基于单片机的自动往返小车毕业设计
基于51单片机的自动往返小车设计刘桐
参考文献......................................................................................................................20
2
忻州师院计算机系本科学士学位论文
基于 51 单片机的自动往返小车设计
3 自动往返小车硬件设计............................................................................................7 3.1 总体设计..............................................................................................................7 3.2 3.3 4 信号检测模块...................................................................................................7 主控电路...........................................................................................................8
摘 要:自动往返小车,是一种以电子汽车技术为背景,包含小车控制、传感技 术、电子技术、计算机、机械等多学科的科技创意性设计。主要组成模块有以下 几部分:路径识别、行驶时间控制及车速管制等模块组成。 该设计以 51 单片机为唯一主要控制模块,充分利用了自动检测技术、单片 机最小系统、模块电路,以及声光信号的管控、电机的驱动电路。通过 51 单片 机的仿真,通过实践调试与操作,实现小车在直线上的自动往返设计。综合应用 单片机技术、自动控制理论、检测技术等。使小车能在无人操作情况下,借助传 感器辨认路面环境,由单片机主控行进,完成初步的无人控制。 本设计以单片机为核心,附以外围电路,采用光电检测器进行检测信号实现 小车的自动加速、和循线运动。运用单片机的运算和处理能力来加速、减速、急 刹车、掉头、返回、显示行驶路程、行驶时间等智能控制系统。 关键词:51 单片机、检测技术、自动 Abstract : Automatic car back and forth, it is a kind of electronic automotive technology as the background, containing the car control, sensor technology, electronic technology, computer, machinery, and other multi-disciplinary science and technology creative design. Main composition module has the following several parts: path identification, time control, speed control module, etc. With 51 single-chip microcomputer as the main control module for the design, make full use of the automatic detection technology, module circuit, single chip microcomputer minimum system, as well as the acousto-optic signal control, the motor drive circuit. By 51 MCU simulation, debugging and through practice operation, from design to realize automatic car on a straight line. Integrated application of single-chip computer technology, automatic control theory, detecting technology, etc. Can make the car in the case of unattended operation, with the aid of sensors to identify the road environment, by single-chip microcomputer control, complete preliminary without control. This design with the single chip processor as the core, attached to the peripheral circuit, adopting photoelectric detector for testing signal to achieve the automatic acceleration, and followed the movement of the car. Using single chip microcomputer operation and processing power to acceleration, deceleration, brakes, turn around, return, show the intelligent control system such as travel, travel time. Keywords:51 single-chip microcomputer, automatic detection technology
基于单片机的自动往返小车毕业设计
基于单片机的自动往返小车毕业设计基于单片机的自动往返小车摘要:本设计以一片单片机STC89C52作为核心来控制自动往返小车,其中控制芯片L298N和单片机联合控制小车的前进与后退。
路面的黑带检测使用反射式红外传感器,并通过STC89C52对输入的信号进行处理;行驶距离使用霍尔元件进行检测。
最后以动态显示的形式通过一个LCD液晶显示即时黑带个数,运行时间,实时路程等。
关键词:微控制器 L298N电机控制霍尔检测液晶显示The Automatic round-trip car based on SCMAbstract:This design use a microcontroller STC89C52 as the core to control the automatic round-trip car, the control chip L298N and single chip microcomputer to control the car forward and backward together. The reflective infrared sensor detection the black belt on the road surface, then deal with input signal processing through the STC89C52. Using the hall element to test the distance. At last displaying instant black belt, running time, real-time distance, etc through a number of LCD liquid crystal in the form of dynamic displayKeywords:MCU L298N Motor control Hall detection LED display目录摘要 (I)关键字 (I)Abstract (I)Keywords (I)0绪论 (2)1.1 设计任务 (3)1.2方案介绍 (4)2.1 系统元器件的选择与介绍 (5)2.1.1 STC89C52R芯片 (5)2.1.2 L298N芯片 (11)2.1.3霍耳传感器(HD3020) (14)2.1.4液晶LCD (15)2.2电路模块的设计 (18)2.2.1检测系统 (18)2.2.2距离计算系统 (19)2.2.3显示系统 (20)2.2.4电机驱动以及正反转控制模块 (20)3.1主程序 (21)3.2中断程序 (22)3.2.1外部中断0 (22)3.2.2外部中断1 (23)3.2.3定时器中断0 (24)3.2.4定时器中断1 (24)4总结 (21)致谢 (21)参考文献 (21)附录 (21)0绪论当今社会,随着科技发展的日新月异,特别是计算机技术突飞猛进的发展,计算机技术带来了科研和生产的许多重大飞跃,同时计算机也越来越广泛的被应用到人们的生活、工作领域的各个方面。
基于单片机的自动往返小汽车的设计【开题报告】
开题报告电气工程及其自动化基于单片机的自动往返小汽车的设计一、综述本课题国内外研究动态,说明选题的依据和意义随着汽车工业的迅速发展,其与电子信息产业的融合速度也显著提高,汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。
关于汽车的研究也就越来越受人关注。
全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。
可见其研究意义很大。
本设计就是在这样的背景下提出的,为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。
设计的智能电动小车应该能够具有自动寻迹、小灯显示等功能。
