一元一次方程的应用2

合集下载

一元一次方程的应用(2)课件2022-2023学年沪教版(上海)六年级第二学期数学

一元一次方程的应用(2)课件2022-2023学年沪教版(上海)六年级第二学期数学

盈利 成本
(3)售价=成本+盈利=成本×(1+盈利率)
(4)折后售价=原售价×折扣
例2: 一种节能型冰箱,商店按原售价的九折出售,降
价后的新售价是每台2430元。因为商店按进价加价20% 作为原售价,所以降价后商店还能赚钱。请问这种节能 型冰箱的进价为多少元?
分析: (1)问题中给出的已知量和未知量各是什么?
按降价后的新售价出售,商店每台还可赚多少元? 解:设这种节能型冰箱的进价为x元。
(1 20%)x90% 2430 1.08x 2430 x 2250
答:这种节能型冰箱的进价为2250元。
2430 2250 180( 元)
答:商店每台还可赚1价加价40%作为标
(2)已知量和未知量之间存在着怎样的等量关系?
盈利=售价-成本 盈利=成本×盈利率 售价=成本+盈利=成本×(1+盈利率)
折后售价=原售价×折扣
(1 40%)x88%- x 15
练习2:一家商店将某种服装按成本价加价40%作为标
价,又以八折(即按标价的80%)优惠卖出,结果每件服 装仍可获利15元,问这种服装每件的成本价是多少元? 解:设这种服装每件的成本价是x元。
(1 40%)x88%- x 15 1.12x - x 15 0.12x 15 x 125
答:这种服装每件的成本价是125元。
1、储蓄存款中的数量关系: 本金、利息、利率、期数 (1)利息=本金x利率x期数 (2)本利和=本金+利息
2、销售问题中的数量关系: 售价、成本、盈利、盈利率 (1)盈利=售价-成本 (2)盈利=成本×盈利率
盈利=售价-成本 盈利=成本×盈利率
售价=成本+盈利=成本×(1+盈利率)

《一元一次方程》应用题 (2)

《一元一次方程》应用题 (2)

1.某移动通讯公司开设了两种通讯业务“全球通”和“神舟行”.全球通:使用者先交50元月租费,然后每通话一分钟付0.4元话费,累计起来作为使用者一个月的通讯费;神州行:不缴月租费,每通话一分钟,付话费0.6元现有甲、乙二人分别使用“全球通“和”神州行“,设他们在一个月内通话时间均为x分钟.(1)如果x=30小时,分别计算甲、乙二人这一个月的通讯费;(2)当他们在这一个月中缴纳的通讯费相等时,你能通过自己学习的知识求出他们的通话时间是多少吗?试一试.2.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?3.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:5 10 20 30 …一次复印页数(页)0.5 2 …甲复印店收费(元)0.6 2.4 …乙复印店收费(元)(2)复印张数为多少时,两处的收费相同?4.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?5.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B地,A、B两地间的路程是多少千米?6.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?7.某校组织7年级师生外出进行研究性学习活动,学校联系了旅游公司提供车辆.该公司现有50座和35座两种车型.如果用35座的,会有5人没座位;如果全部换乘50座的,则可比35座车少用2辆,而且多出15个座位.若35座客车日租金为每辆250元,50座客车日租金为每辆300元,(1)请你算算参加互动师生共多少人?(2)请你设计一个方案,使租金最少,并说明理由.8.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?9.将连续的奇数1,3,5,7,9,…,排成如图所示的数阵.(1)设中间数为a,用式子表示十字框中五数之和并化简.(2)若将十字框上下左右移动,可框住另外五个数,这五个数的和还有这种规律吗?十字框中五数之和能等于2005吗?若能,请写出这五个数,若不能,说明理由.10.为准备联合韵律操表演,甲、乙两校共100人准备统一购买服装(一人买一套)参加表演,其中甲校人数多于乙校人数,下面是服装厂给出的演出服装的价格表:1套至49套50套至99套100套及以上购买服装的套数60元55元50元每套服装的价格如果两所学校分别单独购买服装,一共应付5710元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加表演?(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?参考答案1.解:(1)30小时=1800分钟,甲一个月的通讯费为50+0.4×1800=770(元),乙一个月的通讯录为0.6×1800=1080(元).(2)根据题意得:50+0.4x=0.6x,解得:x=250.答:当通话时间为250分钟时,两人通讯费用相等.2.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.3.解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.4.解:(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.5.解:设A、B两地间的路程为x千米,根据题意得﹣=2解得x=240答:A、B两地间的路程是240千米.6.解:由题意得:50x+15﹣40x=30解得:x=1.5.答:经过1.5小时,两车相距30千米.7.解:(1)设参加互动师生共x人,由题意得:=+2即:10x﹣7x=105+50+700解得:x=285人,所以,参与本次师生互动的人共有285人.(2)设计方案为:租用1辆35座的车,租用5辆50座的车.设租用x辆35座的,则还需租用辆50座的,其中x≥0 由题意得:由于=5.7≈6辆,需要租金:6×300=1800元;所以当x=1时,=5,需要租金:250+300×5=1750元;当x=2时,=4.3≈5辆,需租金:250×2+300×5=2000元;当x=3时,=3.6≈4辆,需租金:3×250+4×300=1950元;当x=4时,=2.9≈3辆,需租金:4×250+3×300=1900元;当x=5时,=2.2≈3辆,需租金:5×250+3×300=2150元;当x=6时,=1.5≈2辆,需租金:6×250+2×300=2100元;当x=7时,=0.8≈1辆,需租金:7×250+300=2050元;当x=8时,≈1辆,需租金:8×250+300=2300元;当x=9时,35×9>285,此时需租金:9×250=2250元;综合上述比较当租用1辆35座的车,租用5辆50座的车时,所需资金最少.另法:假设租了35座汽车x辆,其余人乘坐50座客车,则所花租金等于:(285﹣35x)÷50×300+250x=(285﹣35x)6+250x=1710+40x,若要使租金最少,即要使(1710+40x)值最小,∴当x=1时,租金为1750元时为最低.或因为大车票价低于小车票价,所以尽可能多租大车,285÷50=5(辆)…35(人).故租了35座汽车1辆,50座客车5辆最合算.8.解:设每件服装的成本价为x元,那么每件服装的标价为:(1+40%)x=1.4x;每件服装的实际售价为:1.4x×0.8=1.12x;每件服装的利润为:0.12x;由此,列出方程:0.8×(1+40%)x﹣x=15;解方程,得x=125;答:每件服装的成本价是125元.9.解:(1)设中间数为a,则另外四个数分别为a﹣10、a﹣2、a+2、a+10,∴十字框中五数之和为(a﹣10)+(a﹣2)+a+(a+2)+(a+10)=5a.(2)无论如何移动,这五个数的和还有这种规律,十字框中五数之和不能等于2005,理由如下:设中间数为x时,五数之和为2005,根据题意得:5x=2005,解得:x=401,∵401为第201个奇数,且201=40×5+1,∴401为第40行的第一个数,∴401不能为中间数,∴十字框中五数之和不能等于2005.10.解:(1)若甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省:5710﹣50×100=710(元);(2)设甲校有学生x人(依题意50<x<100),则乙校有学生(100﹣x)人.依题意得:55x+60×(100﹣x)=5710,解得:x=58.经检验x=58符合题意.∴100﹣x=42.故甲校有58人,乙校有42人.(3)方案一:各自购买服装需49×60+42×60=5460(元);方案二:联合购买服装需(49+42)×55=5005(元);方案三:联合购买100套服装需100×50=5000(元);综上所述:因为5460>5005>5000.所以应该甲乙两校联合起来选择按50元每套一次购买100套服装最省钱.。

