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。

若工作点选的太高会饱和失真;选的太低会截止失真。

静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流IcQ和管压降VceQ。

本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。

当搭接好电路,在输入端引入正弦信号,用示波器输出。

静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。

当加大输入信号,两种失真同时出现,减小输入信号,两种失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。

去点信号源,测量此时的VcQ,就得到了静态工作点。

2.电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。

放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。

在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)oVo-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。

通常取与Ri为同一数量级比较合适。

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告
一、实验目的
本实验旨在了解单极晶体管放大电路的基本原理,掌握单极晶体管放大电路的设计和调试方法,熟悉实验仪器的使用,培养学生动手能力和实验技能。

二、实验原理
单极晶体管是一种三层结构的半导体器件,由发射极、基极和集电极组成。

其放大电路主要由一个单极晶体管和几个被动元件组成。

当输入信号加到基极时,会使得集电极电流变化,从而输出信号也随之变化。

因此,单极晶体管放大电路可以将输入信号放大并输出。

三、实验器材
1. 单片机开发板
2. 万用表
3. 示波器
4. 功率放大器
四、实验步骤及结果分析
1. 确定工作点:首先根据所选用的型号计算出工作点参数,并设置基准电压。

2. 确定放大倍数:利用万用表测量输入输出信号幅值,并计算出放大
倍数。

3. 调整偏置:根据所选用的型号调整偏置点使得工作在合适状态下。

4. 调整负载:根据所选用的型号调整负载使得输出信号稳定。

5. 测量输出电压:利用示波器测量输出电压,并记录结果。

五、实验结论
通过本次实验,我们了解了单极晶体管放大电路的基本原理和设计方法,掌握了单极晶体管放大电路的调试方法,熟悉了实验仪器的使用。

同时,我们还通过实验得到了实际的数据并进行了分析,从而得出了
正确的结论。

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告一、实验目的本实验的主要目的是通过实验了解晶体管单级放大电路的工作原理和特性,掌握晶体管的基本参数测量方法,提高实验操作技能。

二、实验原理晶体管单级放大电路是一种基本的放大电路,它由一个晶体管及其外围电路组成。

晶体管单级放大电路的输入端为基极,输出端为集电极,而发射极则被接地。

当输入信号加到基极时,由于晶体管的放大作用,输出信号将会在集电极处得到放大。

晶体管单级放大电路的放大倍数可以通过晶体管的直流工作点来调节。

当晶体管的直流工作点偏离合适的位置时,放大倍数将会下降,因此需要通过调整电路参数来保证晶体管的直流工作点处于合适的位置。

三、实验步骤1. 按照实验电路图连接电路,注意电路连接的正确性。

2. 将信号源接入电路的输入端。

3. 将示波器接入电路的输出端。

4. 打开电源,调整电源电压,使晶体管的直流工作点处于合适的位置。

5. 调整信号源的幅度和频率,观察输出信号的波形和幅度。

6. 测量晶体管的电流放大倍数、输入电阻和输出电阻等参数。

四、实验结果实验中我们得到了晶体管单级放大电路的输出波形和幅度,同时还测量了晶体管的电流放大倍数、输入电阻和输出电阻等参数。

实验结果表明,晶体管单级放大电路具有较好的放大效果,且可以通过调整电路参数来控制放大倍数。

五、实验分析通过实验我们发现,晶体管单级放大电路的放大效果受到晶体管的直流工作点的影响,因此需要通过调整电路参数来保证晶体管的直流工作点处于合适的位置。

此外,晶体管单级放大电路的放大倍数也可以通过改变电路参数来调节,因此需要根据具体的应用需求来选择合适的电路参数。

六、实验总结本实验通过实验了解了晶体管单级放大电路的工作原理和特性,掌握了晶体管的基本参数测量方法,提高了实验操作技能。

同时,我们也发现了晶体管单级放大电路的一些特点和应用注意事项,这对于今后的电子技术学习和应用都具有一定的参考意义。

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页一、实验原理晶体管(英文全称为:transis)是一种双极型器件,它使用电压控制流的方式来控制电路,是一种高低电平的转换器,其中N-MOS具有负偏移电流输出,P-MOS有正偏移电流输出。

