高温超导体基本特性的测量-物理试验

合集下载

物理高温超导实验报告

物理高温超导实验报告

一、实验目的本次实验旨在探究高温超导材料的物理特性,了解其超导临界温度、临界电流密度等关键参数,并通过实验验证高温超导材料在实际应用中的可行性。

二、实验原理高温超导材料是指在较高温度下仍能保持超导特性的材料。

超导现象是指某些材料在温度降低到一定临界温度以下时,其电阻突然降为零的现象。

高温超导材料的发现,突破了传统超导材料对低温环境的依赖,具有广泛的应用前景。

本实验采用三层镍氧化物La4Ni3O10单晶样品,利用高压光学浮区技术制备。

在高压条件下,样品表现出压力诱导的体超导电性,超导体积分数高达86%。

三、实验仪器与材料1. 实验仪器:- 高压光学浮区装置- 超导测量系统- 低温恒温器- 磁场发生器- 电流表、电压表- 数据采集器2. 实验材料:- 三层镍氧化物La4Ni3O10单晶样品- 低温液氮四、实验步骤1. 将三层镍氧化物La4Ni3O10单晶样品置于高压光学浮区装置中,进行高压处理。

2. 将高压处理后的样品置于超导测量系统中,测量其超导临界温度。

3. 在不同温度下,对样品施加不同电流,测量其临界电流密度。

4. 在不同磁场下,测量样品的超导临界磁场。

5. 利用数据采集器记录实验数据,进行分析和处理。

五、实验结果与分析1. 超导临界温度:通过实验测量,三层镍氧化物La4Ni3O10单晶样品的超导临界温度为30K。

2. 临界电流密度:在不同温度下,样品的临界电流密度随温度升高而降低。

在超导临界温度附近,临界电流密度达到最大值。

3. 超导临界磁场:在超导临界温度附近,样品的超导临界磁场较低。

4. 分析与讨论:本实验验证了三层镍氧化物La4Ni3O10单晶样品在高压条件下具有压力诱导的体超导电性。

实验结果表明,该材料在高温超导领域具有较高的应用潜力。

六、结论通过本次实验,我们成功探究了高温超导材料的物理特性,包括超导临界温度、临界电流密度和超导临界磁场等关键参数。

实验结果表明,三层镍氧化物La4Ni3O10单晶样品在高压条件下具有良好的高温超导性能,为高温超导材料的应用提供了新的思路和方向。

高温超导材料特性和低温温度计实验报告

高温超导材料特性和低温温度计实验报告

高温超导材料特性和低温温度计实验报告学号:39051609 姓名:齐德轩日期:2011/4/15一、实验目的1.了解高临界温度超导材料的基本特性及其测试方法2.学习三种低温温度计的工作原理和使用以及进行比对的方法3.了解液氮使用和低温温度控制的简单方法二、实验原理1.超导体和超导电性(1)常用临界温度Tc,临界磁场Bc和临界电流Ic作为临界参量来表征材料的超导性能。

温度的升高、磁场或电流的增大,都可以使超导体从超导状态转变为正常态。

Bc和Ic都是温度的函数。

(2)迈斯纳效应不论有没有外加磁场,是样品从正常态转变为超导态,只要T<Tc,超导体内部的磁感应强度Bi总是等于零。

该效应表明超导体具有完全抗磁性。

(3)根据电阻率的变化和迈斯纳效应都可以用来确定超导体的临界温度。

本实验采用电阻法。

引进起始转变温度Tc,onset,零电阻温度Tc0和超导转变(中点)温度Tcm三个物理量,通常所说的超导转变温度Tc是指Tcm。

实验使用的超导体为钇钡铜氧化物高温超导体的超导样品转变温度落在液氮区。

2.低温温度计(1)金属电阻随温度的变化当金属纯度很高时,总电阻可以近似表达成R=Ri(T)+Rr在液氮温度以上Rr(T)>>Rr,R≈Ri(T)在液氮正常沸点到室温这一范围内,铂电阻温度计具有良好的线性电阻—温度关系。