2024年秋湘教版七年级数学上册 3.4.2 一元一次方程的应用(二)(课件)

2024年秋湘教版七年级数学上册 3.4.2 一元一次方程的应用(二)(课件)

同时出发,距离相等
小楠家
雷锋纪念馆
小华家
10 上km午/h10时到
本问题中有什么等量关系?
15 上km午/h9时30分到
小楠花的时间-小华花的时间=0.5h
小楠花的时间-小华花的时间=0.5h
若设他俩的家到雷锋纪念馆的路程为 x km,
则根据等量关系,得
xx − =0.5 .
10 15
路程=时间×速度 时间=路程÷速度
为进一步感悟雷锋 胸怀祖国、服务人民的 爱国精神,星期日早晨, 小楠和小华分别骑自行 车从家里同时出发去参 观雷锋纪念馆.
思考
已知他俩的家到雷锋纪念馆 的路程相等,并且小楠每小时 骑10km,他在上午10时到达, 小华每小时骑15km,他在上午 9时30分到达. 他俩的家到雷锋 纪念馆的路程是多少?
解得
Байду номын сангаасx=15 .
因此,他俩的家到雷锋纪念馆的路程为15 km.
应用一元一次方程解决问题的步骤:
1. 审:审题,分析题目中的数量关系; 2. 设:设适当的未知数,并表示未知量; 3. 列:根据题目中的数量关系列方程; 4. 解:解这个方程; 5. 答:检验并作答.
练一练
某人骑自行车去工厂上班,若每小时骑10 km, 可早到6 min ;若每小时骑 8 km,就迟到6 min, 则他家到工厂的路程是__8_k_m___.
间隔/m 5 5.5
种植的树苗数 x+21 x
路长/m 5(x+21-1) 5.5(x-1)
解:设原有树苗x棵,根据题意,得
5(x+21-1)=5.5(x-1) .
解得
x = 211.
因此,原有树苗211棵,这段公路长为

北师大数学七年级上册第五章一元一次方程应用(二)“希望工程”义演与追赶小明(基础)

北师大数学七年级上册第五章一元一次方程应用(二)“希望工程”义演与追赶小明(基础)

