实数知识点汇总及经典练习题
实数知识点及典型例题
实数知识点及典型例题一、实数知识点。
(一)实数的分类。
1. 有理数。
- 整数:正整数、0、负整数统称为整数。
例如:5,0,-3。
- 分数:正分数、负分数统称为分数。
分数都可以表示为有限小数或无限循环小数。
例如:(1)/(2)=0.5,(1)/(3)=0.333·s。
- 有理数:整数和分数统称为有理数。
2. 无理数。
- 无理数是无限不循环小数。
例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。
3. 实数。
- 有理数和无理数统称为实数。
(二)实数的相关概念。
1. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 实数与数轴上的点是一一对应的关系。
2. 相反数。
- 只有符号不同的两个数叫做互为相反数。
a的相反数是-a,0的相反数是0。
例如:3与-3互为相反数。
- 若a、b互为相反数,则a + b=0。
3. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。
例如:| 5| = 5,| -3|=3。
4. 倒数。
- 乘积为1的两个数互为倒数。
a(a≠0)的倒数是(1)/(a)。
例如:2的倒数是(1)/(2)。
(三)实数的运算。
1. 运算法则。
- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。
2. 运算律。
- 加法交换律:a + b=b + a。
- 加法结合律:(a + b)+c=a+(b + c)。
- 乘法交换律:ab = ba。
(完整版)实数知识点及例题
实数习题集【知识要点】1.实数分类:2.相反数:互为相反数b a ,0=+b a 4.倒数:互为倒数没有倒数.b a ,0;1=ab 5.平方根,立方根:±.==x ,a x a x 记作的平方根叫做数则数若,2a 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.【课前热身】1、36的平方根是 ;的算术平方根是 ;162、8的立方根是 ;= ;327-3、的相反数是 ;绝对值等于的数是37-34、的倒数的平方是 ,2的立方根的倒数的立方是。
5、的绝对值是 ,的绝对值是 。
211-6、9的平方根的绝对值的相反数是 。
7的相反数是 ,的相反数的绝对值是。
+-8的相反数之和的倒数的平方为 。
--+【典型例题】例1、把下列各数分别填入相应的集合里:2,3.0,10,1010010001.0,125,722,0,1223π---∙- 有理数集合:{ };无理数集合:{ };负实数集合:{ };例2、比较数的大小(1)(2)2332与6756--与例3.化简:实数有理数无理数整数(包括正整数,零,负整数)分数(包括正分数,负整数)正无理数负无理数)0(>a 3.绝对值:=a a0a -)0(=a )0(<a(1)233221-+-+-(2+例4.已知是实数,且有,求的值.b a ,0)2(132=+++-b a b a ,例5 若|2x+1|与互为相反数,则-xy 的平方根的值是多少?x y 481+总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例6.已知为有理数,且,求的平方根b a ,3)323(2b a +=-b a +例7. 已知实数x 、y 、z 在数轴上的对应点如图试化简:。
x zx y y z x z x z ---++++-【课堂练习】1.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数.2.如果,则是一个 数,的整数部分是 .102=x x x 3.的平方根是 ,立方根是 .644.的相反数是 ,绝对值是 .51-5.若 .==x x 则66.当时,有意义;_______x 32-x 7.当时,有意义;_______x x -118.若一个正数的平方根是和,则,这个正数是 ;12-a 2+-a ____=a 9.当时,化简;10≤≤x __________12=-+x x 10.的位置如图所示,则下列各式中有意义的是( ).b a , A 、B 、C 、D 、b a +b a -ab ab -11.全体小数所在的集合是( ).A 、分数集合B 、有理数集合C 、无理数集合D 、实数集合12.等式成立的条件是( ).1112-=+⋅-x x x A 、B 、C 、D 、1≥x 1-≥x 11≤≤-x 11≥-≤或x 13.若,则等于( ).64611)23(3=-+x x A 、B 、C、D 、214141-49-14.计算:(1) (221--4-(3(4) 24+-+-++81214150232-+-ab15.若,求的值.054=-++-y x x xy16.设a 、b 是有理数,且满足,求的值(21a +=-b a17.若,求的值。
实数知识点及例题
实数习题集【知识要点】1.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数易错题分类汇总典型例题一:计算1.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是【答案】-1 2. ()()212321-+-+⎪⎭⎫ ⎝⎛--π的值为【答案】13.下列计算中,正确的是( )A .020= B .2a a a =+C3=±D .623)(a a =【答案】D4.下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b =典型例题二:估算 1.82cm 接近于( )实数有理数无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数)正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<aA .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 【答案】C2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D典型例题三:应用题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.2.