而晶体管共射极单管放大器(CE amplifier)是利用晶体管放大输入信号,并且输出放大后的信号,它具有以下几个特点:1.具有高增益:某些应用时,可以获得高达1000倍的增益。

2.具有良好的抗杂散比:它的抗杂散比比其他放大器要好。

3.低成本:CE放大器成本低,是很多电路应用的实用设计。

二、实验准备实验准备包括晶体管共射极单管放大器原理、电路电子元件、实验接线、虚拟示波器、实验电源等:1.晶体管共射极单管放大器原理:晶体管共射极单管放大器是利用晶体管的共射极特性,以电容或非线性电路连接晶体管的共射极,把输入信号放大。

2.电路电子元件:该实验采用的电子元件有晶体管、电阻、电容、变压器等,详见实验设置部分提供的原理图。

3.实验接线:实验接线由晶体管的共射极连接电路的共射极部分,将电路中晶体管的此极和源极和源之间、此极与集电极之间等处可接电容等电子元件。

4.虚拟示波器:实验采用数字示波器,用于监测放大器输出脉冲电平变化,以及便于测量电路中其他因素对放大器性能的影响。

5.实验电源:实验主要是检测晶体管共射极单管放大器的增益、抗扰度、抗噪声度等指标,因此电源的选用是非常重要的,实验中,采用的是稳定的可调电源。

三、实验设置1.确定实验电路:实验电路如下图所示,该回路是一个简单的电路,主要是输入端只有一个电压信号,将输入信号放大传输到输出端,从而得到放大后的信号。

2.确定晶体管型号:实验采用的晶体管型号为:MJE15031。

3.确定实验电路的元件参数:该实验电路中的电容为:C1,用于共射极的电容值为:560uF;用于分压电阻的电阻值为: 10kΩ和4.7kΩ;电源电压为: 12V 。

四、实验结果1.检查输出电压:实验准备完毕后,量出输出端的脉冲电平,结果为7V,较预期值(12V)稍有偏差,约为10%,说明实验设置有较小的偏差。

晶体管单级放大器实验报告

晶体管单级放大器实验报告

晶体管单管‎放大器一、实验目的1、了解和熟悉‎掌握晶体管‎单管放大器‎2、学会放大器‎静态工作点‎的调试方法‎,分析静态工‎作点对放大‎器性能的影‎响。

3、掌握放大器‎电压放大倍‎数、输入电阻、输出电阻及‎最大不失真‎输出电压的‎测试方法。

4、熟悉常用电‎子仪器及模‎拟电路实验‎设备的使用‎。

二、实验原理图2-1为电阻分‎压式工作点‎稳定单管放‎大器实验电‎路图。

它的偏置电‎路采用RB‎1和RB2‎组成的分压‎电路,并在发射极‎中接有电阻‎R E,以稳定放大‎器的静态工‎作点。

当在放大器‎的输入端加‎入输入信号‎u i后,在放大器的‎输出端便可‎得到一个与‎u i相位相‎反,幅值被放大‎了的输出信‎号u0,从而实现了‎电压放大。

1、放大器静态‎工作点的测‎量与调试1) 静态工作点‎的测量测量放大器‎的静态工作‎点,应在输入信‎号u i=0的情况下‎进行,即将放大器‎输入端与地‎端短接,然后选用量‎程合适的直‎流毫安表和‎直流电压表‎,分别测量晶‎体管的集电‎极电流IC ‎以及各电极‎对地的电位‎UB 、UC 和UE ‎。

一般实验中‎,为了避免断‎开集电极,所以采用测‎量电压UE ‎或U C ,然后算出I ‎C 的方法,例如,只要测出U ‎E ,即可用E E E C R U I I =≈算出I C (也可根据CCCCC R U U I -=,由UC 确定‎I C), 同时也能算‎出U B E =U B -U E ,U CE =U C -U E 。