可表示为R(T)=AT+B。

因此可以根据给出的铂电阻温度计在液氮正常沸点和冰点的电阻值,可确定所用的铂电阻温度计的A、B值,并由此对铂电阻温度计定标,得到不同电阻值所对应的温度值。

(2)温差电偶温度计当两种金属所做成的导线连成回路,并使其两个接触点维持在不同的温度下时,改闭合回路中就会有温度差电动势催在,如果将回路的一个接触点固定在一个已知的温度下,则可以由所测得的温差电动势确定回路的另一个接触点的温度。

三、仪器用具1.低温恒温器2. 不锈钢杜瓦容器和支架3. PZ158型直流数字电压表4. BW2型高温超导材料特性测试装置(电源盒)四、数据处理(1)原始数据处理(2)样品电阻-温度曲线由图中可以读出Tc≈92K(3)Si电压-温度曲线说明在此范围内Si电阻与温度成线性关系,图像的左半段缺失,误差分析见下(4)温差电偶-温度曲线此图右半段误差较大,误差分析见下。

高温超导实验报告步骤(3篇)

高温超导实验报告步骤(3篇)

第1篇一、实验目的1. 了解高温超导体的基本特性和物理机制。

2. 学习液氮低温技术,掌握低温环境下的实验操作。

3. 测量高温超导体的临界温度(Tc)和临界磁场(Hc)。

4. 研究高温超导体的临界电流(Ic)与磁场、温度的关系。

二、实验原理高温超导现象是指某些材料在液氮温度(约77K)下表现出超导特性。

实验中,通过测量超导体的电阻、临界温度、临界磁场等参数,来研究高温超导体的物理性质。

三、实验仪器与材料1. 高温超导材料(如钇钡铜氧YBCO等)2. 低温冰箱3. 温度计4. 磁场计5. 电阻计6. 磁场发生器7. 数字多用表8. 液氮四、实验步骤1. 样品制备:将高温超导材料制备成合适尺寸的样品,通常为薄片或丝状。