一元一次方程应用(二)----“希望工程”义演与追赶小明(基础)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.【典型例题】类型一、“希望工程”义演(分配问题)1.(2015春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【思路点拨】首先设应调至甲地段x 人,则调至乙地段(29﹣x )人,则调配后甲地段有(28+x )人,乙地段有(15+29﹣x )人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x ),再解方程即可.【答案与解析】解:设应调至甲地段x 人,则调至乙地段(29﹣x )人,根据题意得:28+x=2(15+29﹣x ),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【总结升华】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.举一反三:到市场去【答案】(1)设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-=解得:10x = 4030x -=(2)利润: 10(2.6 1.6)30(3.3 1.8)55-+-=(元)答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元.【变式2】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.类型二、追赶小明(行程问题)1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x = 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题)3.(2016•云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【思路点拨】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x 的值即可.【答案与解析】解:40分钟=小时,设乙车速度为x 千米/时,甲车速度为(x+20)千米/时,根据题意,得(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【总结升华】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度×时间公式列出一元一次方程,此题难度不大.举一反三:【变式】(2015•绥棱县期末)A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)【答案】解:设快车开出x 小时后两车相遇,根据题意得:60x+40(x ﹣)=300. 3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.【巩固练习】一、选择题1.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )道.A. 16B. 17C. 18D. 192.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( ).A .甲票10 元/张,乙票8 元/张B .甲票8元∕张,乙票10元∕张C .甲票12元/张,乙票lO 元∕张D .甲票lO 元/张,乙票12元∕张3.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛,负5场,共得19分,那么这个队胜了( ).A .3场B .4场C .5场.D .6场4. 飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ).A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时5.(2015秋•宜兴市校级期中)某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得( )A .B .C .5(x ﹣)=4xD .6. 甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.5二、填空题7. 学校买回2元的圆珠笔和6元的钢笔作为奖品,共用了290元,已知圆珠笔数量比钢笔数量多5支,那么圆珠笔买了 支,钢笔买了 支.8.(2015•新宾县模拟)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列方程为________.9.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,则这个班的同学有 人,书有 本.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)当两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速为每小时20千米,则无风时飞机的速度为千米/时.三、解答题13. 甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?14.(2016春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?15. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时.(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?【答案与解析】一、选择题1.【答案】A【解析】设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=76.2.【答案】A【解析】设乙票价为x元,则甲票价为(2+x)元,依题意得4x+8(2+x)=112. 3.【答案】C【解析】设该队共平x场,则该队胜了14-x-5=9-x场,依题意得3(9-x)+x=19,x=4∴该队胜了14-x-5=9-4=5场.4.【答案】C【解析】逆风速度+2风速=顺风速度.5.【答案】B.【解析】根据从家到学校的路程相等可得方程为:5x=4×(x+).6.【答案】C【解析】200505050112.5 5070-⨯+=+二、填空题7.【答案】40,35【解析】设钢笔数量是x支,圆珠笔数量是(x+5)支,则6x+2×(x+5)=290,x=35.35+5=40.8.【答案】20x=15(x+4)﹣10 .9.【答案】42,270【解析】设这个班的同学有x人,则:6x+18=7x-24,解得:x=42,则6x+18=270.也可设有数y本,y-18y+24=67,解得y=270,y-18=642.10.【答案】25;200【解析】(1)相遇问题:4002579=+(秒);(2)追及问题:40020097=-(秒).11.【答案】6;【解析】解:设水池容积为1,同时开放甲、乙两管时需要xh水池水量达全池的,依题意得:(﹣)x=,解得x=6,∴同时开放甲、乙两管时需要6h水池水量达全池的.12.【答案】460【解析】设飞机无风时飞行速度为x千米/时,题意得:112×(x+20)=6×(x-20),解,得x=460.三、解答题13.【解析】解:(1)设乙车间有x人,那么甲车间有(4x-5)人,根据题意得:x+(4x-5)=120,x=25.4x-5=4×25-5=95(人).(2)设甲、乙、丙三个车间人数比的一份为x人,则这三个车间的人数依次为13x人4x人、7x人,依题意得:13x+4x+7x=120.x=5.当x=5时,95-13x=95-13×5=30(人),25-4x=25-4×5=5(人).答:原甲、乙车间各有95人和25人.需分别从甲、乙两车间分别抽调30人和5人组成丙车间.14.【解析】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.15. 【解析】(1)解:设x小时后,甲、乙相距351千米,依题意,得15x+12x=351-216,解这个方程,得x=5.答:5小时后,甲、乙相距351千米. (2)解:设乙出发x小时后两人相遇.依题意,得15(3+x)+12x=216,解这个方程,得x=163.答:乙出发163小时后,甲、乙两人相遇.(3)解:设当乙比甲早出发x小时,使甲、乙二人相遇于AB的中点.依题意,得1121621612221512x⨯⨯-=,解这个方程,得x=415.答:只要乙比甲先出发415小时,两人就能相遇于AB的中点.(4)解:设x小时后甲乙相遇,依题意,得15x+12x=216×3解这个方程,得x=24.当x=24时,12x-216=72(千米).答:24小时后两人相遇,相遇地点距离A地72千米.。

初一上数学真题专题练习---一元一次方程的应用(二)

初一上数学真题专题练习---一元一次方程的应用(二)