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 【注:销售利润率=(售价—进价)÷进价】 【答案】40%典型例题四:信息与推断题1.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 2.观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 3.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C4.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C . 【答案】210典型例题五:比较大小10 -1 a b B A1. 31.0与1.02.331与213. 215--与-2 4. 2003-2002与2002-2001作业:设2的整数部分为a ,小数部分为b ,则1+2a b -2b =第三讲 平移、旋转与对称专题例题精讲1. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31), D .(40),随堂练习1下列四张扑克牌图案,属于中心对称的是( ).2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个例题精讲2将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。
实数知识点总结及典型例题练习
实数知识点总结考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 -a (a <0) ;注意a 的双重非负性:a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
实数知识点及例题
实数知识点及例题一、实数的概念实数是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数。
例如,π(圆周率)、根号 2 等都是无理数。
而像 3、-5、025 等则是有理数。
二、实数的分类1、按定义分类:有理数:整数和分数。
无理数:无限不循环小数。
2、按性质分类:正实数:大于 0 的实数,包括正有理数和正无理数。
负实数:小于 0 的实数,包括负有理数和负无理数。
三、实数的基本性质1、实数的有序性:任意两个实数 a 和 b,必定有 a > b、a = b 或a <b 三种关系之一成立。
2、实数的稠密性:两个不相等的实数之间总有另一个实数存在。
3、实数的四则运算:实数的加、减、乘、除(除数不为 0)运算满足相应的运算律。
四、数轴数轴是规定了原点、正方向和单位长度的直线。
实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
例如,在数轴上表示 2 的点在原点右侧距离原点 2 个单位长度。
五、绝对值实数 a 的绝对值记作|a|,定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a。
绝对值的性质:1、|a| ≥ 0,即绝对值是非负的。
2、若|a| =|b|,则 a = ±b。
例如,|3| = 3,|-5| = 5。
六、相反数实数 a 的相反数是 a,它们的和为 0,即 a +(a) = 0。
例如,5 的相反数是-5,它们的和为 0。
若两个实数的乘积为 1,则这两个数互为倒数。
非零实数 a 的倒数是 1/a。
例如,2 的倒数是 1/2,-3 的倒数是-1/3。
八、实数的运算1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2、减法法则:减去一个数,等于加上这个数的相反数。
3、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
实数知识点归纳及典型例题
第十三章实数----知识点总结一、算术平方根1.算术平方根的定义:一般地,如果的等于a ,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做.规定:0的算术平方根是0.也就是,在等式a x =2(x ≥0)中,规定a x =。
理解:a x =2(x ≥0)a x =a 是x 的平方x 的平方是ax 是a 的算术平方根a 的算术平方根是x 2.a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
3.当被开方数扩大(或缩小)时,它的算术平方根也扩大(或缩小);4.夹值法及估计一个(无理)数的大小(方法:)二、平方根1.平方根的定义:如果的平方等于a ,那么这个数x 就叫做a 的.即:如果,那么x 叫做a 的. 理解:a x =2<—>a x ±=a 是x 的平方x 的平方是ax 是a 的平方根a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。
3.平方与开平方:±3的平方等于9,9的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个; 联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。
2.一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。
理解:a x =3<—>3a x =a 是x 的立方x 的立方是ax 是a 的立方根a 的立方根是x3.一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。
《第6章实数》知识清单含例题+期末专题复习试卷(含答案).doc
2018年七年级数学下册实数知识清单+经典例题+专题复习试卷1、 定义:如果一个正数X 的平方等于a,即工=。
那么,这正数x 叫做a 的算术平方根。
记作氐 读作“根号屮。
a 叫做被开 算术平方根*方数,规定0的算术平方根还是0o2、 性质:双重非员性(a h 0,需X 0 )。
负数没有算术平方根。
'3、J 产=\a\ (a是任意数力(7^)2 =a (B 是非员数)。
1、定义:如果一个数X 的平方等于4即乂2 =4。
那么,这个X叫做a 的平方根。
记作土需,读作“正、员根号屮。
a 叫做被幵 方数。