为了减小误‎差,提高测量精‎度,应选用内阻‎较高的直流‎电压表。

三、实验设备与‎器件1、+12V 直流‎电源2、函数信号发‎生器3、双踪示波器‎4、交流毫伏表‎5、直流电压表‎6、直流毫安表‎7、频率计8、万用电表9、晶体三极管‎3D G6×1(β=50~100)或9011‎×1 (管脚排列如‎图2-7所示) 四、实验内容实验电路如‎图2-1所示。

晶体管单级放大器实验报告【范本模板】

晶体管单级放大器实验报告【范本模板】

晶体管单管放大器一、实验目的1、 了解和熟悉掌握晶体管单管放大器2、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

3、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4、 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号ui =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流IC 以及各电极对地的电位UB 、UC 和UE 。

一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用E E E C R U I I =≈算出I C(也可根据CCCCC R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。

为了减小误差,提高测量精度,应选用内阻较高的直流电压表。

三、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、直流毫安表7、频率计8、万用电表9、晶体三极管3DG6×1(β=50~100)或9011×1 (管脚排列如图2-7所示) 四、实验内容实验电路如图2-1所示。

1、调试静态工作点连接电路,接通直流电源前,将函数信号发生器关闭。

接通+12V 电源、调节R W ,使U E =2.2V(即I C =2.0mA,或RC1两端的直流电压为4。

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告
晶体管单级放大电路
实验目的:
1.掌握放大电路的组成,基本原理及放大条件。
2.掌握放大电路静态工作点的测量方法。
3.观察晶体管单级放大电路的放大现象。
实验仪器:
1.双踪示波器
2.函数发生器
3.数字万用表
4.交流毫伏表
5.直流稳压电源
实验原理:
1.晶体管,又叫半导体三极管,其主要分为两大类:双极性晶体管(包含发射极,基极和
中壁》
似此星辰非昨夜,为谁风露立中宵。黄景仁《绮怀》
菩提本无树,明镜亦非台。惠能《菩提偈》
溪云初起日沉阁,山雨欲来风满楼。许浑《咸阳城东楼 /咸阳城西楼晚眺/西门》
春风得意马蹄疾,一日看尽长安花。孟郊《登科后》
枯藤老树昏鸦,小桥流水人家,古道西风瘦马。马致远《天净沙•秋思》
空山新雨后,天气晚来秋。王维《山居秋暝》
忘了青春,误了青春。 爱上层楼。爱上层楼。
毛泽东《沁园春•长沙》
李商隐《无题•昨夜星辰昨夜风》杨慎《临江仙•滚滚长江东逝水》 眉间露一丝。俞彦《长相思•折花枝》
李商隐《锦瑟》
白居易《长相思•汴水流》元稹《离思五首•其四》乐婉《卜算子•答施》
唐寅《一剪梅•雨打梨花深闭门》 为赋新词强说愁。辛弃疾《丑奴儿•书博山道
元稹《离思五首其四》
卓文君《白头吟》
去年今日此门中,人面桃花相映红。 平生不会相思,才会相思,便害相思。
入我相思门,知我相思苦。李白《三五七言/秋风词》
山无陵,江水为竭。冬雷震震,夏雨雪。天地合,乃敢与君绝。佚名《上邪》
执子之手,与子偕老。佚名《击鼓》
花自飘零水自流。一种相思,两处闲愁。李清照《一剪梅 红藕香残玉簟秋》
枯藤老树昏鸦,小桥流水人家,古道西风瘦马。马致远《天净沙 秋思》

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告单极晶体管放大电路实验报告摘要:本实验通过搭建单极晶体管放大电路,研究晶体管的放大特性。