一元一次方程的应用(二)【真题精选】1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是分钟时,选择方式一与方式二的费用相同.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有人.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:(注:应纳税额=纳税所得额﹣起征额﹣专项附加扣除)小吴2019年1月纳税所得额是7800元,专项附加扣除2000元,则小吴本月应缴税款元;与此次个税调整前相比,他少缴税款元.17.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.一元一次方程的应用(二)参考答案与试题解析一.试题(共17小题)1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,4x=5(90﹣x),故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?【分析】首先根据题意,设有x个椅子,则有40﹣x个凳子,然后根据:椅子腿数+凳子腿数=145,列出方程,求出椅子的数量,进而求出凳子的数量即可.【解答】解:设有x个椅子,则有40﹣x个凳子,根据题意列方程,4x+3(40﹣x)=145,解方程,得:x=25,∴40﹣x=40﹣25=15.答:有25个椅子,15个凳子.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【分析】设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据题意列方程得,120x=2×80(42﹣x)解得x=24,则42﹣x=42﹣24=18.答:共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.【分析】可设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,根据方式一与方式二的费用相同的等量关系列出方程计算即可求解.【解答】解:设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,依题意有58+0.25(x﹣150)=88,解得x=270.故当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.故答案为:270.【点评】本题考查了一元一次方程的应用,关键是理解方式一与方式二两种移动电话的计费方式.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?【分析】(1)分别计算出方案一和方案二的花费,然后比较大小即可解答本题;(2)设一班有x人,根据已知得出两种方案费用一样,进而列出方程求解即可.【解答】解:(1)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(2)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.【点评】本题主要考查了一元一次方程的应用,根据已知得出关于x的方程是解题关键.6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.【分析】(1)根据A、B两家公司的优惠方案所提供的数量关系直接列代数式化简即可;(2)根据购买A、B两个公司体育用品的费用相等,列出方程可求x的值;(3)首先求出还需要购买排球的个数,即x的值,再将x的值分别代入(1)中所求的代数式,与10500比较,即可求解.【解答】解:(1)由A公司的优惠方案得,购买A公司体育用品的费用为:0.8×(100×50+40x)=(32x+4000)元;购买B公司体育用品的费用为:100×50+40(x﹣50)=(40x+3000)元;(2)依题意有32x+4000=40x+3000,解得x=125.故此时x的值为125;(3)还需要排球:600﹣(100+50)﹣50﹣100×2=200(个).在A公司采购需要的费用为:32×200+4000=10400<10500,在B公司采购需要的费用为:40×200+3000=11000>10500,所以能满足训练要求,应在A公司采购.【点评】本题考查一元一次方程的应用,列代数式,根据数量关系列出代数式是正确计算的前提,理解两个公司的优惠方案是解决问题的关键.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?【分析】可设他们买了x张优惠票,根据等量关系:买票共花费了1640元,依此列出方程求解即可.【解答】解:设他们买了x张优惠票,根据题意列方程得:80x+120(x﹣3)=1640,80x+120x﹣360=1640,200x=2000,解得x=10.答:他们买了10张优惠票.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡【分析】设一年内在便利店购买咖啡x次,用x表示出购买各类会员年卡的消费费用,把x=75、85代入计算,比较大小得到答案.【解答】解:设一年内在便利店购买咖啡x次,购买A类会员年卡,消费费用为40+2×(0.9×10)x=(40+18x)元;购买B类会员年卡,消费费用为80+2×(0.8×10)x=(80+16x)元;购买C类会员年卡,消费费用为130+(10+5)x=(130+15x)元;把x=75代入得A:1390元;B:1280元;C:1255元,把x=85代入得A:1570元;B:1440元;C:1405元,则小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为购买C类会员年卡.故选:C.【点评】本题考查的是有理数的混合运算的应用,掌握有理数的混合运算法则是解题的关键.10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?【分析】设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有(106﹣2x)人.根据初一(1)班有20多人,不足30人得出20<x<30,再分①46<106﹣2x≤60,②106﹣2x>60两种情况进行讨论,根据三个班都以班为单位购票,则一共应付1365元列出方程,求解即可.【解答】解:设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有[101﹣x﹣(x﹣5)]=(106﹣2x)人.依题意可知,20<x<30,∴x﹣5<25,46<106﹣2x<66.①如果46<106﹣2x≤60,那么15x+15(x﹣5)+12(106﹣2x)=1365,解得x=28,符合题意.所以x﹣5=23,101﹣x﹣x+5=50;②如果106﹣2x>60,那么15x+15(x﹣5)+10(106﹣2x)=1365.解得x=38.∵38>30,∴x=38不合题意舍去.答:初一(1)班有28人,初一(2)班有23人,初一(3)班有50人.【点评】本题考查了一元一次方程的应用,设初一(1)班有x人,根据x的取值范围得出初一(2)班与初一(3)班人数的范围,进而进行分类讨论是解题的关键.11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?【分析】(1)根据总价=单价×数量,即可求出结论;(2)设复印x张时,两处的收费相同,由甲,乙两店收费相同,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=2张A门票的价格,据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张,依题意,得,解方程组,得,答:小明预订了B等级门票2张,C等级门票5张.【点评】本题考查了二元一次方程组的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?【分析】(1)根据表格中的数据列出相应的方程,从而可以得到初一(2)班的人数;(2)根据表格中的数据和(1)中的结果,可知两个班一起购买最省钱,从而可以求得可以省多少钱.【解答】解:(1)设初一(1)班x人,初一(2)班y人,根据题意可得:12x+10y=1106,由于x,y都是整数,且40<x<50,50<x<100,当初一(1)班有48人时,48×12=576,1106﹣576=530,530÷10=53.当初一(1)班有43人时,43×12=516,1106﹣516=590,590÷10=59.所以,初一(2)班共有53人或59人;(2)两个一起买票更省钱,①8×(48+53)=808,1106﹣808=298(元).②8×(43+59)=816,1106﹣816=290(元).这样比原计划节省298元或290元.【点评】本题考查二元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?【分析】(1)根据里程费+时长费,列式可得车费;(2)根据行车里程1千米,列式可得车费;(3)可设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据等量关系:里程费+时长费=车费37.4元,列出方程求出速度,进一步得到从学校到小华家快车行驶的路程.【解答】解:(1)应付车费=1.8×6+0.8×10=18.8(元).故应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据题意得,解得x=12.∴3x=36.∴(千米).答:从学校到小华家快车行驶了9千米.故答案为:18.8;14.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出方程是解题的关键.15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有3人.【分析】设该家庭中购买普通票的有x人,则可以购买优惠票的有人,根据网络购票优惠的钱数,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入中即可求出结论.【解答】解:设该家庭中购买普通票的有x人,则可以购买优惠票的有人,依题意,得:120x﹣120×0.9x=1080﹣996,解得:x=7,∴=3.故答案为:3.【点评】此题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:。