由于单片机教学例子有限,因此,单片机智能车能综合学生课堂上的知识来实践,使学习者更好的了解单片机的发展。
通过此次的单片机寻轨车制作,使学生从理论到实践,初步体会单片机项目的设计、制作、调试和成功完成项目的过程及困难,以此学会用理论联系实际。
通过对实践中出现的不足与学习来补充教学上的盲点。
智能汽车是一种高新技术密集的新型汽车,是在网络环境下利用信息技术、智能控制技术、自动控制、模式识别、传感器技术、汽车电子、电气、计算机和机械等多个学科的最新科技成果,使汽车具有自动识别行驶道路、自动驾驶等先进功能.随着控制技术、计算机技术和信息技术的发展,智能车在工业生产和日常生活中已经扮演了非常重要的角色.近年来,智能车在野外、道路、现代物流及柔性制造系统中都有广泛运用,已成为人工智能领域研究和发展的热点。
二、研究的基本内容。
智能寻迹小车采用后轮驱动,左右后轮各用一个直流减速电机驱动,通过调制后面两个轮子的转速从而达到控制转向的目的在车体前部分别装有左中右三或者两个红外反射式传感器,当小车左边的传感器检测到黑线时,说明小车车头向右边偏移,这时主控芯片控制左轮电机减速,车体向左边修正同理当小车的右边传感器检测到黑线时,主控芯片控制右轮电机减速,车体向右边修正当黑线在车体的中间,中间的传感器一直检测到黑线,这样小车就会沿着黑线一直行走。
自动往返电动小汽车(毕业设计)
一. 毕业实践任务书无锡职业技术学院毕业实践任务书课题名称:自动往返电动小汽车指导教师:XXXXXXX 职称:讲师指导教师:职称:专业名称:XXXXXXXX 班组:XXXXXX学生姓名:XXXXXXX 学号:05一. 课题需要完成的任务:设计并制作一个能自动往返于起跑线与终点线间的小汽车。
允许用玩具汽车改装,但不能用人工遥控(包括有线和无线遥控)。
图1跑道顶视图跑道宽度0.5m,表面贴有白纸,两侧有挡板,挡板与地面垂直,其高度不低于20cm。
在跑道的B、C、D、E、F、G各点处画有2cm宽的黑线,各段的长度如图1所示。
设计要求1、车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后自动返回起跑线(允许倒车返回)。
往返一次的时间应力求最短(从合上汽车电源开关开始计时)。
2. 达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线中心线之间距离作为偏差的测量值)。
D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。
二. 课题计划:2006.3.3~2006.3.6 熟悉课题,可行性方案分析及方案论述。
2006.3.7~2006.3.19 查阅资料,设计各部分硬件。
2006.3.19~2006.4.10 画原理图,印刷线路板。
2006.4.10~2006.4.20 编写程序验证部分硬件。
2006.4.21~2006.4.25 写出毕业论文。
计划答辩时间:4.21-4.28XXXXX 系(部、分院)2006年02年18日二.外文翻译VIDEOCASSETTEBefore the videocassette recorder there was the movie projector and screen. Perhaps you remember your fifth-grade teacher pulling down a screen—or Dad hanging a sheet on the wall, ready to show visiting friends the enthralling account of your summer vacation at the shore. Just as the film got started, the projector bulb often blew out.Those days did have one advantage, though: the screen was light, paper-thin and could be rolled into a portable tube. Compare that with bulky television and computer screens, and the projector screen invokes more than just nostalgia. Could yesterday's convenience be married to today's technology?The answer is yes, thanks to organic light-emitting materials that promise to make electronic viewing more convenient and ubiquitous. Used in displays, the organic materials are brighter, consume less energy and are easier to manufacture (thus potentially cheaper) than current options based on liquid crystals. Because organic light-emitting diodes (OLEDs) emit light, they consume significantly less power, especially in small sizes, than common liquid-crystal displays (LCDs), which require backlighting. OLEDs also offer several exciting advantages over common LEDs: the materials do not need to be crystalline (that is, composed of a precisely repeating pattern of planes of atoms), so they are easier to make; they are applied in thin layers for a slimmer profile; and different materials (for different colors) can be patterned on a given substrate to make high-resolution images. The substrates may be inexpensive glass or flexible plastic or even metal foil.In the coming years, large-screen televisions and computer monitors could roll up for storage. A soldier might unfurl a sheet of plastic showing a real-time situation map. Smaller displays could be wrapped around a person's forearm or incorporated into clothing. Used in lighting fixtures, the panels could curl around an architectural column or lie almost wallpaperlike against a wall or ceiling.LEDs currently have longer lifetimes than organic emitters, and itwill be tough to beat the widespread LED for use in indicator lamps. But OLEDs are already demonstrating their potential for displays. Their screens put out more than 100 candelas per square meter (about the luminance of a notebook screen) and last tens of thousands of hours (several years of regular use) before they dim to half their original radiance.Close to 100 companies are developing applications for the technology, focusing on small, low-power displays [see box on page 80]. Initial products include a nonflexible 2.2-inch (diagonal) display for digital cameras and cellular phones made jointly by Kodak and Sanyo, introduced in 2002, and a 15-inch prototype computer monitor produced by the same collaborative venture. The global market for organic display devices was about $219 million in 2003 and is projected to jump to $3.1 billion by 2009, according to Kimberly Allen of iSuppli/Stanford Resources, a market-research firm specializing in displays.