通过实验数据的测量和分析,得出了晶体管的放大倍数和频率响应等重要参数,并对实验结果进行了讨论。

引言:晶体管是一种重要的电子元件,广泛应用于放大、开关和振荡等电路中。

其中,单极晶体管放大电路是一种常见的放大电路,其具有简单、稳定的特点。

本实验旨在通过搭建单极晶体管放大电路,研究晶体管的放大特性,并对实验结果进行分析和讨论。

实验装置:本实验所使用的装置包括:晶体管、电阻、电容、信号发生器、示波器等。

实验步骤:1. 按照电路图搭建单极晶体管放大电路。

2. 将信号发生器连接到输入端,调节信号发生器的频率和振幅。

3. 将示波器连接到输出端,观察输出信号的波形。

4. 测量输入信号和输出信号的电压,并记录数据。

5. 改变输入信号的频率,重复步骤3和4。

6. 分析实验数据,计算晶体管的放大倍数和频率响应等参数。

实验结果:通过实验测量得到的数据,我们得到了晶体管的放大倍数和频率响应等参数。

在输入信号频率为1kHz时,晶体管的放大倍数为20倍;在输入信号频率为10kHz时,晶体管的放大倍数为15倍。

此外,我们还得到了晶体管的频率响应曲线,发现在低频段时,晶体管的放大倍数较高,而在高频段时,放大倍数逐渐下降。

讨论:通过实验结果的分析,我们可以得出以下结论:1. 单极晶体管放大电路具有一定的放大倍数,可以将输入信号放大到较大的幅度。

2. 晶体管的放大倍数受到输入信号频率的影响,随着频率的增加,放大倍数逐渐下降。

3. 在实际应用中,需要根据需要选择合适的晶体管和电路参数,以满足特定的放大要求。

4. 在设计和搭建放大电路时,需要考虑晶体管的工作点和稳定性等因素,以保证电路的正常工作。

结论:通过本实验,我们研究了单极晶体管放大电路的放大特性,并得出了晶体管的放大倍数和频率响应等重要参数。

实验结果表明,晶体管具有一定的放大能力,但其放大倍数受到输入信号频率的影响。

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告单极晶体管放大电路实验报告摘要:本实验通过搭建单极晶体管放大电路,探究晶体管的放大特性。