2. 低温环境准备:将低温冰箱预热至液氮温度,并将样品放入冰箱内冷却至液氮温度。

3. 电阻测量:- 使用电阻计测量样品在液氮温度下的电阻。

- 记录电阻值,作为初始数据。

4. 临界温度测量:- 慢慢升温,观察电阻变化。

- 当电阻突然降至零时,记录此时的温度,即为临界温度(Tc)。

5. 临界磁场测量:- 使用磁场计测量样品在液氮温度下的磁场。

- 慢慢增加磁场强度,观察电阻变化。

- 当电阻突然降至零时,记录此时的磁场强度,即为临界磁场(Hc)。

6. 临界电流测量:- 在一定磁场下,逐渐增加电流,观察电阻变化。

- 当电阻突然降至零时,记录此时的电流,即为临界电流(Ic)。

7. 温度与磁场关系研究:- 在不同温度下,重复步骤4和5,研究临界温度(Tc)和临界磁场(Hc)与温度的关系。

- 在不同磁场下,重复步骤6,研究临界电流(Ic)与磁场的关系。

8. 数据整理与分析:- 将实验数据整理成表格,分析高温超导体的物理性质。

- 对比不同高温超导材料的物理性质,总结实验结果。

五、实验注意事项1. 实验过程中,务必保持低温环境,避免样品受热。

2. 在测量电阻、临界温度、临界磁场等参数时,要确保仪器精度。

3. 注意实验安全,防止低温伤害。

高温超导 实验报告

高温超导 实验报告
5金属电阻
不同的材料,电阻率随温度的变化有很大的差别,它反映了物质的内部属性,是研究物质性质的基本方法之一。当温度高于绝对温度时,在金属中,电子的定向运动受到晶格的散射而呈现出电阻。研究表明,当(T/)>0.5时,金属的电阻正比于温度T,其中是德拜温度。
上述结论是对纯金属而言,而实际上金属存在杂质、缺陷、位错等,它们会对金属造成附加电阻,这部分电阻近似地与温度无关。在金属的纯度很高时,金属的总电阻率可表示为
图一四端接线法
在直流低电压测量中,如何判断和修正乱真电势带来的影响是十分重要的。实际上,由于材料的不均匀性和温差,就有温差电势的存在。通常称为乱真电势或寄生电势。我们只要用一段短的导线把数字电压表短接,用手靠近其中一个接线端来改变温度,我们就会看到数字电压表读数的变化。在低温实验中,待测样品和传感器处在低温中,而测量仪表处在室温中,因此它们的连接线处在温差很大的环境里,并且沿导线的温度分布还会随着低温液体液面的降低、低温容器的移动等变化而变化。所以在涉及直流低电压测量的实验中,判定和消除乱真电势的影响是实验中一个十分重要的步骤。
实 验 报 告
姓 名:张伟楠班 级:F*******学 号:*******108实验成绩:
同组姓名:周元剑实验日期:2008.10.13指导老师:助教17批阅日期:
高温超导材料特性测量
实验目的
1了解高。临界温度超导材料的基本电特性和测量方法。
2了解低温下半导体 结的伏安特性与温度的关系。
3了解低温实验的测量方法。
A1.198940.00313
B-0.002351.71294E-5
------------------------------------------------------------

实验十一高温超导转变温度测量实验

实验十一高温超导转变温度测量实验

实验十一 高温超导转变温度测量实验超导电性简称超导(superconductivity ),它是指某物质在温度低于某一定值时,出现电阻率为零的现象。

自20世纪20年代起,人们就开始对超导性的理论和应用做了大量的研究。

随着超导研究的进展,特别是20世纪80年代高温超导材料问世后,超导技术已开始广泛应用于科学研究和人类生活之中。

一.实验目的1.了解FD-TX-RT-II 高温超导转变温度测定仪的结构及使用方法;2.掌握液氮低温技术;3.利用FD--RT-II 高温超导转变温度测定仪,测量氧化物超导体YBa2CuO7的超导临界温度。

二.实验原理1.超导现象在所用气体中,氮具有最低的液化温度。

1908年,卡末林·昂尼斯(H ·Kammerlingh Onnes )首先成功地液化了氮,利用液氮又获得了4.25~1.15K 的极低温度。

在新到达的低温范围内,昂尼斯进行了金属电阻随温度变化的研究。

1911年,他发现当温度降低时,汞的电阻率先平缓地减少,当温度T <4.2K 时,汞的电阻率突然降为零。

随后他又发现,除铜、金、银与铁等室温下的良导体以外,还有其他许多金属有此现象。

1913年他将这种新的物态定名为超导态(Superconducting State ),而将电阻率突然为零的温度称为超导体转变温度(inversiontemperature )或临界温度,用T c 表示。

在昂尼斯之后,人们又陆续发现了许多其他金属或合金在低温下也能转变为超导态,但它们的转变温度不同。

由于这些金属的超导现象是在低温下获得,故这种超导现象也称为低温超导。

处在超导态的物质具有如下重要性质:1) 直流零电阻效应如前所述,当某些金属、合金和化合物的温度下降到T <T c 时,它们的电阻率突然降为零,处于超导态。

在超导态下,物质的电阻真的完全消失了吗?最灵敏的试验是超导环中的持续电流试验:将一金属环放在垂直于环平面的磁场中,将其冷却到超导的转变温度以下,然后撤去磁场,由电磁感应原理知,这时在环中产生感应电流。