一、What LED to OLEDCRYSTALLINE semiconductors—the forerunners of OLEDs—trace their roots back to the development of the transistor in 1947, and visible-light LEDs were invented in 1962 by Nick Holonyak, Jr. They were first used commercially as tiny sources of red light in calculators and watches and soon after also appeared as durable indicator lights of red, green or yellow. (When suitably constructed, LEDs form lasers, which have spawned the optical-fiber revolution, as well as optical data storage on compact discs and digital video discs.) Since the advent of the blue LED in the 1990s [see “Blue Chip,” by Glenn Zorpette; Scientific American, August 2000], full-color, large-screen television displays made from hundreds of thousands of LED chips have appeared in spectacular fashion on skyscrapers and in arenas [see “In Pursuit of the Ultimate Lamp,” by M. George Crawford, Nick Holonyak, Jr., and Frederick A. Kish, Jr.; Scientific American, February 2001]. Yet the smaller sizes used in devices such as PDAs (personal digital assistants) and laptops are not as practical.LEDs and OLEDs are made from layers of semiconductors—materials whose electrical performance is midway between an excellent conductorsuch as copper and an insulator such as rubber. Semiconducting materials, such as silicon, have a small energy gap between electrons that are bound and those that are free to move around and conduct electricity. Given sufficient energy in the form of an applied voltage, electrons can “jump” the gap a nd begin moving, constituting an electrical charge. A semiconductor can be made conductive by doping it; if the atoms added to a layer have a smaller number of electrons than the atoms they replace, electrons have effectively been removed, leaving positively charged “holes” and making the material “p-type.” Alternatively, a layer that is doped so that it has an excess of negatively charged electrons becomes “n-type” [see box on opposite page]. When an electron is added to a p-type material, it may encounter a hole and drop into the lower band, giving up an amount of energy (equal to the energy gap) as a photon of light. The wavelength depends on the energy gap of the emitting material.For the production of visible light, organic materials should have an energy gap between their lower and higher conduction bands in a relatively small range, about two to three electron volts. (One electron volt is defined as the kinetic energy gained by an electron when it is accelerated by a potential difference of one volt. A photon with one electron volt of energy corresponds to the infrared wavelength of 1,240 nanometers, and a photon of two electron volts has a wavelength half as much—620 nanometers—a reddish color.)二、A Surprising GlowORGANIC semiconductors are formed as aggregates of molecules that are, in the technologies being pursued, amorphous—a solid material, but one that is noncrystalline and without a definite order. There are two general types of organic light emitters, distinguished by “small” and “large” molecule sizes. The first practical p-n-type organic LED, based on small molecules, was invented in 1987 by Ching W. Tang and Steven A. Van Slyke of Eastman Kodak, after Tang noticed a surprising green glow coming from an organic solar cell he was working on. The duo recognized that by using two organic materials, one a good conductor of holes and the other a good conductor of electrons, they could ensure that photon emission would take place near the contact area, or junction, of the two materials, as in acrystalline LED. They also needed a material that held its electrons tightly, meaning that it would be easy to inject holes. For the light to escape, one of the contacts must be transparent, and the scientists benefited from the fortunate fact that the most widely used transparent conducting material, indium tin oxide, bound its electrons suitably for p-type contact material.The structure they came up with has not changed much over the years and is often called “Kodak-type,” because Kodak had the basic patent [see box on opposite page]. Beginning with a glass substrate, different materials are deposited layer by layer. This process is accomplished by evaporating the