实验结果表明,单极晶体管放大电路能够实现信号的放大,但存在一定的失真和功耗。

1. 引言单极晶体管放大电路是一种常见的放大电路,广泛应用于各种电子设备中。

本实验旨在通过搭建单极晶体管放大电路,研究其放大特性和工作原理。

2. 实验原理单极晶体管放大电路由晶体管、电阻和电容组成。

晶体管的三个引脚分别为基极、发射极和集电极。

当基极电流变化时,晶体管的放大特性会使得集电极电流和电压发生变化,从而实现信号的放大。

3. 实验步骤3.1 搭建电路根据实验原理,搭建单极晶体管放大电路。

将晶体管的基极连接到信号源,发射极接地,集电极连接到负载电阻。

3.2 测量输入输出特性曲线通过改变输入信号的幅度,测量输出信号的幅度,并绘制输入输出特性曲线。

实验结果表明,随着输入信号的增大,输出信号也相应增大,但存在一定的失真。

3.3 测量直流工作点通过测量晶体管的电压和电流,确定晶体管的直流工作点。

直流工作点的选择对于放大电路的稳定性和线性度有重要影响。

4. 实验结果与分析通过实验测量,得到了单极晶体管放大电路的输入输出特性曲线。

曲线表明,随着输入信号的增大,输出信号也相应增大,但在较大幅度时,出现了失真现象。

这是因为晶体管的非线性特性导致的。

另外,通过测量直流工作点,我们可以确定晶体管的偏置电压和电流。

偏置电压和电流的选择对于放大电路的性能有重要影响。

如果偏置电压过高或过低,都会导致信号失真和功耗增加。

5. 结论单极晶体管放大电路能够实现信号的放大,但存在一定的失真和功耗。

通过合理选择直流工作点,可以提高放大电路的稳定性和线性度。

6. 讨论与展望本实验只研究了单极晶体管放大电路的基本特性,还可以进一步研究其他类型的放大电路,如共射放大电路和共基放大电路。

此外,可以通过改变电路参数和组件,优化放大电路的性能。

总之,单极晶体管放大电路是一种常见的放大电路,具有重要的应用价值。

晶体管单管放大电路实验报告

晶体管单管放大电路实验报告

晶体管单管放大电路实验报告1. 引言在现代电子技术应用中,晶体管放大电路是一种常见且重要的电路。

本实验旨在通过搭建一个晶体管单管放大电路,探索晶体管的放大特性,并对其进行实际测试和分析。

2. 实验目的•理解晶体管的基本工作原理;•掌握晶体管单管放大电路的搭建方法;•通过实验测量和分析晶体管的放大特性。

3. 实验原理3.1 晶体管基本工作原理晶体管是一种半导体元件,由N型和P型半导体材料组成。

根据控制电极的类型和连接方式,晶体管可以分为三种基本类型:NPN型、PNP型和场效应晶体管。

在NPN型晶体管中,由三个掺杂不同的半导体层构成。

其中,中间层为薄的P型层,两侧为较厚的N型层。

当一个正向电压被施加到基极上时,使得芯片中的P型半导体部分电离,形成少数载流子。

这些载流子会被电场推向集电区,形成一个较大的电流。

3.2 晶体管单管放大电路搭建方法晶体管单管放大电路由晶体管和少量被调谐的无源元件组成,用于将输入信号放大。

其基本搭建方法如下: 1. 将NPN型晶体管按照器件类型正确连接到实验板上的晶体管座位上。

一般来说,电流放大系数较大的三极管被选择为放大电路的晶体管。

2. 选择适当的集电极电阻和基极电阻,并将其与晶体管连接。

3. 连接输入信号源和输出负载,以便对电路进行测试和测量。

3.3 晶体管的放大特性晶体管单管放大电路的主要特性包括电压放大倍数、电流放大倍数和功率放大倍数。

- 电压放大倍数(Av):输入信号经过放大电路后,输出信号电压与输入信号电压的比值。

它可以通过测量电路的输入输出电压,计算得出。

- 电流放大倍数(Ai):输出电流与输入电流的比值,同样可以通过实验测量获得。

- 功率放大倍数(Ap):输出功率与输入功率的比值,可以通过测量输出电压和输出电流,计算得出。

4. 实验器材和元件•1个NPN型晶体管•电阻器•输入信号源•示波器•万用表5. 实验步骤1.按照搭建方法将晶体管连接到实验板上,并连接合适的电阻器。

晶体管放大电路实训报告

晶体管放大电路实训报告

#### 一、实验目的1. 理解晶体管放大电路的基本原理和组成。

2. 掌握晶体管放大电路的设计方法、性能指标及其测试方法。

3. 培养动手能力和分析解决实际问题的能力。

#### 二、实验原理晶体管放大电路是一种常用的电子电路,主要由晶体管、电阻、电容等元件组成。

其主要功能是放大输入信号的幅度和功率,并将其转换成高端电压和电流。

晶体管放大电路按照晶体管的类型可以分为双极型晶体管放大电路和场效应晶体管放大电路。

#### 三、实验内容1. 晶体管共射极单管放大电路(1)电路组成:本实验采用共射极单管放大电路,主要由晶体管、电阻、电容等元件组成。

(2)电路原理:当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电压放大。

(3)实验步骤:- 搭建共射极单管放大电路。

- 调整静态工作点,使晶体管工作在放大区。

- 测量输入信号、输出信号和静态工作点的参数。

- 分析电压放大倍数、输入电阻、输出电阻及最大不失真输出电压。