规定0的算术平方根还是0o2、 性质:(1)正数有两个平方根,它们互为相反数。
(2) 0的平方根是0。
员数没有平方根。
3、 未知数次数是两次的方程,结果一般都有两个值。
72^1.414, 73^1.732,少恐2.236, J7俎26461、走义:如果一个数x 的立方等于匕 即x 3 =a o 那么,这个x 叫做a 的立方根。
记作砺,读作“三次根号护。
a 叫做被开方数。
2、性质:(1)正数的立方根是正数,员数的立方根是员数,0的立方根是0。
(2)1卜a 取任意数(3) (佝=° J分数(有理数和分数是相同的概念)rI 无限循环小数'1、开方开不尽的方根无理数无限不循环小数彳2、圆周率兀以及含有兀、3、具有特定结构的数(0.010010001……)有理数』r 正整数员整数(可以看成分母是1的分数)正实数o员实数有限小数平方根立方根【经典例题1】1、下列说法错误的是()4、若 a 2=4, b 2=9,且 ab<0,B. ±55、 设边长为3的正方形的对角线长为a.下列关于a 的四种说法: ®a 是无理数; ②a 可以用数轴上的一个点來表示;③3<a<4; ④a 是18的算术平方根.其中,所有正确说法的序号是 ( )A.①④B.②③C.①②④D.①③④ 6、 已知实数x 、y 满足心- l+|y+3|=0,则x+y 的值为( ) A. -2B. 2C.4D. -4【经典例题3】7、 一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是( )A. a+1B. a 2+lC.寸/+1Va+1f x 二 2f inx+ny=88、 已知■是二元一次方程组{、的解,则加・n 的算术平方根为( )\ y=l[nx - iny^lA. ±2B. V2C. 2D. 49、 有一个数值转换器,原理如下:A. 5是25的算术平方根 C. (-4)2的平方根是一4 2、下列各式中,正确的是()B. 1是1的一个平方根 D. 0的平方根与算术平方根都是0B.-佇二 _ 3C.寸(±3严二 ±3D.佇二 ±33、716的平方根是(A. ±2【经典例题2】B. 2C. — 2D. 16C. 5A. 2B. 8当输入的x=64时,输出的y 等于()【经典例题4】10、平方等于16的数是________ ;立方等于本身的数是_______________________ •11、一个数的立方根是4,这个数的平方根是______________ ,12、若一2x ra_n y2与3x7^是同类项,则m-3n的立方根是_____________ .【经典例题5】13、求x 的值:25(X+1)2=16;14、求y 的值:(2y-3) 2 - 64=0;15、计算:^4-23-|-2|X(-7+5) 16、计算:舗一血+ 乂-3)' -磁-2【经典例题6】17、已知实数a, b在数轴上的位置如图所示,化简:寸(fl) 4-1)并|a・b|. -------- ------- 1---------------- 1 ----- >・ 1^0 b 118、阅读理解7 >^<75 <79* 即2<V5<3» A1<V5-1<2-・••厉_1的整数部分为1,小数部分为厉_2・解决问题:己知a是JI7-3的整数部分,D是的小数部分,求(-a)"+(b + 4)2的平方根.参考答案1、c;2、B3、A4、B5、C6、A7、B8、C9、D10、±4, 0, ±111、&-812、213、x = -0. 2, x=-l. 8;14、y=5. 5 或y= - 2. 5;15、10 ;16、-2;17、解:由数轴上点的位置关系,得-l<a<0<b<l.原式二a+1+2 - 2b - b+a=2a - 3b+3.18、由题意,得幺=1,i = T17-4 所以(一幺尸 + 0+4)2 = (-1尸 + (何_4+4)2 = 16 即+ @ + 4)2的平方根为±牛2018年 七年级数学下册 实数 期末复习试卷一、选择题:1、下列语句中正确的是(C. 9的算术平方根是±3D. 9的算术平方根是3设边长为3的正方形的对角线长为a.下列关于a 的I 川种说法: ①a 是无理数; ②a 可以用数轴上的一个点來表示; @3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是() A.①④B.②③C.①②④ D.①③④7、负的算术平方根是( )A. ±6B. 6C. ±A /6D. V68、下列各数中,3. 14159,-饭,0.3131131113- (2016春•潮州期末)下列各式表示正确的是9、己知实数x 、y 满足Jx=l+1 y+31二0,则x+y 的值为()10、若正数a 的算术平方根比它本身大,则( )A.・9的平方根是・3B. 9的平方根是3 2、下列结论正确的是(A- -{(-6)2二-6 B.(~{5)2二9 C. 7(~16) 2=± 16 D.-(2,16 ^25A- 4、 下列关于祈的说法中,错误的是( 灵是8的算术平方根 B. 2<品<3 下列各组数中互为相反数的一组是()C. 78= ±2^2D.灵是无理数A. ■⑵与寻PB.・4与・{(-4)2C.D. P 与法5^如果际〒二2. 872, ^3700 =28.72,则勺0・023厂(A. 0. 2872B. 28. 72C. 2. 872D. 0.02872 6、 B. ±725=5A. - 2B. 2C. 4( )lk •估计— 1在()A. 0〜1之间•B. 1〜2之间C. 2〜3之间D. 3〜4之间12、实数纸b在数轴上对应点的位置如图,则|a-b| -肯的结果是()•••Aa b0A. 2a - bB. b - 2aC. bD. - b二、填空题:13、(-9)2的算术平方根是_.14、如图,在数轴上点A和点B之间的整数是_________ .15^ 己知(x - 1) 2二3,则x= _ .16、如杲丽二1.732, A/30 =5.477,那么0. 0003的平方根是________ .17、若3、b互为相反数,c、d互为负倒数,则石匸尹+畅= _______________ •18、已知a, b为两个连续的整数,且a<V8<b,则a+b二____________ .三、解答题:19、求x 的值:9(3x - 2尸二64. 20、求x 的值:(5- 3x?