信息论与编码第二章答案
信息论与编码理论习题答案
信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。
《信息论与编码》习题解答-第二章
《信息论与编码》习题解答第二章 信源熵-习题答案2-1解:转移概率矩阵为:P(j/i)=,状态图为:⎪⎩⎪⎨⎧==∑∑j jj ij ii W W P W 1,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=+=++=1323221313121321233123211W W W W W W W W W W W W 解方程组求得W=2-2求平稳概率符号条件概率状态转移概率解方程组得到 W=2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
解: (1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=(3)共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P Xii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2-4(4)2.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
信息论编码与基础课后题(第二章)
第二章习题解答2-1、试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2、 设某班学生在一次考试中获优(A )、良(B )、中(C )、及格(D )和不及格(E )的人数相等。
当教师通知某甲:“你没有不及格”,甲获得了多少比特信息?为确定自己的成绩,甲还需要多少信息? 解:根据题意,“没有不及格”或“pass”的概率为54511pass =-=P 因此当教师通知某甲“没有不及格”后,甲获得信息在已知“pass”后,成绩为“优”(A ),“良”(B ),“中”(C )和“及格”(D ) 的概率相同:41score )pass |()pass |()pass |()pass |(=====D P C P B P A P P 为确定自己的成绩,甲还需信息bits 241loglog score score =-=-=P I 3、中国国家标准局所规定的二级汉字共6763个。
设每字使用的频度相等,求一个汉字所含的信息量。
设每个汉字用一个1616⨯的二元点阵显示,试计算显示方阵所能表示的最大信息。
显示方阵的利用率是多少?解:由于每个汉字的使用频度相同,它们有相同的出现概率,即67631=P 因此每个汉字所含的信息量为bits 7.1267631loglog =-=-=P I 字每个显示方阵能显示256161622=⨯种不同的状态,等概分布时信息墒最大,所以一个显示方阵所能显示的最大信息量是bits 322.054loglog passpass =-=-=P Ibits 25621loglog 256=-=-=P I 阵显示方阵的利用率或显示效率为0497.02567.12===阵字I I η 4、两个信源1S 和2S 均有两种输出:1 ,0=X 和1 ,0=Y ,概率分别为2/110==X X P P ,4/10=Y P ,4/31=Y P 。
信息论与编码答案
解: I ( x1) log 2 1
8 log 2 1.415bit
p( x1)
3
同理可以求得 I (x2) 2bit , I ( x3) 2bit , I (x3) 3bit
因为信源无记忆 ,所以此消息序列的信息量就等于该序列中各个符号的信息量之与
就有 : I 14 I ( x1) 13I ( x2) 12I ( x3) 6I ( x4) 87.81bit 平均每个符号携带的信息量为 87.81 1.95 bit/ 符号
解:
设随机变量 X 代表女孩子学历
X x1(就是大学生 ) x2(不就是大学
生)
P(X)
0、25
0、75
设随机变量 Y 代表女孩子身高
Y y1(身高 >160cm) y2(身高 <160cm)
P(Y)
0、5
0、 5
已知 :在女大学生中有 75% 就是身高 160 厘米以上的
即: p( y1 / x1) 0.75 bit 求: 身高 160 厘米以上的某女孩就是大学生的信息量
1/2
1/2
u1
u2
1/3
1/3
2/3
2/3
u3
状态转移矩阵为 :
1/ 2 1/ 2 0 p 1/ 3 0 2/ 3
1/ 3 2 / 3 0
设状态 u1,u2,u3 稳定后的概率分别为 W 1,W 2、 W 3
1
1
1
W1 W 2 W3 W1
10
2
3
3
W1
由 WP W
得
1W1 2
2W 3 3
W2
25
计算可得 W 2 9
=0、72bit/ 符号YFra biblioteky1y2
信息论与编码理论第二章习题答案(王育民)
部分答案,仅供参考。
2.1信息速率是指平均每秒传输的信息量点和划出现的信息量分别为3log ,23log ,一秒钟点和划出现的次数平均为415314.0322.01=⨯+⨯一秒钟点和划分别出现的次数平均为45.410那么根据两者出现的次数,可以计算一秒钟其信息量平均为253log 4153log 4523log 410-=+2.3 解:(a)骰子A 和B ,掷出7点有以下6种可能:A=1,B=6; A=2,B=5; A=3,B=4; A=4,B=3; A=5,B=2; A=6,B=1 概率为6/36=1/6,所以信息量-log(1/6)=1+log3≈2.58 bit(b) 骰子A 和B ,掷出12点只有1种可能: A=6,B=6概率为1/36,所以信息量-log(1/36)=2+log9≈5.17 bit2.5解:出现各点数的概率和信息量:1点:1/21,log21≈4.39 bit ; 2点:2/21,log21-1≈3.39 bit ; 3点:1/7,log7≈2.81bit ; 4点:4/21,log21-2≈2.39bit ; 5点:5/21,log (21/5)≈2.07bit ; 6点:2/7,log(7/2)≈1.81bit 平均信息量:(1/21)×4.39+(2/21)×3.39+(1/7)×2.81+(4/21)×2.39+(5/21)×2.07+(2/7)×1.81≈2.4bit2.7解:X=1:考生被录取; X=0:考生未被录取; Y=1:考生来自本市;Y=0:考生来自外地; Z=1: 考生学过英语;Z=0:考生未学过英语P(X=1)=1/4, P(X=0)=3/4; P(Y=1/ X=1)=1/2; P(Y=1/ X=0)=1/10;P(Z=1/ Y=1)=1, P(Z=1 / X=0, Y=0)=0.4, P(Z=1/ X=1, Y=0)=0.4, P(Z=1/Y=0)=0.4 (a) P(X=0,Y=1)=P(Y=1/X=0)P(X=0)=0.075, P(X=1,Y=1)= P(Y=1/X=1)P(X=1)=0.125P(Y=1)= P(X=0,Y=1)+ P(X=1,Y=1)=0.2P(X=0/Y=1)=P(X=0,Y=1)/P(Y=1)=0.375, P(X=1/Y=1)=P(X=1,Y=1)/P(Y=1)=0.625 I (X ;Y=1)=∑∑=====xx)P()1Y /(P log)1Y /(P )1Y (I )1Y /(P x x x x;x=1)P(X )1Y /1X (P log)1Y /1X (P 0)P(X )1Y /0X (P log)1Y /0X (P =====+======0.375log(0.375/0.75)+0.625log(0.625/0.25)=(5/8)log5-1≈0.45bit(b) 由于P(Z=1/ Y=1)=1, 所以 P (Y=1,Z=1/X=1)= P (Y=1/X=1)=0.5 P (Y=1,Z=1/X=0)= P (Y=1/X=0)=0.1那么P (Z=1/X=1)= P (Z=1,Y=1/X=1)+ P (Z=1,Y=0/X=1)=0.5+ P (Z=1/Y=0,X=1)P (Y=0/X=1)=0.5+0.5*0.4=0.7P(Z=1/X=0)= P (Z=1,Y=1/X=0)+ P (Z=1,Y=0/X=0)=0.1+P(Z=1/Y=0,X=0)P(Y=0/X=0)=0.1+0.9*0.4=0.46P (Z=1,X=1)= P (Z=1/X=1)*P(X=1)=0.7*0.25=0.175 P (Z=1,X=0)= P (Z=1/X=0)*P(X=0)= 0.46*0.75=0.345 P(Z=1) = P(Z=1,X=1)+ P(Z=1,X=0) = 0.52 P(X=0/Z=1)=0.345/0.52=69/104 P(X=1/Z=1)=35/104I (X ;Z=1)=∑∑=====xx )P()1Z /(P log )1Z /(P )1Z (I )1Z /(P x x x x;x=1)P(X )1Z /1X (P log )1Z /1X (P 0)P(X )1Z /0X (P log )1Z /0X (P =====+======(69/104)log(23/26)+( 35/104)log(35/26) ≈0.027bit(c)H (X )=0.25*log(1/0.25)+0.75*log(1/0.75)=2-(3/4)log3=0.811bit H(Y/X)=-P(X=1,Y=1)logP(Y=1/X=1) -P(X=1,Y=0)logP(Y=0/X=1)-P(X=0,Y=1)logP(Y=1/X=0) -P(X=0,Y=0)logP(Y=0/X=0)=-0.125*log0.5-0.125*log0.5-0.075*log0.1-0.675*log0.9=1/4+(3/40)log10-(27/40)log(9/10)≈0.603bitH(XY)=H(X)+H(Y/X)=9/4+(3/4)log10-(21/10)log3=1.414bitP(X=0,Y=0,Z=0)= P(Z=0 / X=0, Y=0)* P( X=0, Y=0)=(1-0.4)*(0.75-0.075)=0.405 P(X=0,Y=0,Z=1)= P(Z=1 / X=0, Y=0)* P( X=0, Y=0)=0.4*0.675=0.27P(X=1,Y=0,Z=1)= P(Z=1/ X=1,Y=0)* P(X=1,Y=0)=0.4*(0.25-0.125)=0.05 P(X=1,Y=0,Z=0)= P(Z=0/ X=1,Y=0)* P(X=1,Y=0)=0.6*0.125=0.075 P(X=1,Y=1,Z=1)=P(X=1,Z=1)- P(X=1,Y=0,Z=1)=0.175-0.05=0.125 P(X=1,Y=1,Z=0)=0 P(X=0,Y=1,Z=0)=0P(X=0,Y=1,Z=1)= P(X=0,Z=1)- P(X=0,Y=0,Z=1)= 0.345-0.27=0.075H(XYZ)=-0.405*log0.405-0.27*log0.27-0.05*log0.05-0.075*log0.075-0.125*log0.125-0.075*log 0.075=(113/100)+(31/20)log10-(129/50)log3 =0.528+0.51+0.216+0.28+0.375+0.28=2.189 bitH(Z/XY)=H(XYZ)-H(XY)= -28/25+(4/5)log10-12/25log3 =0.775bit2.9 解:A ,B ,C 分别表示三个筛子掷的点数。
信息论与编码第二章习题参考答案
2.1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“3和5同时出现”事件的自信息量; (2)“两个1同时出现”事件的自信息量;(3)两个点数的各种组合(无序对)的熵或平均信息量; (4)两个点数之和(即2,3,…,12构成的子集)的熵;(5)两个点数中至少有一个是1的自信息。
解:(1)一个骰子点数记为X ,另一个骰子的点数记做Y ,X 、Y 之间相互独立,且都服从等概率分布,即同理一个骰子点数为3,另一个骰子点数为5属于组合问题,对应的概率为181616161613Y Py 5X Px 5Y Py 3X Px P 1=⨯+⨯===+===)()()()(对应的信息量为比特)()(17.4181-lb P -I 11===lb(2)两个骰子点数同时为1的概率为)()(3611Y Py 1X Px P 2==== 对应的信息量为比特)()(17.5361-lb P -I 22===lb(3)各种组合及其对应的概率如下,6,5,4,3,2,1Y X 3616161Y X P ===⨯==)(共6种可能18161612Y X P =⨯⨯=≠)( 共有15种可能因此对应的熵或者平均自信息量为34.418118115-3613616-H 1=⨯⨯⨯⨯=)()(lb lb 比特/符号 (4)令Z=X+Y ,可以计算出Z 对应的概率分布如下对应的熵为符号比特)()()()()()()(/1.914366366-3653652-3643642-3633632-3633632-3623622-361361-2H 1=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=lb lb lb lb lb lb lb (5)X 、Y 相互独立,所以联合熵为比特)()(597.06162Y X,I =⨯=lb2.2 设在一只布袋中装有100个大小、手感完全相同的球,每个球上涂有一种颜色。
100个球的颜色有下列3种情况:(1)红色球和白色球各50个; (2)红色球99个,白色球1个; (3)红、黄、蓝、白色球各25个。
信息论与编码第二章答案
第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。
2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。
2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。
答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。