2. 晶体管共基极单管放大电路(1)电路组成:本实验采用共基极单管放大电路,主要由晶体管、电阻、电容等元件组成。

(2)电路原理:与共射极单管放大电路类似,但共基极放大电路具有电压增益高、输入电阻低、输出电阻高、频率响应范围较窄等特点。

(3)实验步骤:- 搭建共基极单管放大电路。

- 调整静态工作点,使晶体管工作在放大区。

- 测量输入信号、输出信号和静态工作点的参数。

- 分析电压放大倍数、输入电阻、输出电阻及最大不失真输出电压。

3. 晶体管差分放大电路(1)电路组成:本实验采用差分放大电路,主要由两个共射极单管放大电路组成。

(2)电路原理:差分放大电路具有很好的共模抑制性能,能有效抑制共模信号,提高电路的抗干扰能力。

(3)实验步骤:- 搭建差分放大电路。

- 调整静态工作点,使晶体管工作在放大区。

- 测量输入信号、输出信号和静态工作点的参数。

实验晶体管单级放大电路

实验晶体管单级放大电路
K2
K1
K7
K6
K5
K4
K3
1Hz
CP1
CP2
13 频率显示
18 频率选择
19 电压显示
实验一 单管放大电路
一、实验目的: 1.熟悉单管放大器静态工作点的基本调试方法。 2.测试计算单管放大器的电压放大倍数。 3.进一步熟悉常用电子仪器的使用。 二、过程及细节 1.调试静态工作点: 调节Rp,使UCE=(1/2~1/3)Ec, (确定T在放大区);用数字万用表测 UBE, UCE , RC , ( RB+ RP )值 ,计算(IB,IC,)。
T1
T2
ON
OFF
+5V
+12v
+6V
-12V
GND
II
直流信号
直流信号
I
GND
1Hz
1KHz
高阻态
逻辑笔
低电平
高电平
模拟部分
数字部分
+5 v
+5 v
+5 v
+Ec
1M
220K
Ui
RL
10K
10K
51K
10K
10K
10K
10K
10K
2K
3.31K
5.1K
6.8K
15K
20K
20K
50K
30K
50K
100K
470K
7.5K
10u
10u
22u
47u
0.5u
0.1u
D1
DW1
D2
DW2
L8 L7 L6 L5 L4 L3 L2 L1
测 量 值

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

一、实验目的1. 理解单极晶体管放大电路的工作原理。

2. 掌握单极晶体管放大电路的静态工作点调试方法。

3. 学习放大电路电压放大倍数、输入电阻、输出电阻的测量方法。

4. 熟悉常用电子仪器的使用。

二、实验原理单极晶体管放大电路是一种常用的模拟电路,它利用晶体管的电流放大作用,将微弱的输入信号放大到所需的幅度。

本实验采用共射极接法,其电路结构简单,放大效果较好。

实验电路原理如下:1. 静态工作点:静态工作点是指晶体管在没有输入信号时,处于稳定工作状态下的电压和电流值。

本实验采用电阻分压式偏置电路,通过调节偏置电阻RB1和RB2,使晶体管工作在合适的静态工作点。

2. 电压放大倍数:放大电路的电压放大倍数是指输出电压与输入电压之比。

在本实验中,电压放大倍数由晶体管的电流放大倍数β和电路中的电阻比值决定。

3. 输入电阻:输入电阻是指放大电路输入端对信号源的等效电阻。

在本实验中,输入电阻由输入信号源和晶体管输入端之间的电阻决定。

4. 输出电阻:输出电阻是指放大电路输出端对负载的等效电阻。

在本实验中,输出电阻由晶体管输出端和负载之间的电阻决定。

三、实验仪器与设备1. 单极晶体管(例如:3DG6)2. 电阻(1kΩ、10kΩ、100Ω、1000Ω)3. 信号发生器4. 直流稳压电源5. 示波器6. 万用表7. 测试电路板四、实验步骤1. 按照实验电路图搭建电路,连接好各个元件。

2. 调节偏置电阻RB1和RB2,使晶体管工作在合适的静态工作点。

使用万用表测量晶体管的集电极电流IC和发射极电压UE,确保IC在1mA左右,UE在1V左右。

3. 接通信号发生器,调节输出信号频率和幅度,使输入信号ui0在1kHz、10mV左右。

4. 使用示波器观察输入信号ui0和输出信号uo的波形,记录下波形特征。

5. 使用万用表测量放大电路的输入电压ui、输出电压uo、输入电流ii和输出电流io。

6. 计算放大电路的电压放大倍数、输入电阻和输出电阻。

晶体管放大电路实验报告doc

晶体管放大电路实验报告doc

晶体管放大电路实验报告doc晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一. 试验目的(1)掌握Multisium11.0仿真软件分析单级放大器主要性能指标的方法。

(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。

(3)测量放大器的放大倍数,输入电阻和输出电阻。

二. 试验原理及电路VBQ=RB2VCC/(RB1+RB2) ICQ=IEQ=(VBQ-VBEQ)/RE IBQ=ICQ/β;VCEQ=VCC-ICQ(RC+RE)晶体管单级放大器1. 静态工作点的选择和测量放大器的基本任务是不失真的放大信号。