=—4921、计算:7132-12222、计算:(亦尸+旷爾一加2一炉.23、已知x・1的平方根为±2, 3x+y・1的平方根为±4,求3x+5y的算术平方根.24、已知2a-l的平方根是±3, 3a+b_9的立方根是2, c是妬的整数部分,求a + 2D+f的值•25、阅读下面的文字,解答问题:大家知道迈是无理数,而无理数是无限不循环小数,因此迈的小数部分我们不可能全部写出来,于是小明用屁-1来表示典的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为近的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:・・・2'<7<3,即2<听<3,・••听的整数部分为2,小数部分为听・2.请解答:(1)Vio的整数部分是__________ ,小数部分是 _________ .(2)如果衍的小数部分为a, 荷的整数部分为b,求a+br/^的值;(3)己知:x是3+^5的整数部分,y是其小数部分,请直接写出X- y的值的相反数.26、若实数a, b, c 在数轴上所对应点分别为A, B, C, a 为2的算术平方根,b 二3, C 点是A 点关 于B点的对称点,(1) 求数轴上AB 两点之间的距离; (2) 求c 点对应的数;27、已知字母a 、b 满足亦二+的_21 1 1 1~ab @ + 1)@ + 1)@+2)@ + 2)… @ + 2011)@ + 2001)第X 页共1()页(3) 3的整数部分为x, c 的小数部分为y,求2x^+2》的值(结果保留带根号的形式)的值.1、 D2、 A3、 C4、 C5、 A6、 C7、 D8、 C9、 A 10、 11、 12、 C 13、 9.14、 答案为:2. 15、 答案为:土近+1. 16、 ±0.01732. 17、 -118、 答案为:5.149 19、 开平方得:3 (3x-2)二±8 解得:Xi=—, x 2= - -T .9920、§或兰7 2116 T -10; 23、5 24、a=5, b 二2, c 二7, a + 2&+u 二 16・(2) V4<5<9,・・・2<任<3,即沪旋 ・2, V36<37<49, A6<V37<7,即 b 二6,贝lj a+b ・ 丽二4;(3) 根据题意得:x=5, y=3+{^ - 5二- 2,・;x - y=7 - 其相反数是A /5 - 7.26、(1) 3; (2) 6;72 ⑶尸2—屈.21、参考答案21、22、25、 解: (1) V10的整数部分是3,小数部分是V10- 3;故答案为:3; V10- 3;•解;、「7/o,丑-1~ o且-f 二o'弋鳥解得伫°b十@H"賊斗3化X昭十• • •十莎丽莎和 -丄丄亠」一-2 +A3十3*卩十・・・十二卜亍+土一土+》* +・・•十二 /_ Zo/27。
实数知识点总结及练习题
复习:实数知识点总结一、平方根:如果a x =2,那么x 叫做a 的平方根(或二次方根)。
记作a x ±=性质:(1)平方根号里的数是非负数,即0≥a(2)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
例 1、36的平方根是 ;16的算术平方根是 .2、如果102=x ,则x 是一个 数,x 的整数部分是 .3、=22 ,()23-= ,213= ,()=-225 ,20= , 综上所述,=2a .4、()=29 ,()=236 ,()=⎪⎭⎫ ⎝⎛-227 ,()=20 , 综上所述,()=2a .二、立方根:如果a x =3,那么x 叫做a 的立方根(或三次方根)。
记作3a x =性质:(1)立方根号里的数是任意实数(2)任意实数的立方根只有一个,且符号相同例 1、8的立方根是 ;327-= .2、=-3343 ,=-3343 ,则33433a3、37-的相反数是 .4、=33a ,()=33a .三、实数分类⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧ 0无限不循环小数负无理数正无理数无理数无限不循环小数有限小数或负分数正分数分数负整数正整数整数有理数实数说明:(1)实数与数轴上的点一一对应。
(2)相反数:a ,b 是实数且互为相反数b a b a -==+⇔,0(3)绝对值:设a 表示一个实数,则⎪⎩⎪⎨⎧<-=>=时当时当时当0 000 a a a a a a例 1、把下列各数分别填入相应的集合里:()2,2,3.0,1010010001.0,125,722,0,123-----•π 有理数集合:{ };无理数集合:{ };负实数集合:{ };2、2-的绝对值是,11-的绝对值是 .3+的相反数是,-的相反数的绝对值是 .4、计算:22322+-测试题:一、选择题:1、实数38 2π 34 310 25 其中无理数有()A 、 1个B 、 2个C 、 3个D 、 4个2、如果162=x ,则的值是()A 、 4B 、 -4C 、 4±D 、 2±3、下列说法正确的是()A 、 25的平方根是5B 、22-的算术平方根是2C 、 8.0的立方根是2.0D 、65是3625的一个平方根 4、下列说法其中错误的有( )个⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数⑷两个无理数的和还是无理数 (5)两个无理数的积还是无理数A 、 3B 、 1C 、 4D 、 25、如果x x -=2成立的条件是()A 、0≥xB 、0≤xC 、0>xD 、0<x6、下列说法错误的是()A 、2a 与2)(a -相等 B 、a 与a -互为相反数C 、3a 与3a -是互为相反数D 、a 与a -相等 7、b a ,的位置如图所示,则下列各式中有意义的是( ).A 、b a +B 、b a -C 、abD 、a b - 8、16的平方根是( ) A. 4 B. -4 C. 4± D. 2±9、下列说法:① 任意一个数都有两个平方根; ② 3的平方根是3的算术平方根 ; ③ -125的立方根是5±; ④23是一个分数; ⑤ 32-无意义。
(完整版)实数知识点和典型例题练习题总结(超全面)
(4)《实数》知识点总结及典型例题练习题第一节、平方根1.平方根与算数平方根的含义平方根:如果一个数的平方等于,那么数x 就叫做的平方根。
即,记作x=a a a x =2a±算数平方根:如果一个正数x 的平方等于a ,那么正数x 叫做a 的算术平方根,即x 2=a ,记作x=a 。
2.平方根的性质与表示 ⑴表示:正数的平方根用表示,叫做正平方根,也称为算术平方根,a a ±a 叫做的负平方根。