从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。
2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。
答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。
信息论与编码-曹雪虹-课后习题答案
《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。
信息论与编码第2章习题解答
2.1设有12枚同值硬币,其中一枚为假币。
只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。
现用比较天平左右两边轻重的方法来测量(因无砝码)。
为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:分三组,每组4个,任意取两组称。
会有两种情况,平衡,或不平衡。
(1) 平衡:明确假币在其余的4个里面。
从这4个里面任意取3个,并从其余8个好的里面也取3个称。
又有 两种情况:平衡或不平衡。
a )平衡:称一下那个剩下的就行了。
b )不平衡:我们至少知道那组假币是轻还是重。
从这三个有假币的组里任意选两个称一下,又有两种情况:平衡与不平衡,不过我们已经知道假币的轻重情况了,自然的,不平衡直接就知道谁是假币;平衡的话,剩下的呢个自然是假币,并且我们也知道他是轻还是重。
(2) 不平衡:假定已经确定该组里有假币时候:推论1:在知道该组是轻还是重的时候,只称一次,能找出假币的话,那么这组的个数不超过3。
我们知道,只要我们知道了该组(3个)有假币,并且知道轻重,只要称一次就可以找出来假币了。
从不平衡的两组中,比如轻的一组里分为3和1表示为“轻(3)”和“轻(1)”,同样重的一组也是分成3和1标示为“重(3)”和“重(1)”。
在从另外4个剩下的,也就是好的一组里取3个表示为“准(3)”。
交叉组合为:轻(3) + 重(1) ?=======? 轻(1) + 准(3)来称一下。
又会有3种情况:(1)左面轻:这说明假币一定在第一次称的时候的轻的一组,因为“重(1)”也出现在现在轻的一边,我们已经知道,假币是轻的。
那么假币在轻(3)里面,根据推论1,再称一次就可以了。
(2)右面轻:这里有两种可能:“重(1)”是假币,它是重的,或者“轻(1)”是假币,它是轻的。
这两种情况,任意 取这两个中的一个和一个真币称一下即可。
(3)平衡:假币在“重(3)”里面,而且是重的。
根据推论也只要称一次即可。
2.2 同时扔一对骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“骰子面朝上之和是3和4”时,试问这三种情况分别获得多少信息量?解:设“两骰子面朝上点数之和为2”为事件A ,则在可能出现的36种可能中,只能个骰子都为1,这一种结果。
(完整版)信息论与编码-曹雪虹-课后习题答案
(完整版)信息论与编码-曹雪虹-课后习题答案《信息论与编码》-曹雪虹-课后习题答案第⼆章2.1⼀个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ?? ?= ?设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =??++=?得1231132231231112331223231W W W W W W W W W W W W ?++=+==++=?计算可得1231025925625W W W ?==?=2.2 由符号集{0,1}组成的⼆阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10) (01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ?? ?=设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ===??∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=??+=??+=??+=?+++=?? 计算得到12345141717514W W W W ?=??===2.3 同时掷出两个正常的骰⼦,也就是各⾯呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的⾃信息; (2) “两个1同时出现”这事件的⾃信息; (3) 两个点数的各种组合(⽆序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的⼦集)的熵;(5) 两个点数中⾄少有⼀个是1的⾃信息量。
信息论与编码习题与答案第二章
第一章信息、消息、信号的定义?三者的关系? 通信系统的模型?各个主要功能模块及作用? 第二章信源的分类?自信息量、条件自信息量、平均自信息量、信源熵、不确定度、条件熵、疑义度、噪声熵、联合熵、互信息量、条件互信息量、平均互信息量以及相对熵的概念?计算方法? 冗余度?具有概率为)(x i p 的符号x i 自信息量:)(log )(x x i i p I -= 条件自信息量:)(log )(y x y x iiiip I -=平均自信息量、平均不确定度、信源熵:∑-=ii i x x p p X H )(log )()(条件熵:)(log ),()(),()(y x y x y x y x jijijijijiji p p I p Y X H ∑∑-==联合熵:),(log ),(),(),()(y x y x y x y x ji jiji ji jiji p p I p Y X H ∑∑-==互信息:)()(log)()()()(log),();(y x yx yx y x yy x jiji jiji jijjiji p p p p p p p Y X I ∑∑==熵的基本性质:非负性、对称性、确定性2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下:11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 6162 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)两个点数求和的概率分布如下:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5){(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),(1,1)}bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得bit x I bit x I bit x I 3)4(,2)3(,2)2(===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++=平均每个符号携带的信息量为87.811.9545=bit/符号 2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