constituent materials and letting them condense on the substrate. The total thickness of the organic layers is only 100 to 150 nanometers, much thinner than that of a conventional LED (which is at least microns in thickness) and less than 1 percent of the thickness of a human hair. Because the molecules of the materials used are relatively lightweight—even lighter than a small protein—the Kodak-type OLEDs are referred to as “small molecule” OLEDs.After their initial insight, Tang and Van Slyke tinkered with the design to increase efficiency. They added a small amount of the fluorescent dye coumarin to the emitter material tris (8-hydroxy-quinoline) aluminum. The energy released by the recombination of holes and electrons was transferred to the dye, which emitted light with greatly increased efficiency. Deposition of additional thin layers of indium tin oxide and other compounds next to the electrodes altered the interaction of the thicker layers and also improved the efficiency of the injection of holes and electrons, thereby further upping the overall power efficiency of the fluorescent OLED.Organic LEDs of this small-molecule type are used to make red, green and blue light, with green light having the highest efficiency. Such green-emitting OLEDs can exhibit luminous efficiencies of 10 to 15 candelas per ampere—about as efficient as commercial LEDs today—and seven to 10 lumens per watt, values that are comparable to those for common incandescent lamps.录像机在卡匣式录像机出来之前,我们用的是电影放映机与屏幕。
89c52的单片机自动往返电动小汽车设计报告范文-图文
89c52的单片机自动往返电动小汽车设计报告范文-图文1.设计任务:设计并制作了一个自动往返小汽车,其行驶路线满足所需的要求。
1.1要求:1.1.1基本要求:(1)分区控制:如(图1)所示:(图1)车辆从起跑线出发(出发前,车体不得超出起跑线)。
在第一个路程C~D区(3~6米)以低速行驶,通过时间不低于10;第二个路程D~E区(2米)以高速行驶,通过时间不得多于4秒;第三个路程E~F区(3~6米)以低速行驶,通过时间不低于8。
1.1.2.发挥部分(1)自动记录、显示一次往返时间(记录显示装置要求安装在车上)。
(2)自动记录、显示行驶距离(记录显示装置要求安装在车上)。
(3)其它特色与创新。
2.方案设计:根据设计任务要求,并且根据我们自己的需要而附加的功能,该电路的总体框图可分为几个基本的模块,框图如(图2)所示:555定时器控速模块路面检测测速模块AT89S51LCD显示模块(图2)2.1路面检测模块:路面黑线检测模块采用反射式红外发射--接收器,在车底的前部和中部安装了两个反射式红外传感器.2.2LCD显示模块:采用1602LCD,由单片机的总线模式连接。
为节约电源电量并且不影响LCD的功能,LCD的背光用单片机进行控制,使LCD的背光在小车行驶的过程中不亮,因为我们不必看其显示;在其它我们需要看显示的内容的时候LCD背光亮。
2.3测速模块:采用采用霍尔开关元器件A44E检测轮子上的小磁铁从而给单片机中断脉冲,达到测量速度的作用。
霍尔元件具有体积小,频率响应宽度大,动态特性好,对外围电路要求2简单,使用寿命长,价格低廉等特点,电源要求不高,安装也较为方便。
霍尔开关只对一定强度的磁场起作用,抗干扰能力强,因此可以在车轮上安装小磁铁,而将霍尔器件安装在固定轴上,通过对脉冲的计数进行车速测量。
其原理图接线如(图3)所示:(图3)2.4控速模块:采用由双极性管组成的H桥电路。
用单片机控制晶体管使之工作在占空比可调的开关状态,精确调整电机转速。
自动往返电动小汽车设计
自动往返电动小汽车余密刘勇尹佳喜华中科技大学电工电子创新中心(武汉430074)摘要:本设计以凌阳16位单片机SPCE061A为核心,通过高灵敏度红外光电传感器检测路面上的黑线,并进行计数,从而控制不同路段的速度,以红外对管检测车轮转动周数,根据车轮周长计算出速度及小车行驶路程。
单片机对高灵敏度红外光电传感器检测得到的路面信息进行处理后产生PWM输出,从而控制小车前轮与后轮电机转速,也就控制了小车的速度。
到达终点后,电机端电压反向,则小车行驶方向反向,小车由原路倒退返回。
红外对管检测到的小车车速及行驶路程信息经单片机计算处理后由液晶显示。
关键字:PWM 光电传感器检测调速一方案论证与选择1 电机调速模块电机调速主要是控制小车的速度与行驶方向。
通过对前轮电机转速的控制可控制小车的行驶方向,对小车的行驶速度的控制通过对其后轮转速的控制实现。
此模块为本设计的核心部分。
(1)电机调速方案方案一:电枢回路串电阻调速。
如II-1-1所示,通过单片机控制继电器,这样可以控制接入电枢回路电阻的大小,从而实现串电阻调速。
此方案只能分级调速,而且,串入电阻造成能量损耗,而本设计采用电池供电,显然,需要节能的调速系统,故此方案不能达到要求。
图III-1-1 电机电枢回路串电阻调速电路图方案二:电枢回路串电感调速。
原理图与方案一相同,将电阻换为电感,这样可以减小能耗,但由于电感消耗无功功率,造成电源污染,故不能采用此方案。
方案三:采用弱磁调速,即改变电机气隙磁通。
此方案可以连续调速,而且,能耗小,可由额定转速向高速方向调节,也可由额定转速向低速方向调节。
但由于小车电机不为他励直流电机,故很难改变磁通大小,方案难以实现。
方案四:采用改变端电压调速。
根据直流电机机械特性方程n=U a/k eФ+(R a+R j)T/k e k TФ2=n0-βT Tn——电机转速;n0——电机空载转速;k e、k T——电机结构参数所确定的电机电势常数、转矩常数;Ф——气隙磁通;U a——电动机电枢电压;R a、R j——电机电枢电阻及串入电阻;T——负载转矩;βT——机械特性曲线斜率;由上述直流电动机机械特性知,改变电枢端电压,可以连续改变电动机转速。
89c52的单片机自动往返电动小汽车设计报告
1. 设计任务:设计并制作了一个自动往返小汽车,其行驶路线满足所需的要求。
要求:基本要求:(1)分区控制:如(图1)所示:(图1)车辆从起跑线出发(出发前,车体不得超出起跑线)。
在第一个路程C~D区(3~6米)以低速行驶,通过时间不低于10s;第二个路程D~E区(2米)以高速行驶,通过时间不得多于4秒;第三个路程E~F区(3~6米)以低速行驶,通过时间不低于8s。
发挥部分(1)自动记录、显示一次往返时间(记录显示装置要求安装在车上)。
(2)自动记录、显示行驶距离(记录显示装置要求安装在车上)。
(3)其它特色与创新。
2. 方案设计:(图2)路面检测模块:路面黑线检测模块采用反射式红外发射--接收器,在车底的前部和中部安装了两个反射式红外传感器.LCD显示模块:采用1602LCD,由单片机的总线模式连接。
为节约电源电量并且不影响LCD的功能,LCD的背光用单片机进行控制,使LCD的背光在小车行驶的过程中不亮,因为我们不必看其显示;在其它我们需要看显示的内容的时候LCD背光亮。
测速模块:采用采用霍尔开关元器件A44E检测轮子上的小磁铁从而给单片机中断脉冲,达到测量速度的作用。
霍尔元件具有体积小,频率响应宽度大,动态特性好,对外围电路要求简单,使用寿命长,价格低廉等特点,电源要求不高,安装也较为方便。
霍尔开关只对一定强度的磁场起作用,抗干扰能力强,因此可以在车轮上安装小磁铁,而将霍尔器件安装在固定轴上,通过对脉冲的计数进行车速测量。
其原理图接线如(图3)所示:(图3)控速模块:采用由双极性管组成的H桥电路。
用单片机控制晶体管使之工作在占空比可调的开关状态,精确调整电机转速。
这种电路由于工作在管子的饱和截止模式下,效率非常高;H桥电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也很高,是一种广泛采用的调速技术。
其电路原理图如(图4)所示:(图4)3. 程序框图:单片机主程序框图、速度感应程序框图和铁片感应程序框图分别如(图7)所示。
毕业设计基于Arduino单片机的智能小车设计