一元一次方程的应用(2)工程问题同步培优题典(原卷版)

一元一次方程的应用(2)工程问题同步培优题典(原卷版)

七年级数学上册同步培优题典一元一次方程的应用(2)工程问题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2017秋•沾化区期末)加工1500个零件,甲单独做需要12小时,乙单独做需要15小时,若两个合做需x 小时,依题意可列方程( ) A .(112+115)x =1500 B .(150012+150015)x =1500 C .(112+150015)x =1500D .(150012+150015)x =12.(2009秋•龙亭区校级期中)某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x 天.则方程为( ) A .440+x 40+50=1 B .440+x 40×50=1C .440+x 40+x50=1D .440+x−440+x−450=13.(2018秋•宁津县期末)在国道107工程施工现场,调来72名司机师傅参加挖土和运土工作,已知3名司机师傅挖出的土1名司机师傅恰好能开车全部运走,怎样分配这72名司机师傅才能使挖出的土能及时运走?解决此问题,可设:派x 名司机师傅挖土,其他的人运土,列方程①72−x x=13;②72﹣x =x3;③x +3x =72;④x72−x=3上述所列方程,正确的有( )个.A .1B .2C .3D .44.(2020•南宁一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A .x+12050−x 50+6=3 B .x50−x 50+6=3 C .x50−x+12050+6=3 D .x+12050+6−x50=35.(2018秋•蔡甸区期末)一项工程,甲单独完成需10天,乙单独完成需15天,现在两人合作完成后厂家共付给450元,如果按完成工作量的多少分配,则甲、乙两人各分得( ) A .250元,200元 B .260元,190元 C .265元,185元D .270元,180元6.(2019秋•黔东南州期末)一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.( ) A .10B .25C .30D .357.(2019秋•白云区期末)一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要( )天才能完成该工程. A .634B .713C .6D .78.(2019秋•河东区期末)某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲,乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .x+14+x 6=1 B .x 4+x+16=1C .x 4+x−16=1D .x4+14+x+16=19.(2019秋•五常市期末)一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .x 40+x 40+50=1 B .440+x 40×50=1 C .440+x 50=1 D .440+x 40+x 50=110.(2019春•新泰市期末)一项工程甲单独做需20天完成,乙单独做需30天完成,甲先单独做4天,然后甲、乙两人合作x 天完成这项工程,则下面所列方程正确的是( ) A .420+x 20+30=1 B .420+x 20×30=1C .420+x 30=1 D .4+x 20+x 30=1二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•郾城区期末)几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺少4棵树苗.若设参与种树的人数为x 人,则所列方程为 .12.(2019秋•麻城市期末)一项工程,甲单独做10天可以完成,乙单独做15天可以完成,甲队先做两天,余下的工程由两队合做x 天可以完成,则由题意可列出的方程是 .13.(2019秋•正定县期末)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工,若乙单独整理需要20分钟完工.若甲先整理了10分钟,然后,甲、乙合作整理x 分钟后完成此项工作.请列出方程: .14.(2019秋•丹东期末)某工厂每天需要生产50个零件才能在规定的时间内完成生产一批零件的任务,实际该工厂每天比计划多生产了6个零件,结果比规定的时间提前3天完成.若设该工厂要完成的零件任务为x 个,则可列方程为 .15.(2018春•浦东新区期中)有甲、乙两桶油,从甲桶到出14到乙桶后,乙桶比甲桶还少6升,乙桶原有油30升,设甲有油x 升,可列方程为 .16.(2018秋•繁昌县期末)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h 完成.现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x 名同学,根据题意可列方程为 .17.(2019秋•盘龙区期末)某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了 天.18.(2019秋•北京期末)一项工程,甲单独做10天完成,乙单独做15天完成.两人合作, 天可以完成.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•大足区期末)为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?20.(2019秋•郧西县期末)某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?21.(2017秋•河口区期末)某地为了打造风光带,将一段长为360m 的河道整治任务由甲,乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求: (1)甲,乙两个工程队分别整治了多长的河道? (2)甲、乙两工程队各整治河道的天数.22.(2019•安徽模拟)在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(2019秋•义乌市期末)列一元一次方程解答下列问题:(1)义乌市为了搞好“五水共治”工作,将一段长为3600m的河道任务交由甲乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治240m,乙工程队每天整治160m,试求甲乙两个工程队分别整治了多长的河道.(2)小玲在数学书上发现如图所示的题目,两个方框表示的是同一个数,请你帮小玲求出方框所表示的数.24.(2019秋•甘州区期末)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱,为什么?。