彭代渊王玲-信息论与编码理论-第二章习题解答
I ( X ; Y ) H ( X ) H ( X | Y ) 1 0.81 0.19bit / 符号 I (Y ; Z ) H (Y ) H (Y | Z ) 1 0.87 0.13bit / 符号
第2章
信息的度量
第 2 章 信息的度量
2.1 同时扔一对质地均匀的骰子,当得知“两骰子面朝上点数之和为 5”或“面朝上点数 之和为 8”或“两骰子面朝上点数是 3 和 6”时,试问这三种情况分别获得多少信息量? 解: 某一骰子扔得某一点数面朝上的概率是相等的,均为 1/6,两骰子面朝上点数的状态共 有 36 种,其中任一状态出现都是等概率的,出现概率为 1/36。设两骰子面朝上点数之和为事 件 a,有: ⑴ a=5 时,有 1+4,4+1,2+3,3+2,共 4 种,则该事件发生概率为 4/36=1/9,则信息 量为 I(a)=-logp(a=5)=-log1/9≈3.17(bit) ⑵ a=8 时, 有 2+6, 6+2, 4+4, 3+5, 5+3, 共 5 种, 则 p(a)=5/36,则 I(a)= -log5/36≈2.85(bit) ⑶ p(a)=2/36=1/18,则 I(a)=-log1/18≈4.17(bit) 2.2 如果你在不知道今天是星期几的情况下问你的朋友“明天是星期几”,则答案中含 有多少信息量?如果你在已知今天是星期三的情况下提出同样的问题,则答案中你能获得 多少信息量(假设已知星期一至星期日的排序)? 解: 设“明天是星期几”为事件 a: ⑴ 不知道今天是星期几:I(a)=-log1/7≈2.81(bit) ⑵ 知道今天是星期几:I(a)=-log1=0 (bit) 2.3 居住某地区的女孩中有 20%是大学生, 在女大学生中有 80%是身高 1 米 6 以上的, 而女孩中身高 1 米 6 以上的占总数的一半。假如我们得知“身高 1 米 6 以上的某女孩是大学 生”的消息,求获得多少信息量? 解: 设“居住某地区的女孩是大学生”为事件 a,“身高 1 米 6 以上的女孩”为事件 b,则有: p(a)= 0.2,p(b|a)=0.8,p(b)=0.5, 则“身高 1 米 6 以上的某女孩是大学生”的概率为:
《信息论与编码》第二章习题解答
H (Z Y ) = H ( X3)= H(X )= 2.585 bit
H (X |Y ) = H (X ) + H(Y X ) − H(Y ) = H (X ) + H( X 2 ) − H(Y )
I (X ;Y ) =
p(x , y )log
xy
p( x)
2
2
在上式求和中,使 p(x, y) ≠ 0 的输入,输出对
3
3
4
4
(x, y)可分为 3 类:
5
5ห้องสมุดไป่ตู้
6 7
6 7
S1 = {(0,0), (2,2), (4,4),(6,6),(8,8)}
8 9
8 9
S2 = {(1,1),(3,3), (5,5),(7,7),(9,9)}
在已知第一位数字下,第二位数字携带信息为 H (Y | X ) = 0.75H(0.1,0.9) + 0.25H (0.5,0.5)
=0.602 bit
在已知前二位数字下,第三位数字携带信息为:
H (Z | X ,Y ) = H (Z | Y )
(因为 X→Y→Z)
= 0.2H(1) + 0.8H(0.4,0.6)
=0.158 bit
2.3 在某中学有 3 学生通过了考试, 1 学生没有通过。在通过考试的同学中 10%有自行
4
4
车,而没有通过的学生中 50%有自行车,所有有自行车的同学都加入了联谊会,
无自行车的同学中仅有 40%加入联谊会。
a. 通过询问是否有自行车,能获得多少关于学生考试成绩的信息?
信息论与编码第二版第2章习题答案
2 3 4 5 6 7 8 9 10 11 12 X 1 1 1 1 5 1 5 1 1 1 1 = P ( X ) 36 18 12 9 36 6 36 9 12 18 36 H ( X ) = −∑ p ( xi ) log p ( xi )
画出状态图,并计算各状态的稳态概率。 解: p (0 | 00) = p (00 | 00) = 0.8
p (0 | 01) = p (10 | 01) = 0.5 p (0 |10) = p (00 |10) = 0.5 p (1| 01) = p (11| 01) = 0.5 p (1|10) = p (01|10) = 0.5
15 25 35 45 55 65
16 26 36 46 56 66
1 1 1 × = 6 6 36
1 1 1 × = 6 6 18
1 1 1 1 H ( X ) = −∑ p ( xi ) log p ( xi ) = − 6 × log + 15 × log = 4.337 bit / symbol 36 18 18 36 i
2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为: p (0 | 00) =0.8, p (0 |11) =0.2,
p (1| 00) =0.2, p (1|11) =0.8, p (0 | 01) =0.5, p (0 |10) =0.5, p (1| 01) =0.5, p (1|10) =0.5。
87.81 = 1.95 bit/符号 45
2-14 (1)
P(ij)=
P(i/j)=
(2) 方法 1:
信息论与编码习题参考答案
第二章习题参考答案2-1解:同时掷两个正常的骰子,这两个事件是相互独立的,所以两骰子面朝上点数的状态共有6×6=36种,其中任一状态的分布都是等概的,出现的概率为1/36。
(1)设“3和5同时出现”为事件A ,则A 的发生有两种情况:甲3乙5,甲5乙3。
因此事件A 发生的概率为p(A)=(1/36)*2=1/18 故事件A 的自信息量为I(A)=-log 2p(A)=log 218=4.17 bit(2)设“两个1同时出现”为事件B ,则B 的发生只有一种情况:甲1乙1。
因此事件B 发生的概率为p(B)=1/36 故事件B 的自信息量为I(B)=-log 2p(B)=log 236=5.17 bit (3) 两个点数的排列如下:因为各种组合无序,所以共有21种组合: 其中11,22,33,44,55,66的概率是3616161=⨯其他15个组合的概率是18161612=⨯⨯ symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)“两个点数中至少有一个是1”的组合数共有11种。
bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2解:(1)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121)(21x x x p X i 比特 12log *21*2)(log )()(2212==-=∑=i i i x p x p X H(2)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡100110099)(21x x x p X i 比特 08.0100log *100199100log *10099)(log )()(22212=+=-=∑=i i i x p x p X H (3)四种球的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡41414141)(4321x x x x x p X i ,42211()()log ()4**log 4 2 4i i i H X p x p x ==-==∑比特2-5解:骰子一共有六面,某一骰子扔得某一点数面朝上的概率是相等的,均为1/6。
信息论与编码第二章课后答案
信息论与编码第二章课后答案在信息科学领域中,信息论和编码是两个息息相关的概念。
信息论主要研究信息的传输和处理,包括信息的压缩、传输的准确性以及信息的安全性等方面。
而编码则是将信息进行转换和压缩的过程,常用的编码方式包括霍夫曼编码、香农-费诺编码等。
在《信息论与编码》这本书的第二章中,涉及了信息的熵、条件熵、熵的连锁法则等概念。
这些概念对于信息理解和编码实现有着重要的意义。
首先是信息的熵。
熵可以简单理解为信息的不确定性。
当信息的发生概率越大,它的熵就越小。
比如说,一枚硬币的正反面各有50%的概率,那么它的熵就是1bit。
而如果硬币只有正面,那么它的熵就是0bit,因为我们已经知道了结果,不再有任何不确定性。
其次是条件熵。
条件熵是在已知某些信息(即条件)的前提下,对信息的不确定性进行量化。
它的定义为已知条件下,信息的熵的期望值。
比如说,在猜词游戏中,我们手中已经有一些字母的信息,那么此时猜测单词的不确定性就会下降,条件熵也就会减少。
除了熵和条件熵之外,连锁法则也是信息理解和编码实现中的重要概念。
连锁法则指的是一个信息在不同时刻被传输的情况下,熵的变化情况。
在信息传输的过程中,信息的熵可能会发生改变。
这是因为在传输过程中,可能会发生噪声或者数据重复等情况。
而连锁法则就是用来描述这种情况下信息熵的变化情况的。
最后,霍夫曼编码和香农-费诺编码是两种比较常用的编码方式。
霍夫曼编码是一种无损压缩编码方式,它可以将出现频率高的字符用较短的二进制编码表示,出现频率较低的字符用较长的二进制编码表示。
香农-费诺编码则是一种用于无失真信源编码的方法,可以把每个符号用尽可能短的二进制串来表示,使得平均码长最小化。
总的来说,信息论和编码是信息科学中非常重要的两个概念。
通过对信息熵、条件熵、连锁法则等的探讨和了解,可以更好地理解信息及其传输过程中的不确定性和数据处理的方法。
而霍夫曼编码和香农-费诺编码则是实现数据压缩和传输的常用编码方式。
《信息论与编码理论》(王育民李晖梁传甲)课后习题答案高等教育出版社
信息论与编码理论习题解第二章 -信息量和熵2.1 解: 平均每个符号长为 :20.2 10.4 4 秒3315每个符号的熵为 2log31 log 3 0.9183 比特 /符号 32 3所以信息速率为 0.9183 15 3.444 比特 /秒42.2 解: 同步信号均相同不含信息,其余认为等概 ,每个码字的信息量为 3*2=6 比特;所以信息速率为 6 10006000 比特 /秒2.3 解:(a) 一对骰子总点数为 7 的概率是 636所以得到的信息量为log 2( 6) 2.585 比特36(b)一对骰子总点数为 12 的概率是 136所以得到的信息量为log 21 比特5.17362.4 解: (a)任一特定排列的概率为1,所以给出的信息量为52!1log252 !225.58比特(b) 从中任取 13 张牌 ,所给出的点数都不相同的概率为13! 413413A 5213C 135213所以得到的信息量为 log 2C 5213.21 比特 .4132.5 解:易证每次出现 i 点的概率为i,所以21I (x i )log 2i, i 1,2,3,4,5,6 21I (x1) 4.392 比特I (x2) 3.392 比特I (x3) 2.807 比特I (x4) 2.392比特I (x5) 2.070 比特I (x6) 1.807 比特6i log2i比特H(X)212.398i 1212.6 解: 可能有的排列总数为12!277203! 4! 5!没有两棵梧桐树相邻的排列数可如下图求得,Y X Y X Y X Y X Y X Y X Y X Y图中 X 表示白杨或白桦,它有73种排法, Y 表示梧桐树可以栽种的位置,它有8种排法,所以共有8 *7=1960种排法保证没有553两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为 log2 27720log 2 1960 =3.822比特2.7 解: X=0 表示未录取, X=1 表示录取;Y=0 表示本市, Y=1 表示外地;Z=0 表示学过英语, Z=1 表示未学过英语,由此得p( x0) 3 ,p(x1)4 p( y0)p( x 0) p( y 1 1 3 142 410 p( y 1)1 1 4 ,5 5p( z 0)p( y 0) p(z 14405 5 100 p( z 1)1 13 12 ,25 25(a) p( x0 y 0) p( yp( x1 y 0) p( y1 , 40 x 0)p( x 1) p( y 0 x 1)1 , 50 y 0) p( y 1) p( z 0 y 1)13 , 250 x 0) p( x 0) / p( y0)13 1310/5 84 0 x 1) p( x 1) / p( y0) 1 1 / 152 4 58I ( X ; y 0)p(x0 y p(x 0 y 0) p( x 1 y 0)0) log 2p(x 1 y 0) log 2p( x 0)p( x 1)3 log 2 35log 2 58 8 8 3 8 14 40.4512比特(b) p( x0 z 0)( p( z 0 y 0, x 0) p( y 0 x 0) p( z 0 y 1, x 0) p( y 1x 0)) p(x0) / p( z 0)(19 4 ) 3/1369 10 10 10 4 25 104p( x 1z 0)( p( z 0 y 0, x 1) p( y 0 x 1) p(z 0 y1, x 1) p( y 1 x 1)) p( x1) / p(z 0)(11 2) 1/13 3522 5 4 25104I ( X ; z 0)p( x 0 zp( x 0 z 0)p( x p(x 1 z 0)0) log 21z 0) log 21)p( x 0)p( x6969log 2104104343510435log 21041 40.02698 比特(c) H ( X )3 log 24 1 log 2 40.8113 比特4 3 4H(Y X)p( x 0) p( y 0 x 0) log 2 p( y 0 x 0) p( x 0) p( y 1 x 0) log 2 p( y 1x 0)p( x 1) p( y 0 x1) log 2 p( y 0 x 