江海职业技术学院毕业设计毕业设计题目:姓名学号:所在系(部):专业及班级:指导教师:完成日期:中文摘要智能车辆是集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,是智能交通系统的一个重要组成部分。
它在军事、民用、太空开发等领域有着广泛的应用前景。
随着电子工业的发展,智能技术广泛运用于各种领域,运用于智能家居中的产品更是越来越受到人们的青睐。
本系统在硬件设计方面,以Arduino单片机为控制核心,以超声波传感器检测前方障碍物,从而自动避障。
在软件方面,利用C语言进行编程,通过软件编程来控制小车运转。
根据家庭各种房间家具的布局不同而使用不同的路径,从而使得家居中常用到的智能清扫小车智能化,人性化。
该小车能自动避障,有一定的实用价值。
关键词:单片机;智能清扫小车;自动避障目录第一章绪论 (1)1.1 选题背景 (1)1.2 智能小车研究现状 (2)1.3 课题主要内容 (4)第二章智能小车总体结构 (5)2.1 方案综述 (5)2.2 主控单元方案比较与选择 (5)2.3 避障单元方案比较与选择 (6)2.4 “小车”的必要的信息 (7)第三章智能小车的触觉、眼睛 (8)3.1 智能小车内部检测原理 (8)3.2 电机电流、电压检测 (10)3.3 超声波测距 (11)第四章智能小车的脚 (23)4.1 轮系结构详述 (23)4.2 直流电机 H 桥驱动电路 (26)4.3 电机控制信号 (28)第五章智能小车的大脑 (29)5.1 Arduino单片机简介 (29)5.2 Arduino单片机引脚简介 (30)5.3 Arduino编程软件 (33)第六章智能小车控制流程及程序 (35)6.1 控制流程 (35)参考文献 (36)致谢 (37)第一章绪论随着科技进步,现代工业技术发展越来越体现出机电一体化的特征。
无论是在金属加工、汽车技术、工业生产等等方面,机器设备表现了所谓智能化、集成化、小型化、高精度化的发展趋势。
基于51单片机智能巡线避障小车毕业论文
基于51单片机智能巡线避障小车1系统方案确定及主要元件的选择1.1 系统方案确定本次设计的智能小车实现的基本功能如下:❖实时检测路径,并按照指定路线行驶;❖实时检测障碍物,并躲过继续行驶;❖实时显示当前速度,并显示在lcd1602上为此以AT89C52为主控芯片,主要包括避障模块、电源模块、声控模块、电机驱动模块等,系统框图如图2.3所示。
通过寻迹及避障传感器来采集周围环境信息来反馈给CPU,通过主控的处理,来控制电机的运转,从而实现寻迹与避障,达到智能行驶。
且本设计添加了声控效果,通过声音传感器来对小车发出指令,让其行驶与停止。
为了能够更好地完成本次设计任务,我们采用三轮车,其前轮驱动,前轮左右两边各用一个电机驱动,调制前面两个轮子的转速起停从而达到控制转向的目的,后轮是万象轮,起支撑的作用,并通过软件程序控制,与硬件架构相结合,从而实线自动寻迹、避障的功能。
1.2 主要元件的选择1.2.1 主控器按照题目要求,控制器主要用于控制电机,通过相关传感器对路面的轨迹信息进行处理,并将处理信号传输给控制器,然后控制器做出相应的处理,实现电机的前进和后退,保证在允许范围内实线寻迹避障。
方案一:可以采用ARM为系统的控制器,优点是该系统功能强大,片上外设集成度搞密度高,提高了稳定性,系统的处理速度也很高,适合作为大规模实时系统的控制核心。
而小车的行进速度不可能太高,那么对系统处理信息的要求也就不会太高。
若采用该方案,必将在控制上遇到许许多多不必要增加的难题。
方案二:使用51单片机作为整个智能车系统的核心。
用其控制智能小车,既可以实现预期的性能指标,又能很好的操作改善小车的运行环境,且简单易上手。
对于我们的控制系统,核心主要在于如何实现小车的自动控制,对于这点,单片机就拥有很强的优势——控制简单、方便、快捷,单片机足以应对我们设计需求[5]。
51单片机算术运算功能强,软件编程灵活、自由度大,功耗低、体积小、技术成熟,且价格低廉。
基于单片机 的自动往返小车的设计-精品
目录摘要 (2)第一章MCS-8031单片机及其外围电路 (3)一.MCS-8031引脚及功能简介 (3)二.时钟电路 (5)三.复位及复位电路 (6)四.8031片外ROM连接 (7)第二章数码管显示里程方案设计 (8)一.检测电路方案选择 (8)二.数码管显示电路 (9)第三章直流调速方案讨论 (11)一.确定调速方案 (11)二.直流调速的实现 (12)第四章程序 (15)程序1小车电机调速程序 (15)程序2里程显示程序 (19)结论 (23)致谢 (24)参考文献 (25)摘要本设计要完成自动往返行驶汽车,要求使用MCS-8031单片机,并且用七段数码管显示里程。
要求采用调压调速的方法,改变电机的速度和转向。
一并完成自动往返功能。
为了方便调速,本设计拟采用小型直流电动机,为了同时满足对电机转速大小和方向的调节,要选择合适的调节方式,本设计拟采用PWM脉宽调制的方法实现。
对于里程显示,要将小车的车轮转数转换成距离,再将其输入单片机,并由单片机处理输出,并用数码管显示出来。
最后根据所选用的硬件及芯片,设计电路并编程实现要求内容。
关键字:MCS-8031 霍尔传感器数码显示PWM脉宽调速第一章MCS-8031单片机及其外围电路一.MCS-8031引脚及功能简介8031是最常见的mcs51系列单片机,是inter公司早期的成熟的单片机产品,应用范围涉及到各行各业,下面介绍一下它的引脚图等资料。
(图1.1为8031引脚图)图1.11)8031引脚功能:Vcc:+5V电源电压。
Vss:电路接地端。
2)P0.0~P0.7:通道0,它是8位漏极开路的双向I/O通道,当扩展外部存贮器时,这也是低八位地址和数据总线,在编程校验期间,它输入和输出字节代码,通道0吸收/发出二个TTL负载。
3)P1.0~P1.7:通道1是8位拟双向I/O通道,在编程和校验时,它发出低8位地址,吸收/发出一个TTL负载。
4)P2.0~P2.7:通道2是8位拟双向I/O通道,当访问外部存贮器时,用作高8位地址总线。
基于单片机的自动往返小车设计
目录第1章绪论1.1设计的主要内容及目标1.2选题目的及意义第2章总体方案设计与论证 (2)2.1 全面方案 (2)2.2 设计要点、实验难点 (2)2.3设计方案第3章算法的理论分析 (4)3.1 算法比较 (4)3.1.1 常规模糊控制法 (4)3.1.2 公式法 (4)3.2 方案实现 (5)第4章设计电路的分析 (7)4.1 单片机设置 (7)4.2 电光理论设置 (7)4.2.1 基本原理 (7)4.3 具体电路 (8)4.3.1 采样方式 (8)4.3.2 电机控制方法 (9)4.3.3电机驱动模块 (10)4.3.4黑线探测模块 (10)4.4 电路图 (10)4.5 显示屏 (11)4.6 语音芯片 (11)4.6.1 供电方案 (12)4.6.2 供电方式 (12)4.7 红外遥控及解码模块 (12)4.7.1 二进制信号的调制 (13)4.7.2 二进制的调解 (13)4.7.3 二进制信号的调码 (13)4.8 道路设置模块 (14)4.8.1轨道模块 (14)4.8.2防撞模块 (14)第5章软件系统设计 (14)5.1 软件系统的任务及总体流程 (15)5.2 扩展软件功能实现 (16)5.3 遥控解码 (16)5.4 驱动软件 (17)5.5 小车轨道设计 (17)5.6 防撞击与警报装置 (18)5.7 行车距离 (18)5.8 抗干扰设置 (19)第六章测试方法与数据 (19)6.1 系统仿真调试 (19)6.2 对于电机的调试 (19)第七章总结 (21)致谢 (22)参考文献 (23)基于单片机的自动往返小车摘要:改革开放以来,单片机的技术不断进步,他原来所具有的各种各样有效的端口和他原本具有的自带的技术功能,被整合到了一张芯片上。
所以单片机在所有的机器上具有重要的地位。
最常见的单片机AT89s51具有低功率的特效并且保持在一个较高水平上面适用于各种单片机,具有非常优秀的普适性。
毕业设计单片机应用系统设计--上料小车自动往返定位加料
武汉理工大学毕业设计(论文)题目:上料小车自动往返定位加料函授站(学习中心):专业:学生姓名:指导教师:层次:年级:2014年 3 月 14 日上料小车自动往返定位加料摘要本设计采用的控制系统采用AT89C51单片机,实现上料小车在轨道上的自动往返和上料和下料等过程。
用P1.7和P1.6分别控制电机的驱动电压;利用P3.6 、P3.7的电位高低来控制电路,从而实现小汽车驱动电机的正反转功能;利采用外部中断0和外部中断1来实现小车的里程和跑道标志检测。
关键词:自动送料机控制系统;单片机AT89C51 ;硬件设计;软件设计。
目录摘要 (2)Abstract ........................................................................................................... 错误!未定义书签。