沪科版七年级数学上册优秀教学案例:3.2一元一次方程的应用(2课时)

沪科版七年级数学上册优秀教学案例:3.2一元一次方程的应用(2课时)
(四)反思与评价
1.引导学生进行自我反思,培养其自我认知和自我提升的能力。
2.设计具有评价性和反思性的任务,让学生对所学知识和解决问题的过程进行评价和反思。
3.鼓励学生进行互相评价和反馈,培养其批判性思维和自我改进的能力。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入一元一次方程的应用,例如购物时发现商品价格标错,需要计算实际应付金额。
沪科版七年级数学上册优秀教学案例:3.2一元一次方程的应用(2课时)
一、案例背景
本节内容是沪科版七年级数学上册第三章第二节“一元一次方程的应用”,计划用两课时的时间完成。通过前几章的学习,学生已经掌握了整数、有理数的概念,以及一元一次方程的定义和解法。在此基础上,本节内容旨在让学生能够运用一元一次方程解决实际问题,培养其数学建模能力和解决实际问题的能力。
3.小组合作:我将学生分成小组,让他们在小组内共同探讨一元一次方程的解法。这种教学方式培养了学生的团队合作能力和听的能力。
4.反思与评价:我引导学生进行自我反思,培养其自我认知和自我提升的能力。通过设计具有评价性和反思性的任务,让学生对所学知识和解决问题的过程进行评价和反思。这有助于学生培养批判性思维和自我改进的能力。
3.通过示例演示一元一次方程解决实际问题的步骤和方法,让学生理解和掌握解题思路。
(三)学生小组讨论
1.学生分组进行讨论,每组选取一个实际问题,尝试运用一元一次方程解决。
2.引导学生运用合作学习的方式,共同探讨解题思路和方法,培养团队合作能力和沟通能力。
3.鼓励学生分享自己的解题过程和答案,并进行互相评价和反馈。
本节课的内容与学生的生活实际紧密相连,通过解决一些生活中的问题,使学生感受到数学的价值和魅力。同时,通过本节课的学习,也为后续的函数学习打下基础。在教学过程中,我将注重培养学生的逻辑思维能力、团队合作能力和创新意识,使他们在解决实际问题的过程中,能够灵活运用所学知识,提高解决问题的能力。

人教版数学七年级上册第12讲 一元一次方程的实际应用(二)

人教版数学七年级上册第12讲  一元一次方程的实际应用(二)