a -a ⑵一个正数有两个平方根:(根指数2省略)a ±0有一个平方根,为0,记作00=负数没有平方根⑶平方与开平方互为逆运算 开平方:求一个数的平方根的运算。
a == ()a a =2⎩⎨⎧-a a 00<≥a a ()a a =20≥a ⑷的双重非负性:且 (应用较广)a 0≥a 0≥a 例: 得知y x x =-+-440,4==y x ⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。
区分:4的平方根为 的平方根为 4开平方后,得____4________4=____(6)若,则0>>b a ba >(7)))0,0(0,0>≥=≥≥=⨯b a b a ba b a ab b a 典型习题:(1)求算数平方根与平方根1:求下列数的平方根36 0.09 (-4)² 0 102:求eg1中各数的平方根(2)解简单的二次方程3:281250x -= 4 :4(x+1)2=8(3)被开方数的意义5:若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1)6:实数a 在数轴上的位置如图所示,化简:2)2(1-+-a a (4):有关x 的取值范围目前中考的所有考点考点:例题:求使得下列各式成立的x 的取值范围7:53-x 8: 当______m 时,m -3有意义;当______m 时,33-m 有意义9:x-1110.等式1112-=+⋅-x x x 成立的条件是( ).A 、1≥xB 、1-≥x C 、11≤≤-x D 、11≥-≤或x(5)非负性知识点:总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.10.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.11: .已知实数a 、b 、c 满足,+ =0,,求a+b+c 的值.2)21(-c 13.若,求x ,y 的值。
实数知识点汇总及经典
第二章实数一、 平方根、立方根仁算术平方根: 一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数 x 叫做a 的算术平方根,记作 a 。
0的算术平方根为0;从定义可知,只有当a> 0时,a 才有算术平方根。
2. 平方根:一般地,如果一个数x 的平方根等于a,即x 2=a ,那么数x 就叫 做a 的平方根。
正数有两个平方根(一正一负)它们互为相反数; 0只有一个平方根,就是它本 身;负数没有平方根。
3•正数的立方根是正数;0的立方根是0;负数的立方根是负数。
(2)若b 3=a ,贝U b 叫做a 的立方根。
a(a 0) a(a 0).、实数1 •实数的分类(1)按实数的定义分类: 2、 实数的运算(1) 有理数的运算定律在实数范围内都适用, 其中常用的运算定律有加法交 换律、乘法交换律、加法结合律、乘法分配律、乘法结合律。
(2) 在实数范围内进行运算的顺序:先算乘方、开方,再算乘除,最后算加 减。
运算中有括号的,先算括号内的,同一级运算从左到右依次进行。
3、 实数的大小比较常用方法:数轴表示法、作差法、平方法、估值法。
(1) 在数轴上表示两个数的点,右边的点表示的数大,左边的点表示的数小。
(2) 正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对 值大的较小。
(3)设a ,b 是任意两实数,若 a-b>0,则 a>b; 若 a-b=0则 a=b; 若 a-b<0,则 a<b 。
4.⑴.a . b ab a 0,b 0 a a..b \b (a 0, b 0)524、数轴(1) 规定了原点、正方向和单位长度的直线叫做数轴。
(2) 数轴的三要素为原点、正方向和单位长度。
数轴上的点与实数 对应 所有的有理数都可以用数轴上的点表示,但数轴上的点所表示的不都是有理 数。
5、相反数、倒数、绝对值(1) 、只有符号不同的两个实数,其中一个叫做另一个的相反数。
第六章--实数(知识点+知识点分类练习)
【知识要点】被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如.25 5, 2500 50.一、算数平方根算数平方根的定义:一般的,如果一个非负数x的平方等于a,即x2=a ,(a>0),那么这个非负数x叫做a的算术平方根。
a的算术平方根记为谄,读作“根号a”,a叫做被开方数。
求一个正数a的平方根的运算叫做开平方。
1.0的算术平方根是02. 被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
3. 一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
4. 负数在实数系内不能开平方。
二、平方根平方根的定义:如果一个数x的平方等于a ,即x2=a,那么这个数x就叫做a的平方根,求一个数a的平方根的运算,叫做开平方。
平方根的性质:一个正数有2个平方根,它们互为相反数,其中正的平方根就是这个数的算数平方根;0只有1个平方根,它是0;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。
三、立方根立方根的定义:如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根或三次方根,求一个数的立方根的运算叫做开立方,a的立方根记为鴛读作“三次根号a”,其中a是被开方数。
立方根的性质:每个数a都只有1个立方根。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
四、实数1. 无理数的定义:无限不循环小数叫做无理数。
2. 实数的定义:有理数和无理数统称实数。
3. 实数的分类:整数宀拓有理数八”有限小数或无限循环小数 实数 分数无理数无限不循环小数像有理数一样,无理数也有正负之分。
例如2 ,3 3 , 是正无理数, 2, 3 3, 是负无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:4. 实数与数轴上的点的对应关系:实数与数轴上的点是 -- 对应的。
5. 有关概念:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的意义相同。