1)p( x 1) p( y 1 x1) log 2 p( y 1 x1)3 1log 2 10 3 9log 2 10 1 1 log 2 2 11log 2 2 410410 9 4 2 4 20.6017比特2.8 解:令X A,B,Y T,F,R ,则P(T)P(T A)P(A)P(T B)P(B)0.5 p0.3(1p)0.3 0.2 p同理P(F )0.50.2 p,P(R)0.2I ( p) I ( X ; Y)H (Y)H(Y X)(0.30.2p) log2 (0.30.2 p)(0.50.2p) log2 (0.50.2 p)0.2log 2 0.2(0.5 p log2 20.3 plog 21030.2 p log2 50.3(1p) log2103 0.5(1 p) log2 20.2(1p) log2 5)0.3log 2 0.30.5log 2 0.5(0.30.2p) log2 (0.30.2 p)(0.50.2 p) log2 (0.5 0.2 p)令I '( p)0.2 log2(0.50.2 p)0,得p0.50.30.2 pI ( p)max I ( p) p0 .50.03645比特2.9 & 2.12解:令 X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)= log26比特H(X)= H(X 1) = log26=2.585 比特H(Y)= H(X 2+X 3)=2( 1log 2 362log 2363log 2364log 2365log 236 )1log 2 6363623633643656 = 3.2744 比特H(Z)= H(X 1+X 2+X 3)=2( 1 log 2 216 3 log 2 216 6log 2 216 10 log 2 216 15 log 2 216216 216 3 216 6 216 10 216 15 21 216 25 216 27 216 )log 2 21 log 2 log 2 27216 216 25 216= 3.5993 比特所以H(Z/Y)= H(X 3)= 2.585 比特H(Z/X) = H(X 2+X 3)= 3.2744 比特H(X/Y)=H(X)-H(Y)+H(Y/X)= 2.585-3.2744+2.585 =1.8955 比特H(Z/XY)=H(Z/Y)= 2.585 比特 H(XZ/Y)=H(X/Y)+H(Z/XY)=1.8955+2.585=4.4805 比特I(Y;Z)=H(Z)-H(Z/Y)=H(Z)- H(X 3)= 3.5993-2.585 =1.0143 比特I(X;Z)=H(Z)-H(Z/X)=3.5993- 3.2744=0.3249 比特I(XY ;Z)=H(Z)-H(Z/XY)=H(Z)-H(Z/Y)=1.0143 比特I(Y;Z/X)=H(Z/X)-H(Z/XY)=H(X 2+X 3)-H(X3) =3.2744-2.585=0.6894 比特I(X;Z/Y)=H(Z/Y)-H(Z/XY)=H(Z/Y)-H(Z/Y)=02.10 解:设系统输出10 个数字 X 等概 ,接收数字为 Y,9191显然 w( j )Q(i ) p( j i )p( j i )i010 i 110H(Y)=log10H(YX)p( x, y) log 2 p( y x)p( x, y) log2 p( y x)y x 偶y x 奇0p( x) p( x x) log 2 p( x x)p(x) p( y x) log 2 p( y x) i奇y x,奇 x奇511log2 2 5 411log2 81021081比特所以I(X;Y)=log 2 10 1 2.3219比特2.11 解:(a)接收前一个数字为0 的概率81w( 0)q(u i ) p( 0 u i )2i 0I (u1 ;0)log2p(0 u1)1p(1 p) bitslog 21 1 log 2w(0)28(b ) 同理w(00)q(u ) p(00 u ) 41iI (u 1;00)p(00u 1)log 2 (1p)22 2 log 2 (1 p) bitslog 2 w(00)14(c ) 同理 w(000)8q(u i ) p(000 u i )81i 0I (u 1;000) log 2 p(000u 1 ) log 2 (1 p)33 3log 2 (1p)bitsw(000)18(d ) 同理 w(0000 )8q(u i ) p(0000 u i )81((1p)66 p 2 (1 p)2p 4 )i 0p(0000u 1 )(1 p)4I (u 1;0000)log 2w(0000)log 281((1 p)6 6 p 2 (1p) 2p 4 )log 2 8(1 p) 4bits(1 p) 6 6 p 2 (1 p) 2p 42.12 解:见 2.92.13 解:(b)H(YZ/ X)xyzxyzxyzH(Y/ X)1p( xyz)logp( yz / x)1p( xyz) logp( y / x) p(z / xy)11p( xyz) logp(xyz)logp( y / x)x yzp( z / xy)H(Z/ XY)(c)H (Z / XY )p(xy)p( z / xy) log1xyzp(xy)xyzH(Z / X)p(z / xy)1p( z/ xy) log (由第二基本不等式) p(z / x)或H(Z/XY)H(Z/X)p(xy)1p( z / xy) logxyzp(z / xy)p( xy)p( z/ xy) log1p( z / x)xyzp( xy)p( z/ xy) logp(z / x)(由第一基xyzp( z / xy )p( xy)p(z / xy) log e( p(z / x)1)xyzp(z / xy)本不等式)所以H(Z/XY) H(Z/X)(a)H(Y/ X) H(Z / X)H(Y/ X) H(Z/XY) H(YZ/X)等号成立的条件为 p(z / xy) p( z / x) ,对所有 xX , y Y, z Z ,即在给定 X条件下 Y 与 Z 相互独立。
信息论与编码理论-第2章信息的度量-习题解答-20071017
1第2章 信息的度量习 题2.1 同时扔一对质地均匀的骰子,当得知“两骰子面朝上点数之和为5”或“面朝上点数之和为8”或“两骰子面朝上点数是3和6”时,试问这三种情况分别获得多少信息量?解:某一骰子扔得某一点数面朝上的概率是相等的,均为1/6,两骰子面朝上点数的状态共有36种,其中任一状态出现都是等概率的,出现概率为1/36。