高温超导实验报告

高温超导实验报告

122.1 118.6 115.5 112.9 110.5 108.5 106.8 105.4 104.1 103.1 102.1 101.4 100.0 96.7 96.2 96.0 95.7 95.5 95.3 94.9 94.6 93.8 92.6 92.4 92.1 91.8 91.6 91.3 77.4
⑴铂电阻温度计: 铂电阻温度关系如下图所示
1
R(T)=AT+B 在液氮沸点到正常室温温度范围内, 其电阻与温度近似成正比: 或 T(R)=aR+b,其中 a,b 都是常数。 ⑵半导体硅电阻温度计: 在较大的温度范围内,半导体具有负的电阻温度系数,这一特性正好弥补 了金属电阻温度计在低温下灵敏度明显降低的缺点。低温物理实验中,常用半 导体温度计。 在小电流下,近似有: U 正向 KT U g 0 。其中 K=-2.3mV/K;硅材料 U g 0 约为 1.20eV ⑶温差电偶温度计: 如果将两种金属材料制成的导线联成回路,并使其两个接触点维持在不同 的温度,则在该闭合回路中就会有温差电动势存在,如果将回路的一个接触点 固定在一个已知的温度,例如液氮的正常沸点 77.4 K,则可以由所测量得到的 温差电动势确定回路的另一接触点的温度,从而构成了温差电偶温度计。这种 温度计十分简便,特别是作为温度敏感部分的接触点体积很小,常用来测量小 样品的温度以及样品各部分之间的温差。 应该注意到,硅二极管 PN 结的正向电压 U 和温差电动势 E 随温度 T 的变化 都不是线性的,因此在用内插方法计算中间温度时,必须采用相应温度范围内 的灵敏度值。
〖实验二十三〗
高温超导材料特性测试和低温温度计
〖目的要求〗
1、了解高临界温度超导材料的基本特性及其测试方法; 2、了解金属和半导体 P-N 结的伏安特性随温度的变化以及温差电效应; 3、 学习几种低温温度计的比对和使用方法, 以及低温温度控制的简便方法。

近代物理实验报告—高温超导材料的特性与表征

近代物理实验报告—高温超导材料的特性与表征
2、高温超导体的磁悬浮演示
(1)混合态效应
先把磁块放到高温超导盘片上,然后慢慢注入液氮冷却它(场冷)。当高温超导盘片达到超导状态后,将塑料薄片抽走后,会发现磁块会被悬浮起来,并且超导体与磁块之间达到一种自稳定状态,很稳定的悬浮在超导样品上空,并且很难被移动。这是因为在磁场下冷却到超导临界温度以下后,高温超导体进入了混合态,部分磁力线被排斥,部分磁力线被钉扎。
1.50
104.63
276.69
0.029
2.90
41.50
127.43
0.015
1.50
102.51
271.68
0.028
2.80
40.5
265.75
0.028
2.80
39.50
122.70
0.015
1.50
97.50
259.83
0.027
2.70
38.50
0.00
47.50
141.62
0.016
1.60
根据实验数据作图得到超导转变曲线如下图所示:
从图10中以及表格1中可以看出,电阻从96.70K温度处开始急剧下降,而当温度降到90.79K时,其电阻也就变为零了。即超导的起始转变温度为 =96.70K,零电阻温度 =90.79K。超导转变的中点温度为 =93.75K,说明该样品的超导转变温度为93.75K。
对杂质半导体,其载流子有杂志电离与本征激发产生,且存在电离杂质散射和声子散射两种机制,故其温度关系较复杂,总体上可以理解为:极低温度下,几乎没有自由载流子,电导为“杂质能级电导”,电阻随温度的上升而迅速下降;低温下,本征激发可以忽略,载流子主要由杂质电离产生,浓度随温度上升而上升,迁移率随温度升高而增加,温度系数为负;温度再高的饱和区,本征激发还不明显,杂质已全部电离,载流子浓度也不再变化,由声子散射,温度系数为正;其后的本征区,载流子主要由本征激发提供,浓度随温度升高而迅速增加,其温度系数又为负。半导体锗电阻温度关系如图6所示。