实数概念例题和知识点总结
实数概念例题和知识点总结一、实数的概念实数,是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数,也称为无限不循环小数,不能写作两整数之比。
例如,π(圆周率)约等于 31415926就是一个无理数,因为它的小数部分是无限不循环的。
再比如√2(根号 2)约等于 141421356也是无理数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
二、实数的分类1、按定义分类实数可以分为有理数和无理数。
有理数又可以分为整数和分数。
整数包括正整数、0、负整数;分数包括正分数、负分数。
无理数就是无限不循环小数。
2、按正负分类实数可以分为正实数、0、负实数。
正实数包括正有理数(正整数、正分数)和正无理数。
负实数包括负有理数(负整数、负分数)和负无理数。
三、实数的性质1、实数的相反数实数 a 的相反数是 a,0 的相反数是 0。
例如,5 的相反数是-5,π 的相反数是π。
2、实数的绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
例如,|5| = 5,|-5| = 5 ,|0| = 0 。
3、实数的倒数若实数 a 不为 0,则 a 的倒数为 1/a 。
例如,5 的倒数是 1/5 ,-2 的倒数是-1/2 。
4、实数的运算实数的运算遵循加、减、乘、除、乘方、开方等运算规则。
加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:ab = ba乘法结合律:(ab)c = a(bc)乘法分配律:a(b + c) = ab + ac在进行实数运算时,要注意先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里的。
四、实数的大小比较1、数轴比较法在数轴上,右边的点表示的数总比左边的点表示的数大。
2、差值比较法设 a、b 是两个实数,若 a b > 0,则 a > b;若 a b = 0,则 a = b;若 a b < 0,则 a < b 。
实数知识点及例题
实数习题集【知识要点】 1.定义实数(R ):包括有理数和无理数。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
有理数(Q):整数(Z)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零3种数。
无理数:无理数是指实数范围内不能表示成两个整数之比的数。
简单的说,无理数就是10进制下的无限不循环小数。
如圆周率π、√2等。
2.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数 0;1=ab 没有倒数.5.平方根:①如果一个正数X 的平方等于A ,那么这个正数X 就叫做A 的算术平方根。
②如果一个数X 的平方等于A ,那么这个数X 就叫做A 的平方根。
③一个正数有2个平方根,它们互为相反数,0的平方根为0,负数没有平方根。
④求一个数A 的平方根运算,叫做开平方,其中A 叫做被开方数。
立方根:①如果一个数X 的立方等于A ,那么这个数X 就叫做A 的立方根。
②正数的立方根是正数/0的立方根是0/负数的立方根是负数。
③求一个数A 的立方根的运算叫开立方,其中A 叫做被开方数。
6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 实数的有关概念(1)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意1:上述规定的三要素缺一个不可,2:实数与数轴上的点是一一对应的,3:数轴上任一点对应的数总大于这个点左边的点对应的数.)(2)倒数实数a (a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);注意:零没有倒数.知识点1:平方根、算术平方根、立方根若x 2=a ,则x 叫做a 的平方根。
记作,而正的平方根叫做算术平方根知识点2:零指数、负整指数幂a 0=1(a≠0);(a≠0)知识点3:科学记数法、近似数、有效数字实数有理数无理数整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<a把一个数写成a×10n (1≤a <10,n 是整数)的形式一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位,四舍五入得到的数从左边第一个非零数字起到末位数字止,所有的数字叫做这个近似数的有效数字 知识点4:三种重要的非负数(绝对值、偶次方、算术平方根)知识点5:常见的几种无理数(开方开不尽的数、含圆周率的数、无限不循环的数) 知识点6:实数的运算 实数的运算法则(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
中考数学知识点总结 实数 (6大知识点+例题) 新人教版
中考数学知识点总结 实数 (6大知识点+例题) 新人教版基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
《实数》知识点及典型例题
6
3
)
C、 -9=-3
D、
1 1 16 =4 9 3 ) ) )
5、一个数的平方根和它的立方根相等,则这个数是 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ( A、1 B、0 C、1 或 0 D、1 或 0 或-1 6、已知 x+10+ y-13=0,则 x+y 的值是 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ( A、13 B、3 C、-3 D、23 7、两个连续自然数,前一个数的算术平方根是 x,则后一个数的算术平方根是 · · · · · · · · · ( A、x+1 2 A、 3
· 1 24、在- ,π ,0, 2,-22,2.121121112„(两个 2 之间依次多一个 1),0. 3 。 3
(1)是有理数的有: (2)是无理数的有: (3)是整数的有: (4)是分数的有:
; ; ; 。
5