为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。

若工作点选的太高会饱和失真;选的太低会截止失真。

静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流ICQ和管压降VCEQ。

本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。

当搭接好电路,在输入端引入正弦信号,用示波器输出。

静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。

当加大输入信号,两种失真同时出现,减小输入信号,两种(本文来自:/doc/2816991364.html, 小草范文网:晶体管放大电路实验报告)失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。

去点信号源,测量此时的VCQ,就得到了静态工作点。

2. 电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。

放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。

在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)o VO-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告一、实验目的。

本实验旨在通过搭建晶体管单级放大电路,了解晶体管的基本工作原理和放大特性,掌握晶体管的放大倍数计算方法,并通过实验验证理论计算结果的准确性。

二、实验原理。

晶体管单级放大电路是由晶体管、直流偏置电路和交流耦合电路组成。

晶体管作为放大器件,其基本工作原理是利用输入信号的微小变化控制输出电流,从而实现信号的放大。

直流偏置电路用于稳定晶体管工作在放大状态,而交流耦合电路则用于隔离直流偏置电路,传递交流信号。

三、实验仪器与器材。

1. 电源,直流稳压电源。

2. 信号发生器,提供输入信号。

3. 示波器,观察输入输出信号波形。

4. 电阻、电容,用于搭建直流偏置电路和交流耦合电路。

5. 多用表,测量电路参数。

四、实验步骤。

1. 搭建晶体管单级放大电路,连接电源、信号发生器和示波器。

2. 调节直流稳压电源,使晶体管工作在放大状态。

3. 调节信号发生器,输入不同幅度的正弦信号。

4. 观察示波器上的输入输出信号波形,并记录波形参数。

5. 根据记录的波形参数,计算晶体管的放大倍数。

五、实验数据与分析。

通过实验观察和记录,得到不同输入信号幅度下的输出信号波形,计算得到晶体管的放大倍数。

实验结果与理论计算结果基本吻合,验证了晶体管单级放大电路的放大特性。

六、实验结论。

通过本次实验,我们深入了解了晶体管的基本工作原理和放大特性,掌握了晶体管的放大倍数计算方法,并通过实验验证了理论计算结果的准确性。

同时,也加深了对电子元器件的实际应用和电路设计的理解。

七、实验注意事项。

1. 在搭建电路时,注意连接的正确性,避免因接线错误导致电路无法正常工作。

2. 在调节信号发生器时,逐步增加信号幅度,避免过大的输入信号损坏晶体管。

3. 在测量电路参数时,注意使用多用表的正确方法,确保测量结果的准确性。

八、参考文献。

[1] 《电子技术基础》,张三,XX出版社,200X年。

[2] 《电子电路设计与实践》,李四,XX出版社,200X年。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告一、实验目的1、掌握晶体管共射极单管放大电路的基本原理和电路组成。

2、学会使用电子仪器(如示波器、信号发生器、万用表等)测量和调试电路参数。

3、研究静态工作点对放大器性能的影响。

4、掌握放大器电压放大倍数、输入电阻和输出电阻的测量方法。

二、实验原理1、晶体管共射极单管放大电路的组成晶体管共射极单管放大电路由晶体管、基极偏置电阻、集电极负载电阻和耦合电容等组成。

输入信号通过耦合电容加到晶体管的基极,经过晶体管放大后,从集电极输出,再通过耦合电容输出到负载电阻上。

2、静态工作点的设置静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压。

合理设置静态工作点可以保证晶体管在信号放大过程中始终工作在放大区,避免出现截止失真和饱和失真。

静态工作点的计算主要通过基极电流、集电极电流和集射极电压等参数来确定。

3、放大器的性能指标(1)电压放大倍数:输出电压与输入电压的比值,反映了放大器对信号的放大能力。

(2)输入电阻:从放大器输入端看进去的等效电阻,反映了放大器从信号源获取信号的能力。

(3)输出电阻:从放大器输出端看进去的等效电阻,反映了放大器带负载的能力。

三、实验仪器与设备1、示波器2、信号发生器3、万用表4、直流电源5、实验电路板6、电阻、电容、晶体管等元件四、实验内容与步骤1、实验电路的搭建按照实验电路图,在实验电路板上正确连接各个元件,注意晶体管的引脚极性和元件的参数选择。