高温超导实验报告

高温超导实验报告

高温超导材料的特性与表征实验报告10物理小彬连摘要本实验对高温超导体的超导转变曲线进行了测量,测量得到其起始转变温度,临界温度,零电阻温度;进行了低温温度计的标定,证明了硅二极管温度计和温差电动势在一定范围内随温度变化的线性关系;通过高温超导的磁悬浮演示了解高温超导体的两个独有的特性:混合态效应和完全抗磁性,并测量得出磁悬浮力与超导体-磁体间距的关系曲线。

关键词高温超导体超到临界参数零电阻现象完全抗磁性磁悬浮力一、引言1911年,荷兰物理学家卡末林-昂纳斯(H.K.Onnes,1853—1926)用液氦冷却水银线并通以几毫安的电流,在测量其端电压时发现,当温度稍低于液氦的正常沸点时,水银线的电阻突然跌落到零,这就是所谓的零电阻现象或超导电现象。

自从低温超导体发现以来,科学家们对超导电性现象(微观机制)和超导技术以及超导材料进行了大量的研究。

在超导技术开发时代,世界各国科学家相机取得了突破性进展,研制出临界温度高于液氮温度的氧化物超导体,又称为高温超导体。

超导研究领域的系列最新进展,为超导技术在个方面的应用开辟了十分广阔的前景。

超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,还可以用于计量标准。

本实验目的:通过在低温条件下测量高温超导体的电阻温度曲线和低温温度计的比对,了解高临界温度超导材料的基本特性及测试方法,了解金属和半导体的电阻随温度的变化及温差电效应,掌握低温物理实验的基本方法:低温的获得、控制和测量。

二、实验原理1.超导现象及临界参数1)零电阻现象(如下图)超导现象:电阻突然跌落为零,或称零电阻现象,并将具有此种超导电是的物体称作超导体(只有直流电情况下才有零电阻现象)Tc(超导临界温度):即当电流,磁场及其他外部条件保持为零或不影响转变温度测量的足够低值是超导体呈现超导态的最高温度。

Tc,onest(起始转变温度):降温过程中电阻温度曲线开始从直线偏离处的温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高温超导体基本特性的测量
1911年,荷兰物理学家昂尼斯(H.K.Onnes)发现,利用液氮把汞冷却到4.2K左右时,水银的电阻率突然有正常的剩余电阻率减小到接近零,以后在其它的一些物质中也发现了这一现象。

由于这些超导体的临界温度T C很低,人们称这些需在液氦温区运行的超导体为低温超导体。

1986年6月,贝德诺(J.G..Bednorz)和缪勒(K.A.Muler)发现金属氧化物Ba-La-Cu-o 材料具有超导电性,其超导起始转变温度为35K,在13K达到零电阻,这一发现时超导体的研究有了突破性的进展,随后美中科学家分别独立地发现了Y-Ba-Cu-O体系超导体,起始温度92K以上,在液氮温区,以后的十年间,还发现其他系超导体,常压下T C最高达133K,这些T C高于液氮温度的氧化物超导体称为高温超导体。

一、实验目的
1.(利用直流测量法)测量超导体的临界温度;
2.观察磁悬浮现象;
3.了解超导体的两个基本特性—零电阻和迈斯纳效应。

二、实验仪器
测量临界温度和阻值的成套仪器、迈斯纳效应成套仪器、计算机、CASSY传感器
三、实验原理
1.零电阻现象
处于绝对零度的理想的纯金属,其规则排列的原子(晶格)周期场中的电子的状态是完全确定的,因此电阻为零。