25、跳伞运动员跳离飞机,在未打开降落伞前,下降的高度 d(米)与下降的时间 t(秒)之间有关系式:t= (不计空气阻力) (1)填表: 下降高度 d(米) 下降时间 t(秒) (2)若共下降 2000 米,则前 500 米与后 1500 米所用的时间分别是多少? 20 80 245 320
考点六、实数非负性的应用 1.已知:
3a b | a 49 | a7
2
0 ,求实数 a,b 的值。
2.已知(x-6) +
七年级下册实数基础知识总结及常见练习
七年级下册实数基础知识总结及常见练习一、实数的概念和性质1. 实数的定义实数是包括有理数和无理数在内的数的集合。
2. 实数的分类实数可以分为有理数和无理数两类。
有理数是可以表示为两个整数之比的数,无理数是不能表示为两个整数之比的数。
3. 实数的性质- 实数满足传递性,即若a < b且b < c,则a < c。
- 实数满足加法和乘法的结合律、交换律和分配律。
- 实数满足相反数存在性,即对于任意实数a,都存在一个实数-b,使得a + (-b) = 0。
- 实数满足乘法逆元存在性,即对于任意非零实数a,都存在一个实数1/a,使得a × (1/a) = 1。
二、实数的运算1. 实数的加法和减法实数的加法满足交换律和结合律。
两个实数相加得到的实数称为它们的和。
减法可以看作是加法的逆运算。
2. 实数的乘法和除法实数的乘法满足交换律和结合律。
两个实数相乘得到的实数称为它们的积。
除法可以看作是乘法的逆运算。
三、实数的比较与排序1. 实数的大小比较实数可以通过比较大小来确定它们的相对大小关系。
常用的比较符号有小于号(<)、大于号(>)、小于等于号(≤)和大于等于号(≥)。
2. 实数的排序实数可以通过大小比较来进行排序。
从小到大排列实数可以用升序表示,从大到小排列实数可以用降序表示。
四、实数的常见练1. 给出下列实数的有理数和无理数表示形式:π,√5,-3,0.25。
2. 计算下列实数的和:-2.5 +3.7。
3. 计算下列实数的差:4.2 - (-1.8)。
4. 计算下列实数的积:0.6 × (-2.5)。
5. 计算下列实数的商:-1.5 ÷ 0.5。
五、总结本文总结了七年级下册实数基础知识,包括实数的定义和分类、实数的性质、实数的运算、实数的比较与排序,并提供了常见练习题供练习。
掌握实数的基础知识对于数学的学习和应用具有重要意义。
实数知识点和典型例题练习题总结(超全面)
实数知识点和典型例题练习题总结(超全面).doc实数知识点和典型例题练习题总结(超全面)引言实数是数学中最基本的数的概念之一,它包括有理数和无理数。
掌握实数的知识点对于解决各种数学问题至关重要。
本文档旨在全面总结实数的知识点和典型例题,以帮助学生深入理解和掌握实数的概念、性质和运算。
实数的定义与分类实数的定义实数是可以在数轴上表示的数,它包括有理数和无理数。
有理数有理数是可以表示为两个整数的比的数,即形式为 ( \frac{p}{q} ) 的数,其中 ( p ) 和 ( q ) 是整数,且 ( q \neq 0 )。
无理数无理数是不能表示为两个整数比的实数,例如圆周率 ( \pi ) 和黄金分割比 ( \phi )。
实数的性质有序性实数具有有序性,即对于任意两个实数 ( a ) 和 ( b ),要么 ( a < b ),要么 ( a > b ),或者 ( a = b )。
完备性实数的完备性指的是,任意实数的上界和下界都存在极限点。
稠密性实数具有稠密性,即在任意两个不同的实数之间,都存在无穷多个实数。
实数的运算加法实数的加法满足交换律和结合律。
减法实数的减法是加法的逆运算。
乘法实数的乘法同样满足交换律、结合律和分配律。
除法实数的除法是乘法的逆运算,但除数不能为零。
乘方实数的乘方表示将一个数自乘若干次。
开方实数的开方是乘方的逆运算,表示求一个数的 ( n ) 次根。
典型例题例题1:实数的比较给定两个实数 ( a = \sqrt{2} ) 和 ( b = \sqrt{3} ),比较它们的大小。
解答:由于 ( 2 < 3 ),因此 ( \sqrt{2} < \sqrt{3} ),即 ( a < b )。
例题2:实数的运算计算 ( (-3)^2 + \pi - \frac{1}{2} ) 的值。
解答:根据实数的运算法则,我们有 ( (-3)^2 = 9 ),所以 ( 9 + \pi - \frac{1}{2} )。
实数全章知识点+例题+练习
第二章 实数实数主要知识点【无理数】(1)无限不循环小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。
在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)开方开不尽的数,如:39,5,2等;(3)特殊结构的数:如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π(2)有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
练习:(1)下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_____;是无理数的有______。
(填序号) (2)有五个数:0.125125…,0.1010010001…,-π,4,32其中无理数有 ( )个A 2B 3C 4D 5【平方根】如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
因此:1.当a=0时,它的平方根只有一个,也就是0本身;2.当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
3.当a <0时,也即a 为负数时,它不存在平方根。
练习:(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。