设两骰子面朝上点数之和为事件a ,有:⑴ a=5时,有1+4,4+1,2+3,3+2,共4种,则该事件发生概率为4/36=1/9,则信息量为I(a)=-logp(a=5)=-log1/9≈3.17(bit)⑵ a=8时,有2+6,6+2,4+4,3+5,5+3,共5种,则p(a)=5/36,则I(a)= -log5/36≈2.85(bit) ⑶ p(a)=2/36=1/18,则I(a)=-log1/18≈4.17(bit)2.2 如果你在不知道今天是星期几的情况下问你的朋友“明天是星期几”,则答案中含有多少信息量?如果你在已知今天是星期三的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的排序)?解:设“明天是星期几”为事件a :⑴ 不知道今天是星期几:I(a)=-log1/7≈2.81(bit) ⑵ 知道今天是星期几:I(a)=-log1=0 (bit)2.3 居住某地区的女孩中有20%是大学生,在女大学生中有80%是身高1米6以上的,而女孩中身高1米6以上的占总数的一半。
假如我们得知“身高1米6以上的某女孩是大学生”的消息,求获得多少信息量?解:设“居住某地区的女孩是大学生”为事件a ,“身高1米6以上的女孩”为事件b ,则有: p(a)= 0.2,p(b|a)=0.8,p(b)=0.5,则“身高1米6以上的某女孩是大学生”的概率为:32.05.08.02.0)()|()()|(=⨯==b p a b p a p b a p信息量为:I=-logp(a|b)=-log0.32≈1.64(bit)2.4 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男同志:“你是否是红绿色盲?”,他回答“是”或“否”,问这两个回答中各含有多少信息量?平均每个回答中含有多少信息量?如果你问一位女同志,则答案中含有的平均自信息量是多少?解:⑴ 男同志回答“是”的概率为7%=0.07,则信息量I=-log0.07≈3.84(bit) 男同志回答“否”的概率为1-7%=0.93,则信息量I=-log0.93≈0.10(bit)2平均信息量为:H 1=-(0.07×log0.07+0.93×log0.93) ≈0.37(bit/符号) ⑵ 问女同志的平均自信息量:H 2=-[0.05×log0.05+(1-0.05) ×log(1-0.05)] ≈0.045(bit/符号)2.5 如有7行9列的棋型方格,若有两个质点A 和B ,分别以等概率落入任一方格内,且它们的坐标分别为(X A ,Y A )、(X B ,Y B ),但A 、B 不能落入同一方格内。
信息论编码与基础课后题第二章
信息论编码与基础课后题(第二章)————————————————————————————————作者:————————————————————————————————日期:第二章习题解答2-1、试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2、 设某班学生在一次考试中获优(A )、良(B )、中(C )、及格(D )和不及格(E )的人数相等。
当教师通知某甲:“你没有不及格”,甲获得了多少比特信息?为确定自己的成绩,甲还需要多少信息? 解:根据题意,“没有不及格”或“pass”的概率为54511pass =-=P 因此当教师通知某甲“没有不及格”后,甲获得信息在已知“pass”后,成绩为“优”(A ),“良”(B ),“中”(C )和“及格”(D )的概率相同:41score )pass |()pass |()pass |()pass |(=====D P C P B P A P P 为确定自己的成绩,甲还需信息bits 241loglog score score =-=-=P I 3、中国国家标准局所规定的二级汉字共6763个。
设每字使用的频度相等,求一个汉字所含的信息量。
设每个汉字用一个1616⨯的二元点阵显示,试计算显示方阵所能表示的最大信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。
画出状态图并求出各符号稳态概率。
解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。
解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。
1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。
解:(1)3和5同时出现的概率为:1111p(x )=26618⨯⨯= 11I (x )=-l b4.1718bit ∴= (2)两个1同时出现的概率为:2111p(x )=6636⨯= 21I(x )=-lb5.1736bit ∴= (3)两个点数的各种组合(无序对)为: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6) (2,2),(2,3),(2,4),(2,5),(2,6) (3,3), (3,4),(3,5),(3,6) (4,4),(4,5),(4,6) (5,5),(5,6) (6,6) 其中,(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)的概率为1/36,其余的概率均为1/18 所以,1111()156 4.33718183636H X lb lb bit ∴=-⨯-⨯=事件 (4)两个点数之和概率分布为:46781023591112356531244213636363636363636363636x p信息为熵为:122()1() 3.27iii H p x bp x bit ==-=∑(5)两个点数之中至少有一个是1的概率为:311()36p x = 311I(x )=-lb1.1736bit ∴= 2-4.设在一只布袋中装有100个用手触摸感觉完全相同的木球,每个球上涂有一种颜色。
100个球的颜色有下列三种情况: (1)红色球和白色球各50个; (2)红色球99个,白色球1个; (3)红、黄、蓝、白色球各25个。
分别求出从布袋中随意取出一个球时,猜测其颜色所需要的信息量。
解:(1)设取出的红色球为1x ,白色球为2x ;有11()2p x =,21()2p x = 则有:1111()()2222H X lblb =-+=1bit/事件 (2) 1()0.99p x =,2()0.01p x =;则有:()(0.990.990.010.01)H X lb lb =-+=0.081(bit/事件)(3)设取出红、黄、蓝、白球各为1x 、2x 、3x 、4x ,有12341()()()()4pxpx px px ====则有:11()4()244H X lb bit =-=/事件2-5、居住某地区的女孩中有25%是大学生,在女大学生中有75%身高为1.6M 以上,而女孩中身高1.6M 以上的占总数一半。