温度升高时,晶格原子的热振动会引起电子运动状态的变化,即电子的运动受到晶格的散射而出现电阻Ri。

然而,通常金属中总是含有杂质的,杂质对电子的散射会造成附加的电阻。

在温度很低时,例如在4.2K以下,晶格散射对电阻的贡献趋于零,这时的电阻完全由杂质散射所引起的,我们称之为剩余电阻Rr,它几乎与温度无关。

所以总电阻可以近似表达为
R=Ri(T)+Rr (1)
当温度下降到某一确定Tc(临界温度)时,物质的直流电阻率转变为零的现象被称为零电阻效应。

临界温度Tc是由物质自身的性质所确定参量。

如果样品结构规整且纯度非常高,在一定温度下,物质由常规电阻状态急剧的转变为零电阻状态,称之为超导态。

如果材料化学成分不纯或晶体结构不完整等因素的影响,超导材料由常规电阻状态转变为零电阻状态是在一定的温度间隔中发生的。

如图1,我们把温度下降过程中电阻温度曲线开始从直线偏离出的温度的温度称为起始转变温度。

我们将电阻缓慢地变化部分(常规电阻状态下)拟合成直线Ⅰ,将电阻急剧变化部分拟合成直线Ⅱ,直线Ⅰ与直线Ⅱ的交点所对应的电阻为正常态
电阻Rn,取Rc=Rn/2时所对应的温度称为超导体呈现超导态时的最高温度,即超导临界温度Tc。

从起始转变温度所对应的电阻开始,把电阻变化10%到90%所对应的温度区间定义为转变宽度,记为△Tc。

电阻完全降到零之初所对应的温度为完全转变温度。

△Tc的大小反映了超导材料品质的好坏,均匀单相的样品△Tc较窄,反之较宽。

图1. 超导体的电阻随温度转变示意图
2.迈斯纳效应
1937年,迈斯纳(W.Meissner)和奥森菲尔德(R.Ochsefeld)发现超导体的一个重要性质:物质由常导态过渡到超导状态时,处在超导状态体内磁感应强度为零,即不管超导体在常导态时的磁通状态如何,当样品进入超导状态后,磁通一定不能穿超导体。

他们对围绕球形导体单晶锡的磁场分布进行了实测,惊奇地发现:锡球过渡到超导态,锡球周围的磁场都突然发生变化,磁力线似乎一下子被排斥到超导体之外。

这种当金属变成超导体时磁力线自动排出金属体外,超导体内磁感应强度为零的现象,称为迈斯纳效应。

后来人们还做过这样一个实验,在一个浅平的锡盘中,放入一个体积很小磁性很强的永久磁铁,然后把温度降低,使锡出现超导性。

这时可以看到,小磁铁竟然离开锡盘表面,飘然升起,与锡盘保持一定距离后,便悬空不动了。

这是由于超导体的完全抗磁性,使小磁铁的磁力线无法穿透超导体,磁场发生畸变,便产生了一个向上的浮力。

进一步的研究表明:处于超导态的物体,外加磁场之所以无法穿透它的内部,是因为在超导体的表面感生一个无损耗的抗磁超导电流,这一电流产生的磁场,恰巧抵消了超导体内部的磁场。

这一发现非常有意义,在此之后,人们用迈斯纳效应来判别物质是否具有超导性。

3.超导临界参数
实验表明,在临界温度下,如果改变流过超导体的电流大小或者给超导体施加磁场且达到某一特定的值,超导体的超导态将会受到破坏,有转变为正常态。

也就是说超导体的超导现象不仅超取决于临界温度,而且取决于电流密度和磁场。

我们把材料的超导状态被外加磁场破坏而转入正常态,这种破坏超导态所需的最小磁场强度称为临界磁场,临界磁场时被昂尼斯在1914年从实验中发现的,用H c表示。

同样,使超导体恢复为正常态所需流过的最小电流称为临界电流Ic,所对应的电流密度称为临界电流密度j c。

超导态有三个临界条件:临界温度T c,临界磁场H c和临界电流密度,它们之间密切相关。

四、实验内容及步骤
1.测量R-T曲线
(1)如图2连接线路,并打开计算机运行相应程序。

灌注液氮,注意掌握液氮的高度。

实验采用的四引线装置(四引线测量法减小甚至排除了引线和接触电阻对测量的影响,是国际上通用的标准测量方法),样品材料为块体YBa2Cu3O7-x,将连接好线路的超导材料YBa2Cu3O7-x放在泡沫盒中,然后让液氮缓慢浸没样品,观察电脑屏幕上图线的变化。