第12讲一元一次方程的实际应用(二)知识导航1.列一元一次方程解决行程问题;2.列一元一次方程解决工程问题;3.列一元一次方程解决调配与配套问题;4.列一元一次方程解决利润问题.【板块一】行程问题方法技巧1.行程问题有相遇问题,追及问题,顺流(风)、逆流(风)问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运动.2.相遇问题是相向而行,相遇时的总路程=两运动物体的路程和.3.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追.4.顺流(风)、逆流(风)和上坡、下坡问题应注意运动方向和速度不同.题型一一般行程问题【例1】一列匀速前进的火车,从它进入320米长隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,求这列火车的长为多少米?【练1】某人骑自行车由甲地驶向乙地,如果每小时比原来的速度快6公里,便可以早到5分钟;如果每小时比原来的速度慢5公里,便要迟到6分钟.求甲、乙两地的距离为多少公里?题型二相遇问题【例2】小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A,B两地间的路程.【练2】A,B两地间的路程为360km,甲车从A地出发开往B地,每小时行驶72km,甲车出发25min后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100km时,甲车从出发开始共行驶了多少小时?题型三追及问题【例3】A,B两地相距480km,一列慢车从A地出发,每小时行走50km,一列快车从B地出发,每小时走70km.⑴两车同时出发,相向而行,出发后多少小时相遇?⑵若两车同时出发,同向而行,慢车在快车前面,相遇前经过多少小时两车相距200km?相遇后经过多少小时两车相距200km?【练3】甲、乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.⑴求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)⑵若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?题型四 流水问题与上、下坡问题【例4】某船从A 地顺流而下到达B 地,然后逆流返回,到达A ,B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A ,C 两地之间的路程为10千米,求A ,B 两地之间的路程.【练4】如图所示,折线AC -CB 是一条公路的示意图,AC =8km .甲骑摩托车从A 地沿这条公路到B 地,速度为40km /h ,乙骑自行车从C 地到B 地,速度为10km /h ,两人同时出发,结果甲比乙早到6分钟.求这条公路的长.针对练习11、 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行( )A . 0.5小时B . 1小时C . 1.2小时D . 1.5小时2、我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”.如果设良马x 日追上驽马,那么根据题意,可列方程为 .3、已知A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.若甲车速度为110千米/ 时,乙车速度为90千米/时,经过t 小时两车相距50千米,则t = 小时.4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相 同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内 可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.ACB5、为赴台湾考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆小轿车(平均速度为60千米/时)从家里出发赶往距家45千米的重庆江北机场,此时,距规定到达机场的时间仅剩90分钟. 7点30分时小颖发现爸爸忘了带身份证,急忙通知爸爸返同,同时她乘坐出租车以40千米/时的平均速度直奔机场(打电话和上出租车的时间忽略不计),与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返同,结果不到30分钟就遇上了小颖(拿身份证的时间忽略不计),并立即赶赴机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶千米,爸爸返回千米(均用含x的代数式表示);(2)小颖的爸爸能否在规定的时间内赶到机场?6.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A、C两地间的距离为10km.如果乙船由A地经过B地再到达C地共用了4h,问:乙船从B到到达C地时,甲船距离B地有多远?【板块二】工程问题方法技巧1、基本量之间的关系:工作量=工作效率╳工作时间.2、当总工作量未给出具体数量时,常把总工作量当作整体1.常用的相等关系为:总工作量=各部分工作量的和.题型一有具体数量作为工作量【例5】某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道.【练5】有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及粉刷,同样的时间内5名徒弟粉刷了9个房间的墙面,每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张师傅现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?题型二没有具体数量作为工作量【例6】检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙合做,但乙中途离开了一段时间,后2天由乙、丙合做完成,问乙中途离开了几天?【练6】一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;若甲、丙两车运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:(1)乙车每次所运货物是甲车每次所运货物量的几倍?(2)现甲、乙、丙合运相同次数把这次货物运完时,货主应付车主运费各多少元?(按每运1吨付运费20元计算)题型三牛吃草问题(总工作量发生变化)【例7】有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,至多放牧几头牛?【练7】山脚下有一池塘,山泉以固定的流量(即单位时间里流人池中的水量相同)不停地向池塘内流淌,现池塘中有一定深度的水,若用一台A型抽水机则1小时后正好能把池塘中的水抽完,若用两台A型抽水机则 20分钟正好把池塘中的水抽完,问若用三台A型抽水机同时抽,则需要多长时间恰好把池塘中的水抽完?针对练习21、完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,则甲单独完成此项工程需要的天数是( )A. 2.8B. 3C. 6D. 122、为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要 .3、某农民在农贸市场卖鸡,甲先买了总数的一半又半只,然后乙买了剩下的一半又半只,最后丙买了剩下的一半又半只,恰好卖完,则该农民一共卖了只鸡.4、刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成.现在甲先单独绣1天,接着乙又单独绣 4天,剩下的工作由甲、乙两人合绣.再绣多少天可以完成这件作品?5、甲、乙两个施工队在六安(六盘水一安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设 5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,则乙队每天铺设(x—100)米.(1)依题意列出一元一次方程;(2)求出甲、乙两个施工队每天各铺设多少米.6、—棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)—个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值.【板块三】调配及配套问题方法技巧1.调配问题的相等关系往往通过题目中的一句关键的语气呈现.2.产品配套问题的相等关系要抓住成套产品的两个部件之间固有的倍数关系.题型一调配问题【例8】学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.【练8】某工厂生产一批桌椅,甲车间有29人生产桌子,乙车间有17人生产椅子,现要赶工期,总公司调20人去支援,使甲车间的人数为乙车间人数的2倍,应调往甲、乙车间各多少人?题型二配套问题【例9】某儿童三轮车厂有95名工人,每人每天能生产车身9个或车轮30个.要使每天生产的车身和车轮恰好配套(一个车身配三个车轮),应安排生产车身和车轮各多少人?【练9】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?针对练习31.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工在厂需生产A,B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?2.某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条(一件上衣配一条裤子),应怎样分配人数,才能使每天生产的上衣和裤子配套?3.甲仓库和乙仓库分别存放着某种机器20台和6台.现在准备调运给A厂10台,B厂16台,已知从甲库调运一台机器到A厂的运费为400元,到B厂的运费为800无;从乙库调运一台机器到A厂的运费为300元,到B厂的运费为500元,如果总运费用了16000元.求:从甲库调给A厂,乙库调给B厂各为多少台机器?4.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件。

一元一次方程应用题2篇

一元一次方程应用题2篇

一元一次方程应用题第一篇:水桶倒水问题问题描述:小明有一个容量为12升的水桶,里面装满了水。

他用这个水桶分别给两个植物浇水,第一个植物每次需要2升水,第二个植物每次需要3升水。

假设两个植物都需要浇水n次,问小明能够连续给这两个植物浇水的最大次数是多少次?解决方法:设小明能够给两个植物连续浇水的次数为x次。

根据题意,每次给两个植物浇水后,第一个植物的水量会减少2升,第二个植物的水量会减少3升。

因此,通过一次操作,两个植物共需要消耗的水量为2x + 3x = 5x升。

而小明的水桶容量为12升,假设小明能够连续给这两个植物浇水n次,则总共需要消耗的水量为5xn升。

因此,5xn ≤ 12,解这个不等式可以得到小明能够连续给这两个植物浇水的最大次数n的取值范围。

首先,根据不等式5xn ≤ 12,我们可以将不等式两边同除以5得到n ≤ 12/5,即n的取值范围为n ≤ 2.4。

由于n是正整数,所以n的取值范围应该是n ≤ 2。

这意味着小明最多能够连续给这两个植物浇水2次。

因此,小明能够连续给这两个植物浇水的最大次数是2次。

第二篇:汽车加速问题问题描述:某辆汽车以初速度为10 m/s匀加速行驶,在行驶的过程中,速度与时间的关系为v(t) = 10 + 2t,其中v是速度(m/s),t是时间(s)。