假如得知“身高1.6M 以上的某女孩是大学生”的消息,问获得多少信息量?解:设女孩是大学生为事件A ,女孩中身高1.6m 以上为事件B ,则p(A)=1/4, p (B)=1/2,p (B|A)=3/4,则 P(A|B)=()()(|)()()p AB p A P B A p B P B ==0.250.7530.58⨯= I (A|B )=log (1/p(A/B))=1.42bit2-6.掷两颗 ,当其向上的面的小圆点数之和是3时,该消息所包含的信息量是多少?当小圆点数之和是7时,该消息所包含的信息量又是多少?解:(1)小圆点数之和为3时有(1,2)和(2,1),而总的组合数为36,即概率为1(3)18p x ==,则1(3)(3) 4.1718I x lbp x lbbit ==-==-= (2)小园点数之和为7的情况有(1,6),(6,1)(2,5)(5,2)(3,4)(4,3),则概率为1(7)6p x ==,则有 1(7) 2.5856I x lb bit ==-= 2-7、设有一离散无记忆信源,其概率空间为1234013338141418X x x x x P ====⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)、求每个符号的自信息量;(2)、信源发出一消息符号序列为{}202120130213001203210110321010021032011223210,求该消息序列的自信息量及平均每个符号携带的信息量。
解:(1)1x 的自信息量为:13I(x )=-lb1.4158bit = 2x 的自信息量为:21I(x )=-lb 24bit =3x 的自信息量为:31I(x )=-lb 24bit =4x 的自信息量为:41I(x )=-lb 38bit =(2)在该消息符号序列中,1x 出现14次,2x 出现13次,3x 出现12,4x 出现6次,所以,该消息序列的自信息量为:I (i x )=14 I (1x )+13 I (2x )+12 I (3x )+6 I (4x )19.8126241887.81bit bit bit bit bit=+++=平均每个符号携带的信息量为:11223344()()log ()()log ()()log ()()log ()H X p x p x p x p x p x p x p x p x =+++31111.41522384481.906b i t=⨯+⨯+⨯+⨯=2-8.试问四进制、八进制脉冲所含的信息量是二进制脉冲的多少倍?解;设二进制、四进制、八进制脉冲的信息量为21()12I X lbbit =-= 41()24I X lb bit == 81()38I X lb bit == 所以,四进制、八进制脉冲信息量分别是二进制脉冲信息量的2倍、3倍。
2-10 在一个袋中放5个黑球、10个白球,以摸一个球为实验,摸出的球不再放进去。
求: (1)一次实验中包含的不确定度;(2)第一次实验X 摸出是黑球,第二次实验Y 给出的不确定度; (3)第一次实验X 摸出是白球,第二次实验Y 给出的不确定度; (4)第二次实验包含的不确定度。
解:(1)一次实验的结果可能摸到的是黑球1x 或白球2x ,它们的概率分别是11()3p x =,22()3p x =。
所以一次实验的不确定度为 121122()(,)(l o g l o g )0.5280.3900.918333333H X H b i t ==-+=+=(2)当第一次实验摸出是黑球,则第二次实验Y 的结果可能是摸到黑球1x 或白球2x ,它们的287.81/45 1.95I =≈ 比特/符号概率分别是 112()7p y x =、215()7p y x =。
所以该事件的不确定度为1112255()()l o g ()(l o g l o g )7777i i iH Y x p y x p y x =-=-+∑ 0.5160.3470.863bit =+=/符号(3)当第一次实验摸出是白球,则第二次实验Y 的结果可能是摸到黑球1y 或白球2y ,它们的概率分别是 125()14p y x =、229()14p y x =。
所以该事件的不确定度为2225599()()log ()(log log )14141414i i iH Y x p y x p y x =-=-+∑0.5300.4100.940bit =+=/符号(4)211220(|)()(|)=()()()() =0.91bit /i i i H Y X p x H Y x p x H Y x p x H Y x ==-+∑符号二次实验B 出现结果的概率分布是p(x,y)=p(黑,黑)= 221,p(x,y)=p(黑,白)= 521,p(x,y)=p(白,黑)=521,p(x,y)=p(白,白)= 921所以二次实验的不确定度为 H(B)= -221log 221-521log521-521log 521-921log 921=0.91bit/符号2-11有一个可旋转的圆盘,盘面上被均匀地分成38份,用1,2,、、、,38数字标示,其中有2份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上指针指向某一数字和颜色。
(1)若仅对颜色感兴趣,则计算平均不确定度;(2)若对颜色和数字都感兴趣,则计算平均不确定度; (3)如果颜色已知时,则计算条件熵。
解:令X 表示指针指向某一数字,则X={1,2, (38)Y 表示指针指向某一种颜色,则Y={绿色,红色,黑色} Y 是X 的函数,由题意可知()()i j i p x y p x = (1)仅对颜色感兴趣,则 H(c)=—322log 322—2⨯3218⨯log 3218 =0.2236+1.0213 =1.245bit (2)对颜色和数字都感兴趣,则H(n,c)=H(n)=38⨯(-381)log 381 =-3010.05798.1- =5.249bit (3)如果颜色已知时,则H (n|c )=H(n,c)-H(h)=5.249-1.245=4.004bit2-12、两个实验X 和Y ,123{,,}X x x x =,123{,,}Y y y y =,联合概率(,)i j ij r x y r =为1112132122233132337/241/2401/241/41/2401/247/24r r r r r r r r r ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)如果有人告诉你X 和Y 的结果,你得到的平均信息量是多少?(2)如果有人告诉你Y 的结果,你得到的平均信息量是多少?(3)在已知Y 的实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少? 解:(1)、3311(,)(,)log (,)iji j i j H X Y p x yp x y ===-∑∑7711112log 4log log 2424242444=-⨯-⨯- 2.3bit /=符号 (2)、1231()()()3py py py === 3111111()()log ()(,,)3log 1.58bit/33333i i i H Y p y p y H ==-==-⨯=∑符号(3)、(|)(,)()2.31.580.72b i t /HX Y HXY HY =-=-=符号()(,)log ()i j i j ijH X Y p x y p x y =-∑(,)(,)log()71171124244(2log 4log log )111242443330.1120.50.1040.716i j i j ijj p x y p x y p y bit=-=-⨯+⨯+=++=∑ 2-13有两个二元随机变量X 和Y ,它们的联合概率如右图所示。