(2)测量电阻率随温度点变化。

根据R-T图线求出T c及△Tc
2.验证迈斯纳效应
将一块重量很轻磁场有比较大的磁铁置于YBa2Cu3O7-x超导材料之上,并放在泡沫盒中,然后让液氮缓慢浸没样品,观擦磁铁位置变化。

或先将超导材料降温到超导状态,再将磁铁置于超导材料之上,观擦磁铁位置变化。

五、思考题
1.为什么采用四引线法可避免引线电阻和接触电阻的影响?
2.用液氮制冷技术应该注意哪些事项?
3.零电阻常规导体遵从欧姆定律,它的磁性有什么特点?超导体的磁性又有什么特点?它是否是独立于零电阻性质的超导体的基本特性?
4.如果分别在降温和升温过程中测量超导转变曲线,结果将会怎样?为什么?
六、注意事项
1.在操作杜瓦瓶时和实验过程应戴上护眼镜,虽然氮气是完全无毒,再一个密闭的空间充入大量的氮气还是有害的,所以,应该在空气流通的环境下进行操作。

2.切忌不要用手直接靠近液氮和接触冰冻的东西,操作过程要戴上防护手套。

超导体的电阻率在一定的低温下突然消失,称作。

导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。

金属材料由于存在杂质和缺陷对电子运动的散射,在温度趋向绝对零度时,金属的电阻率将趋近一个定值,称为剩余电阻率。

液氦把汞冷却到4.2 K 左右时,水银的电阻率突然由正常的剩余电阻率值减少到接近零。

以后在其它的一些物质中也发现这一现象,这些物质包括有Nb 、Tc 、V 等金属元素,称为元素超导体,还有Nb3Ge 、Nb3Sn 、NbC0.3N0.7等合金或化合物,称为合金或化合物超导体。

这两类超导体也常称为常规超导体。

在绝对零度下的纯金属中,理想的完全规则排列的原子(晶格)周期场中的电子处于确定的状态,因此电阻为零。

温度升高时,晶格原子的热振动会引起电子运动状态的变化,即电子的运动受到晶格的散射而出现电阻Ri 。

理论计算表明,当 T >2/D Θ时,Ri ∝T ,其中D Θ为德拜温度。

实际上,金属中总是含有杂质的,杂质原子对电子的散射会造成附加的电阻。

在温度很低时,例如在4.2K 以下,晶格散射对电阻的贡献趋于零,这时的电阻几乎完全由杂志散射所造成,称为剩余电阻Rr ,它近似与温度无关。

当金属纯度很高时,总电阻可以近似表达成.)(Rr T Ri R +=在液氮温度以上,Rr T Ri >>)(,因此有)(T Ri R ≈。

例如,铜和铂的德拜温度D Θ分别为310K 和225K ,在63K 到室温的温度范围内,它们的电阻)(T Ri R ≈近似地正比于温度T 。

.然而,稍许精确的测量就会发现它们偏离线性关系,在较宽的温度范围内铂的电阻温度关系如图5.1-2所示。

在液氮正常沸点到室温这一温度范围内,铂电阻温度计具有良好的线性电阻温度关系,可表示为B AT T R +=)(.或b aR R T +=)(其中A 、B 和a 、b 是不随温度变化的常量。

因此,根据我们所给出的铂电阻温度计在液氮正常沸点和冰点的电阻值,可以确定所用的铂电阻温度计的A 、B 或a 、b 的值,并由此可得到用铂电阻温度计测温时任一电阻所相应的温度值。

相关文档
最新文档