2、静态工作点的测量与调整(1)接通直流电源,用万用表测量晶体管的基极电压、集电极电压和发射极电压,计算基极电流、集电极电流,从而确定静态工作点。

(2)若静态工作点不合适,通过调整基极偏置电阻的值来改变静态工作点,使其处于合适的范围。

3、输入信号的接入与输出信号的测量(1)将信号发生器产生的正弦波信号接入放大器的输入端,通过示波器观察输入信号和输出信号的波形。

(2)保持输入信号的幅度不变,改变输入信号的频率,观察输出信号的变化,记录输出信号不失真时的频率范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体管单级放大电路
实验目的:
1.掌握放大电路的组成,基本原理及放大条件。

2.掌握放大电路静态工作点的测量方法。

3.观察晶体管单级放大电路的放大现象。

实验仪器:
1.双踪示波器
2.函数发生器
3.数字万用表
4.交流毫伏表
5.直流稳压电源
实验原理:
1.晶体管,又叫半导体三极管,其主要分为两大类:双极性晶体管(包含发射极,基极和集电极)和场效应晶体管(包括源极,栅极,漏极)。

晶体管在电路中主要起放大和开关的作用。

2.共射放大电路原理图:
3.放大电路的本质为它利用晶体管的基极对集电极的控制作用来实现,即iC= iB。

放大的前提是晶体管的发射极正偏,集电极反偏。

4.放大电路的电压放大倍数是指电压不失真时,输出电压U0与输入电压Ui振幅或有效值之比,即Au=U0/Ui
5.输出电阻R0是指从放大器输出端看进去的等效电阻,其反映了放大器带负载的能力,在被测放大器后加一个负载电阻RL,输入端加正弦信号,分别测空载时和加负载电阻RL时的输出电压U0与UL,则RL=(U0-UL)/UL。

6.输入电阻Ri是指从放大器输入端看进去的等效电阻,其大小表示放大器从信号源获取电流的多少。

在信号源与放大器之间串入一个样电阻Rs,分别测出UA与UB,则:Ri=UAXRs/(UB-UA)。

实验内容:
1.静态工作点测量
实验电路:
实验步骤:
1.使用万用表检查三极管的好坏:红笔接三极管基极,黑笔接集电极或射极,此时PN 结正偏,若显示数字为“500~700”(PN结正向导通管压降的毫伏值),说明其正向导通。


用黑笔接基极,红笔分别接集电极.射极,此时PN结反偏,如果显示“1”,说明其反向不导通。

当红笔接射极,黑笔接集电极,显示“1”,表示不导通;交换红黑笔,显示“1”,表示不导通。

测试三极管满足上述数值,基本可以认为三极管是好的。

2.按照实验电路图连接电路。

稳压电源的+极接到电路的Vcc,-极接地。

3.将稳压电源调到+12V,用万用表直流电压档测量静态工作点 UBQ,UCQ,UEQ。

实验结果:
提示:,Ucq,Ueq分别为晶体管各极对地的电压
=Ieq=Ueq/(Re1+Re2); Ubeq=Ubq-Ueq; Uceq=Ucq-Ueq
3.静态工作点是载电路无输入信号下测量的
:晶体管的集电极c与发射极e之间的电压。

2.输入输出波形观察及放大倍数的测量
实验步骤
1.在第一个实验的基础上,在电路A点输入Ui=50mV(峰峰值),f=1kHz的正弦波信号。

2.用示波器的二通道分别观察输入输出波形。

实验结果:
3.输出电阻Ro的测量
实验电路:
实验步骤:
1.安装实验电路图连接电路,并在输入端A点输入Ui=50mV(峰峰值),f=1kHz的正弦波信号。

2.用示波器观察输出波形UL,保证不失真。

3.测量带负载RL时的输出电压UL。

4.输入电阻Ri的测量:
实验电路:
实验步骤:
1.安装上图连接电路,B端输入正弦信号UB=100mV(峰峰值),f=1kHz。

2.用示波器观察输出波形Uo,保证输出不失真。

3.测量A,B端的电压UA,UB。

实验结果:
实验总结:。

相关文档
最新文档