第一章绪论.. (3)1.1 设计背景和研究意义 (3)1.2 自动送料机控制系统的工作原理及技术要求 (4)第二章系统总体设计 (4)2.1 单片机的选择 (4)2.2 物位传感器的选择 (5)2.2.1 电容式物位传感器 (5)2.2.2 阻力式料位传感器 (6)2.3 存储器扩展电路的选择 (7)2.3.1 24C01扩展: (7)2.3.2 2864A芯片扩展: (8)2.4 LED显示电路选择 (9)2.4.1 LED静态显示方式 (9)2.4.2 LED动态显示方式 (10)2.5 键盘输入电路 (10)2.5.1 矩阵式键盘接口: (10)2.5.2 独立式按键接口: (10)2.6 小结 (11)第3章自动送料小车主电路设计 (11)3.1 系统结构原理图 (11)3.2 主机电路核心器件介绍 (12)3.2.1 AT89C51主要性能参数 (12)3.2.2 AT89C51 功能特性概述 (12)3.2.3 AT89C51 引脚功能说明 (12)3.2.4 时钟振荡器 (15)2.2.5编程方法 (16)3.2.6 AT89C51的极限参数: (16)3.3 显示电路 (16)3.3.1 74LS377芯片介绍 (18)3.3.2 MC14511B芯片介绍 (19)3.3.3LED接口电路 (19)3.4 继电器控制电路 (20)3.5 键盘及显示电路 (21)3.5.1 键盘接口 (21)3.5.2 8255A芯片介绍 (22)3.5.3 8255A引脚功能 (23)3.6 外部存储器扩展电路 (25)3.7 料位开关 (28)3.8 小结 (30)第4章系统软件设计 (30)4.1 系统的抗干扰及可靠性 (30)4.2 软件设计 (31)4.2.1 主程序 (31)4.2.2中断处理 (32)4.2.3编程扫描 (34)4.3 小结 (35)结论 (35)致谢........................................................................................................... 错误!未定义书签。
【文献综述】基于单片机的自动往返小汽车的设计
文献综述电气工程及其自动化基于单片机的自动往返小汽车的设计一、前言智能车辆是一个运用计算机、传感、信息、通信、导航、人工智能及自动控制等技术来实现环境感知、规划决策和自动行驶为一体的高新技术综合体。
它在军事、民用和科学研究等方面已获得了应用,对解决道路交通安全提供了一种新的途径。
随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。
全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究,许多国家已经把电子设计比赛作为创新教育的战略性手段。
电子设计涉及到多个学科,机械电子、传感器技术、自动控制技术、人工智能控制、计算机与通信技术等等,是众多领域的高科技。
电子设计技术,它是一个国家高科技实例的一个重要标准,可见其研究意义很大。
本次设计虽然只是一个模型,但是具有充分的科学性和实用性。
首先我们按照适当的比例制作出一个路况模型。
在行驶路段中,脉冲调制的红外线传感器将检测到的信号发送给单片机,单片机根据程序发出相应的控制信号控制小车进行动作。
二、主题部分科技的进步带动了产品的智能化,单片机的应用更是加快了发展的步伐,它的应用范围日益广泛,已经远远的超出了计算机科学领域。
小到玩具、信用卡,大到航天飞机、机器人,从实现数据采集、远程控制、模糊控制等智能系统带人类的日常生活,到处离不开单片机,此设计正是单片机的一个典型的应用。
此设计通过实现了小车的无人驾驶,通过对路面的检测,由单片机来判断控制其小车的反应情况,使其变得智能化,实现自动的前进,转弯,停止功能,此系统还不断的完善后可以应用到道路检测,安全巡逻中,能满足社会的需求。
智能小车是智能车辆研究的一个分支。
它以车轮作为移动机构、能够实现自主行驶,所以我们称之为智能小车。
智能小车具有机器人的基本特征——易于编程。
它与遥控小车的不同之处在于,后者需要操作员来控制其转向、启停和进退,比较先进的遥控车还能控制其速度(常见的模型小车都属于这类遥控车);而智能小车则可以通过计算机编程来实现其对小车启停、行驶方向以及速度的控制,无需人工干预。
基于ST89C52单片机的自动往返小车(含程序)_毕业设计(论文)
基本原理:1.电机驱动调速模块方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。
但是电阻络只能实现有级调速,而数字电阻的元器件价格昂贵。
更主要的问题在于一般电动机的电阻较小,但电流很大;分压不仅会降低效率,而且很难实现。
方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。
方案的优点是电路较为简单,缺点是继电器的响应时间慢,机械结构易损坏,寿命较短,可靠性不高。
方案三:采用达林顿管TIP4组成的PWM电路。
用单片机控制达林顿管使之工作在占空比可调的状态,精确调整电机转速。
方案四:采用L298N来控制电机的正转和反转来实现小车的前进和后退。
加上单片机的程序PWM,实现整车的加速与减速,精确小车的速度。
基于上述理论分析,拟选择方案四。
2.路面黑带检测模块黑带检测的原理是:红外光线照射到路面并反射,由于黑带和白纸的系数不同,可根据接的红外线的强弱判断是否到达黑带。
方案一:可见光发光二极管与光敏二极管组成的发射—接收电路。
这种方案的缺点在于其他环境光源会对光敏二极管的工作产生很大的干扰,一旦外界光亮条件改变,很可能造成误判和漏判;虽然产生超高亮发光二极管可以降低一定的干扰,但这又将增加额外的功率损耗。
方案二:反射式的红外发射—接收器。
由于采用红外管代替普通可见光管,可以降低环境干扰。
基于上述理论分析,拟选择方案二。
3. 电源选择方案一:所有器件采用电源供电,这样供电电路比较简单;但是由于电动机启动瞬时电流很大,会造成电压不稳,干扰严重,缺点十分明显。
方案二:双电源供电,将电动机驱动电源与单片机以及周边电路电源完全隔离,这样做虽然不如单电源方便灵活,但可以将电动机驱动所造成的干扰彻底消除,提高了系统的稳定性。
基于上述理论分析,拟选择方案二。
4. 控制单元模块方案一:采用纯数字电路该方案外部检测采用光电转换,系统控制部分采用数字电路译码对小车电动机两端电压调整,来控制小车的运行。
基于单片机的自动往返小车的设计
基于单片机的自动往返小车的设计摘要89S52单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。
这里介绍的是如何用89S52单片机来实现成都理工大学工程技术学院的毕业设计,该设计是结合科研项目而确定的设计类课题。
本系统以设计题目的要求为目的,采用89S52单片机为控制核心,利用超声波传感器检测道路上的障碍,控制电动小汽车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。
整个系统的电路结构简单,可靠性能高。
实验测试结果满足要求,本文着重介绍了该系统的硬件设计方法及测试结果分析。
采用的技术主要有:(1)通过编程来控制小车的速度;(2)传感器的有效应用;(3)新型显示芯片的采用关键词:80C52单片机、电动小车、光电检测器、PWM调速Abstract89S52 is a 8 bit single chip computer. Its easily using and multi-function suffer large users. This article introduces the Engineering&technical College of Chengdu University of Technology graduation design with the 89S52 single chip computer. This design combines with scientific research object. This system regards the request of the topic, adopting 89S52 for controlling core, super sonic sensor for test the hinder. It can run in a high and a low speed or stop automatically. It also can record the time, distance and the speed or searching light and mark automatically the electric circuit construction of whole system is simple, the function is dependable. Experiment test result satisfy the request, this text emphasizes introduced the hardware system designs and the result analyze.The adoption of technique as:(1)Reduce the speed by program the engine;(2)efficient application of the sensor;(3)The adoption of the new display chip.Keywords:80C52 single chip computer、Electricity motive small car、light electricity detector、PWM speedadjusting目录摘要 (I)Abstract (II)目录 (III)前言................................................ - 1 -1 方案设计与论证.................................... - 2 -1.1电动小车 (2)1.2控制模块 (3)1.3电机控制模块 (3)1.4直流调速系统 (3)1.5电机驱动模块 (5)1.6信号检测模块 (5)1.7行车距离检测 (7)1.8系统原理 (9)2 硬件设计......................................... - 10 -2.1AT89S52单片机硬件结构 (10)2.2最小应用系统设计 (11)3 软件设计......................................... - 13 -3.1主程序设计 (13)3.2显示子程序设计 (15)3.3避障子程序设计 (15)3.4软件抗干扰技术 (15)3.4.1数字滤波技术:............................ - 15 -3.4.2开关量的软件抗干扰技术:.................. - 16 -3.4.3指令冗余技术:............................ - 16 -3.4.4软件陷阱技术:............................ - 17 -3.4.5程序区.................................... - 17 - 3.5“看门狗”技术 (18)3.6可编程逻辑器件 (20)4 测试数据、测试结果分析及结论..................... - 21 -致谢............................................. - 23 -参考文献........................................ - 24 -附录1 程序清单........................ 错误!未定义书签。