【算术平方根】(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a”,其中,a 称为被开方数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 实数知识点汇总及经典练习题第六章 实数 知识点归纳一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定结构的数,如0.1010010001…等;(3)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; 3. 实数与数轴上点的关系:实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大二、实数的倒数、相反数和绝对值 (3分)1、相反数从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、 无限小数是有理数(×) 无限小数是无理数(×)有理数是无限小数(×) 无理数是无限小数(√)数轴上的点都可以用有理数表示(×) 有理数都可以由数轴上的点表示(√) 数轴上的点都可以用无理数表示(×) 无理数都可以由数轴上的点表示(√) 数轴上的点都可以用实数表示(√) 实数都可以由数轴上的点表示(√)三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫科学记数法。
考点五、实数大小的比较 的几种方法 (3分)(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,①,0b a b a >⇔>- ②,0b a b a =⇔=- ③ b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a ba b a b a b a b a<⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
考点六、实数的运算 (做题的基础,分值相当大)1、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。
同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
2、有理数除法运算法则就什么?)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,商都是零。
3、什么叫有理数的乘方?幂?底数?指数?相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。
记作: a n4、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。
零的任何正整数幂都是零。
5、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
一,知识点归纳1.实数的分类(1)按实数的定义分类:(2)按实数的正负分类: ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3..算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。
0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。
4.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。
正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
5.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
6.())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a二【典型例题】例1若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1)例2 实数a 在数轴上的位置如图所示,化简:2)2(1-+-a a =例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A.5-2 B. 2-5 C. 5-3 D.3-5例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为 三【能力训练】1.已知52-=a ,则a 的相反数是 ; a 的倒数是 ;若在数轴上表示a ,它在原点的 侧(填“左”或“右”);且到原点的距离是 .2. 10在两个连续整数a 和b 之间, a ﹤10﹤b ,那么a 、b 的值分别是3. ,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+4.下列结论正确的是( )A.∵b a φ ,∴ a ﹥bB. 22)(a a =C. a 与a1不一定互为相反数 D. a +b ﹥a -b 5.请你估算11的大小( )A.1﹤11﹤2B. 2﹤11﹤3C. 3﹤11﹤4D. 4﹤11﹤56.若数轴上表示数a 的点在原点的左边,则化简22a a +的结果是( )A.- aB. -3aC. aD. 3a7.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,求a +b +x 2-cdx 的值.8.已知a 、b 互为相反数,c 、d 互为倒数,x 、y 满足04422=+++-y y x ,求2008220092()()()2a b x cd y a b cd y xy +-+++-的值.9.如图2,数轴上表示1和2的点分别为A 和B ,点B 关于点A 的对称点为C .设C 点所表示的数为x ,求x+x2的值.10.计算: (1) 461211)31()31()2(023-+÷+++⨯-- (2) 0238(22010)(32)3----+- 11. 已知:()320.125x -=- ,求x 的值12. .已知:281250x -= ,求x 的值.13. 给出下列说法:①6-是36的平方根;②16的平方根是4;③3322--=;④327是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有( )A.①③⑤ B.②④ C.①③ D.①14. 以下四个命题①若a 是无理数,则a 是实数;②若a 是有理数,则a 是无理数;③若a 是整数,则a是有理数;④若a 是实数.其中,真命题的是( )A.①④ B.②③ C.③D.④15. 已知实数a 满足1992a a -=,则21992a -的值是( )A.1991 B.1992 C.1993 D.199416. .已知x 、y 互为倒数,c 、d 互为相反数,a 的绝对值为3,z 的算术平方根是5,求22c d xy -++。