基于单片机控制的智能自动往返小汽车设计
基于单片机控制的智能自动往返小汽车设计随着现代科技的发展和自动化水平的提高,智能小汽车作为生活中的常用工具,人们对其智能性、可靠性等提出了越来越高的要求,因此需要对智能小汽车进行优化设计. 本文对硬件系统和主要功能模块进行了规划,设计了一个基于单片机控制的自动往返小汽车系统,以STC89C52 单片机为核心器件,可实现电动小汽车的速度控制、自动停车、往返控制等功能,从而满足人们对小汽车智能化功能的要求.1 系统总体设计系统设计以单片机STC89C52 芯片为核心控制部件,LG9110 作为电机驱动芯片,利用传感器检测技术原理、AD 画图、KEIL 软件编程,将程序烧录到单片机中,实现各个子模块的功能. 此外,系统采用红外探测法来检测实时路况信息,并通过PWM 调制自动调节电机转速. 系统总体设计框图如图1 所示.图1 系统总体设计框图2 系统硬件设计系统硬件模块设计主要包含电机驱动模块、路况检测模块、智能防撞报警模块、寻迹模块等.2.1 电机驱动模块电机驱动模块是目前遥控小车普遍采用的驱动模块[3]. 直流电机有两个控制端,通过设置输入电平值来改变电机的运转,单片机通过控制引脚电平的高低来控制直流电机的转速. 由于单片机自身管脚输出的高电平电压很小,不足以驱动电机进而带动整个小车运行,因此最适合小车驱动的是运用电机驱动芯片来完成,我们采用的是电机驱动芯片LG9110.2.2 路况检测模块该模块使用红外探测法. 由于黑线和白纸对光线的反射系数不同,故可根据接收到反射光的强弱来判断路面情况和前方是否存在障碍物. 红外发射管发射红外信号,经路面反射后传给红外接收管进行判断处理. 上电后,红外发射管导通,向地面以及前方发射红外信号,当遇到白色路面时,红外信号经白色路面进行漫反射,这时红外接收探头刚好接收到红外信号,探头导通,将低电平送给单片机进行判断处理.2.3 智能防撞报警模块智能小车能够自动识别前方的障碍物,如果有障碍物则调节小车的运动轨迹来避开障碍物,同时在遇到障碍物时,能够报警提示.2.4 寻迹模块所谓寻迹,就是在一条有弯曲黑线的白纸跑道上,利用红外线在不同颜色的物理表面具有不同的反射性质的特点来改变小车的运行轨迹. 小车在行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,而当红外光遇到黑色地面时,不产生反射. 如果小车右边稍微跑出黑色跑道,发出的红外光就会遇到白色地面而产生漫反射,这时旁边的黑色接收探头接收到反射信号后会导通. 探头接收到红外信号,会产生一个低电平,送给单片机处理,使小车进行左转操作;同理,当小车左边跑出黑线时,左侧探头识别之后给小车低电平,提示小车右转,这样就完成了小车的自动寻迹功能.3 系统软件设计在系统软件设计时,我们将所有的模块程序嵌入到单片机中,这种嵌入式设计主要是为了便于控制,且不占用CPU 资源,因为寻迹模块以及避障模块等都同时用到了实时检测扫描,这样不仅占CPU,而且多个程序同时运行还会产生冲突. 系统程序设计流程图如图2 所示.软件设计主要子模块介绍:(1) 红外解码的实现红外解码是实现小车的自动寻迹功能的前提条件,因此单片机的红外解码是贯穿整个程序设计的主线,在整个系统中起着重要作用.(2) 电机驱动从实际情况来说,在整个系统中,电机的驱动在小车运行中占据主导地位,是很重要的一部分,同时也是小车在接收到控制命令之后单片机的最终输出部分,是所有模块在执行控制命令时的外在表现.图2 系统程序设计流程(3) 小车寻迹寻迹的基本原理:黑白跑道对红外光的反射不同. 所以通过编写扫描单片机管脚值的程序,来实现相应功能. 小车寻迹模块的程序流程如图3 所示.(4) 小车防撞报警开启小车防撞功能时,主程序调用防撞报警子函数,当道路前方遇到障碍物时,小车内部的防撞函数将调用电机驱动子函数来调节小车的运行轨迹,避免小车撞击障碍物,同时报警提示.图3 寻迹程序流程图4 系统功能实现4.1 硬件作品(1) 对基于单片机控制的自动往返小汽车主要的STC89C52 核心主控模块、电机驱动模块、显示模块、避障模块进行组装,确保接线无误,完成实物的制作. 硬件作品如图4 所示.(2) 接通电源,整个小车处于启动状态,由于小车头部下方的红外探头未接收到自身发出的红外光,小车不运动,处于静止状态. 启动状态如图5 所示.图4 作品实物图5 小车启动状态(3) 在接通电源的状态下,将手放在左红外探头的下方,红外探头发出的红外光由于碰到手指发生漫反射而被探头接收,从而驱动电机驱动模块,左电机处于运行状态,左轮向前转动. 同理,右轮向前转动. 运动状态如图6 所示.图6 小车运动状态4.2 功能实现本系统实现的主要功能如下:(1)实现小汽车自动往返;(2)当小汽车偏离行驶轨道时,会及时转向,返回跑道;(3)当检测到障碍物时,能自动报警.STC89C52 芯片可以发挥数据处理与实时控制的功能,提高整个系统灵敏度. 当要驱动自动小车前进时,可以通过寻迹模块返回给单片机的信号,使单片机做出相应的控制判断,进而控制电机驱动模块,同时还需要进行PID 算法的测试,精准地控制自动小车在黑线上实现前进、后退和转向,从而实现小车自动往返.4.3 系统实现效果评价对系统功能进行了分析、拓展和延伸,其根本目的是为了实现小汽车的智能化. 通过系统调试,本设计可实现小汽车的自动寻迹和报警功能,且系统设计稳定. 实验结果与理论分析吻合较好,表明该设备在技术上有一定智能性和可靠性.5 总结本文采用的是以STC89C52 为核心的单片机,LG9110 为电机驱动芯片,利用传感器检测技术,结合硬件AD 画图及软件KEIL 的编译与烧录[5],使单片机控制的小汽车能自动寻迹、防撞报警,从而实现小车的自动往返功能. 本设计最大的特色:无需有线或者无线遥控来控制小车的往返,只需要装上电源,其他功能都可以由单片机来实现,消除了一般玩具小车需无线或有线控制的弊端,是未来玩具小车发展的趋势;同时也可以推广至公交车,实现无人驾驶,降低安全事故的发生,既环保又安全,因此具有一定的应用价值.。
自动往返小车论文
1、任务要求(1)车辆从起跑线出发(出发前车体不超出起跑线),到达终点后停留10s,然后自动返回起跑线(允许倒车返回)。
往返一次的时间应力求最短(从合上汽车电源开关开始记时)。
(2)到达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线之间的距离作为偏差的测量值)。
⑶能检测到相应黑色标志线,区分不同的区域,D〜E间为限速区,车辆均要求以低速通过,通过时间不得少于8s,但不允许在限速区内停车。
(4)能显示一次往返时间、行驶距离以及行驶速度2、方案比较与论证2.1 处理器的比较与选择方案一:以AVR 单片机为核心,产生PWM 控制电机AVR 单片机IO 口驱动能力强,反应速度快。
方案二:以51 系列单片机为该系统的控制核心。
51 系列单片机有51 和52 两种,经典51 单片机具有价格低廉,使用简单等特点,但其运算速度低,功能单一STC89C51单片机有128B的RAM,4KB的ROM,5个中断源,2个定时器; 52 单片机内部资源丰富,加密性好,超强抗干扰超低功耗,价格低廉,同时支持在线仿真技术,软硬件调试方便,为课程设计提供了极大的方便。
STC89C52 单片机有256B的RAM,8KB的ROM,6个中断源,3个定时器(比51多出的定时器具有捕获功能)。
考虑到我们此次的设计对实时性要求不是很高,51 系列单片机完全以满足处理速度的要求,并且AVR 单片机需要专门的开发工具且价较贵,所以我们选用51 系列的单片机。
又由于我们此次的设计中用到的中断比较多,且有很多地方要用到定时器进行定时,所以基于以上方案对比,及其资源的利用、运算速度等各个方面的综合考虑,我们采用STC89C52作为本系统的核心。
2.2 小车行驶避障模块方案的比较与选择小车在跑道中行驶时,由于跑道很长,而且小车不一定能严格沿着直线行驶,因此很可能会碰到两侧的挡板,如果没有相应的措施,容易使得行驶速度受到影响,才可能造成翻车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的自动往返小车毕业设计基于单片机的自动往返小车摘要:本设计以一片单片机STC89C52作为核心来控制自动往返小车,其中控制芯片L298N和单片机联合控制小车的前进与后退。
路面的黑带检测使用反射式红外传感器,并通过STC89C52对输入的信号进行处理;行驶距离使用霍尔元件进行检测。
最后以动态显示的形式通过一个LCD液晶显示即时黑带个数,运行时间,实时路程等。
关键词:微控制器 L298N电机控制霍尔检测液晶显示The Automatic round-trip car based on SCMAbstract:This design use a microcontroller STC89C52 as the core to control the automatic round-trip car, the control chip L298N and single chip microcomputer to control the car forward and backward together. The reflective infrared sensor detection the black belt on the road surface, then deal with input signal processing through the STC89C52. Using the hall element to test the distance. At last displaying instant black belt, running time, real-time distance, etc through a number of LCD liquid crystal in the form of dynamic displayKeywords:MCU L298N Motor control Hall detection LED display目录摘要 (I)关键字 (I)Abstract (I)Keywords (I)0绪论 (2)1.1 设计任务 (3)1.2方案介绍 (4)2.1 系统元器件的选择与介绍 (5)2.1.1 STC89C52R芯片 (5)2.1.2 L298N芯片 (11)2.1.3霍耳传感器(HD3020) (14)2.1.4液晶LCD (15)2.2电路模块的设计 (18)2.2.1检测系统 (18)2.2.2距离计算系统 (19)2.2.3显示系统 (20)2.2.4电机驱动以及正反转控制模块 (20)3.1主程序 (21)3.2中断程序 (22)3.2.1外部中断0 (22)3.2.2外部中断1 (23)3.2.3定时器中断0 (24)3.2.4定时器中断1 (24)4总结 (21)致谢 (21)参考文献 (21)附录 (21)0绪论当今社会,随着科技发展的日新月异,特别是计算机技术突飞猛进的发展,计算机技术带来了科研和生产的许多重大飞跃,同时计算机也越来越广泛的被应用到人们的生活、工作领域的各个方面。
单片微型计算机以其其体积小、功能强、速度快、价格低等优点,在数据处理和实时控制等应用中有着无以伦比的优越性,可广泛地嵌入到如玩具、家用电器、机器人、仪器仪表、汽车电子系统、工业控制单元、办公自动化设备、金融电子系统、舰船、个人信息终端及通讯产品中。
随着微控制技术(以软件代硬件的高性能控制技术)的日益完善和发展,单片机的应用必将导致传统控制技术发生巨大的变化。
单片微型计算机的应用广度和深度,已经成为一个国家科技水平的一项重要标志。
此论文的题目是自动往返小汽车。
要求设计一个能自动往返于起跑线与终点线间的小汽车。
车辆从起跑线出发到达终点线后停留10秒,然后自动返回起跑线。
在要求的跑道范围内完成快行、慢行、停车等功能。
停车后自动显示一次往返的时间和路程。
基于上述要求将设计分为以下几个模块:STC89C52RC、电机驱动、电机调速、里程检测、跑道标志检测、液晶显示模块。
控制系统采用STC89C52RC单片机;显示系统采用液晶显示里程数和时间;电机正反转采用桥式驱动控制,2档电压调速;里程记录采用霍尔传感器;跑道标志线采用光敏管检测;单片机、电机采用独立稳压电源供电。
本论文将详细介绍硬件设计和软件设计的思路及方法。
由于本人在单片机的设计方面还存在一些不足,在论文的写作和论证上尚存在一些不足之处,敬请各位老师批评指正。
1设计任务及方案介绍1.1 设计任务设计并制作一个能自动往返于起跑线与终点线间的小汽车。
跑道宽度0.5m,表面贴有白纸,和黑带。
在跑道的B、C、D、E、F、G各点处画有2cm宽的黑线,各段的长度如图1-1所示。
车辆从起跑线出发到达终点线后停留10秒,然后自动返回起跑线。
D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。
跑道顶视图如图1.1。
图1.1 跑道顶视图(一)基本要求(a)车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后自动返回起跑线(允许倒车返回)。
往返一次的时间应力求最短(从合上汽车电源开关开始计时)。
(b)到达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线中心线之间距离作为偏差的测量值)。
(c)D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。
1.2方案介绍设计采用单片机STC89C52RC作为系统的控制中心。
电机电路采用两对互补三极管控制电机的驱动;检测电路采用光敏管来控制小车的快行,慢行,停止;用液晶实现对指定行程和所用时间的显示。
方案方框图如1.2所示。
图1.2方案方框图2. 系统的硬件设计与实现2.1 系统元器件的选择与介绍下面介绍STC89C52RC芯片、L298N芯片、霍尔传感器、液晶等器件。
2.1.1S TC89C52R芯片STC89C52是一种带8K字节闪烁可编程可檫除只读存储器(FPEROM-Flash Programable and Erasable Read Only Memory )的低电压,高性能COMOS8的微处理器,俗称单片机。
该器件采用ATMEL搞密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
单片机总控制电路如下图2.1:图2.1单片机总控制电路1.时钟电路STC89C52内部有一个用于构成振荡器的高增益反相放大器,引脚RXD和TXD 分别是此放大器的输入端和输出端。
时钟可以由内部方式产生或外部方式产生。
内部方式的时钟电路如图2.2 (a) 所示,在RXD和TXD引脚上外接定时元件,内部振荡器就产生自激振荡。
定时元件通常采用石英晶体和电容组成的并联谐振回路。
晶体振荡频率可以在1.2~12MHz之间选择,电容值在5~30pF之间选择,电容值的大小可对频率起微调的作用。
外部方式的时钟电路如图2.2(b)所示,RXD接地,TXD接外部振荡器。
对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。
片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。
示,RXD接地,TXD接外部振荡器。
对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。
片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。
RXD接地,TXD接外部振荡器。
对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。
片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。
(a)内部方式时钟电路(b)外部方式时钟电路图2.2时钟电路2.复位及复位电路(1)复位操作复位是单片机的初始化操作。
其主要功能是把PC初始化为0000H,使单片机从0000H单元开始执行程序。
除了进入系统的正常初始化之外,当由于程序运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也需按复位键重新启动。
除PC之外,复位操作还对其他一些寄存器有影响,它们的复位状态如表2.1所示。
表2.1 一些寄存器的复位状态寄存器复位状态寄存器复位状态PC 0000H TCON 00HACC 00H TL0 00HPSW 00H TH0 00HSP 07H TL1 00HDPTR 0000H TH1 00HP0-P3 FFH SCON 00HIP XX000000B SBUF 不定IE 0X000000B PCON 0XXX0000BTMOD 00H(2)复位信号及其产生RST引脚是复位信号的输入端。
复位信号是高电平有效,其有效时间应持续24个振荡周期(即二个机器周期)以上。
若使用颇率为6MHz的晶振,则复位信号持续时间应超过4us才能完成复位操作。
产生复位信号的电路逻辑如图2.3所示:图2.3复位信号的电路逻辑图整个复位电路包括芯片内、外两部分。
外部电路产生的复位信号(RST)送至施密特触发器,再由片内复位电路在每个机器周期的S5P2时刻对施密特触发器的输出进行采样,然后才得到内部复位操作所需要的信号。
复位操作有上电自动复位相按键手动复位两种方式。
上电自动复位是通过外部复位电路的电容充电来实现的,其电路如图2.4(a)所示。
这佯,只要电源Vcc的上升时间不超过1ms,就可以实现自动上电复位,即接通电源就成了系统的复位初始化。
按键手动复位有电平方式和脉冲方式两种。
其中,按键电平复位是通过使复位端经电阻与Vcc电源接通而实现的,其电路如图2.4(b)所示;而按键脉冲复位则是利用RC微分电路产生的正脉冲来实现的,其电路如图2.4(c)所示:(a)上电复位(b)按键电平复位(c)按键脉冲复位图2.4复位电路上述电路图中的电阻、电容参数适用于6MHz晶振,能保证复位信号高电平持续时间大于2个机器周期。
本系统的复位电路采用图2.4(b)上电复位方式。
STC89C52具体介绍如下:①主电源引脚(2根)VCC(Pin40):电源输入,接+5V电源GND(Pin20):接地线②外接晶振引脚(2根)XTAL1(Pin19):片内振荡电路的输入端XTAL2(Pin20):片内振荡电路的输出端③控制引脚(4根)RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。
ALE/PROG(Pin30):地址锁存允许信号PSEN(Pin29):外部存储器读选通信号EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。
④可编程输入/输出引脚(32根)STC89C52单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。