问该汽车在何时速度能达到60 m/s?解决方法:根据题意,汽车的速度与时间的关系为v(t) = 10 + 2t。

我们需要找到一个时间t,使得v(t) = 60。

将v(t) = 10 + 2t = 60,化简得2t = 50,解得t = 25。

因此,该汽车在25秒时速度能达到60 m/s。

一元一次方程的应用(2)销售问题(教案)

一元一次方程的应用(2)销售问题(教案)
五、教学反思
在今天的教学过程中,我发现学生们对一元一次方程在销售问题中的应用表现出较高的兴趣。他们在分组讨论和实验操作环节积极参与,提出了很多有见解的问题。但在教学过程中,我也注意到以下几个问题需要反思和改进。
首先,关于一元一次方程的应用,部分学生对于从实际问题中抽象出方程模型这一步骤感到困难。在今后的教学中,我需要更加注重引导学生如何从具体问题中找出关键信息,提炼出等量关系,进而列出方程。
其次,在讲授重点难点时,我发现有些学生对一元一次方程的解法掌握不够熟练。针对这一问题,我打算在下一节课前安排一次小测验,以检验学生们对一元一次方程解法的掌握程度。此外,在授课过程中,我会增加一些典型例题的讲解,让学生们更好地理解解法原理。
另外,关于小组讨论环节,虽然学生们表现出较高的积极性,但部分学生在讨论过程中仍显得有些拘谨,不够主动。为了提高学生的参与度,我计划在接下来的教学中,多设置一些开放性问题,鼓励学生们大胆发表自己的观点,培养他们的团队合作精神。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程在销售问题中的基本概念。一元一次方程是描述销售问题中数量、单价、总价等关系的数学模型。它在解决实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用一元一次方程解决购物折扣问题,以及它如何帮助我们求出商品的原价。
举例:若甲商品每件售价为20元,买n件可享受8折优惠,求购买m件(m>n)时的实际平均单价。学生需要列出方程(20n*0.8+20(m-n))=20m,进而求解出平均单价。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元一次方程的应用(2)销售问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过购物时打折、优惠等销售问题?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索销售问题中的一元一次方程的奥秘。

七年级上册数学同步培优:第10讲 一元一次方程的应用二--尖子班

七年级上册数学同步培优:第10讲 一元一次方程的应用二--尖子班

第10讲 一元一次方程的应用二⎧⎪⎨⎪⎩工程问题一元二次方程的应用利润问题其他问题知识点1 一元一次方程的实际问题-工程问题1、工程问题的基本量有:工作量、工作效率、工作时间。

公式为:①工作量=工作效率×工作时间,②=工作量工作时间工作效率,③=工作量工作效率工作时间。

2、工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为1t。

3、常用列式依据:“甲的工作量+乙的工作量+丙的工作量=1”,有些工程问题也可以分阶段“第一阶段工作量+第二阶段工作量=1”。

【典例】1.一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天,若甲、丙先做3天,甲因故离开,由乙接替甲的工作,如果要求这个工程6天完成,问此工程是否能按期完成?【方法总结】1、本题可以分两个阶段:第一阶段“甲、丙合做3天”,第二阶段“乙、丙合做x 天”,可得“甲、丙合做3天”的工作量+“乙、丙合做x 天”的工作量=工作总量2、对于问是否能按时完成任务的问题,先求实际完成任务的时间,再与规定时间做比较,得出是否能按时完成2. 甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需多少天?【方法总结】1、分析表格,找出有用信息,求出甲、乙的工作效率是解本题的关键:由甲做3天,完成工作进度的14,可求出甲的工作效率为114312;由第三天到第五天,甲乙合作两天时间,完成工作进度的14,列式可求乙的工作效率为124。

2、此题是典型的工程问题,需要分段分析,分清每段的情况【随堂练习】1.(2017秋•鞍山期末)一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?2.(2017秋•黄石期末)一项工程,由甲、乙、丙三人完成,甲单独做需10天完成,乙单独做需12天完成,丙单独需15天完成.现计划7天完成,乙、丙先合做3天后,乙有事,由甲、丙完成剩下工程,问:能否按计划完成?3.(2018春•唐河县期中)现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分配?知识点2 一元一次方程的实际问题-利润问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。

3.22一元一次方程的应用(2)

3.22一元一次方程的应用(2)

x . 3.2 3.2x 橘子 6-x 2.6 2.6(6-x) 请列出方程解这道题。
质量 单价 (千克) (元/千克) x 3.2 苹果 6-x 2.6 橘子
总价 (元)
3.2x 2.6(6-x)
解:设小丽买了x千克苹果. 根据题意,得 3.2x+2.6(6-x)=18. 解这个方程,得 x=4. 则 6-x=2 答:小丽买了4千克苹果、2千克橘子。
答:甲做465个零件,乙做620个零件,丙做496 个零件。
练习:某工厂狠抓产品质量后,有一批产品的 98%是一等品和二等品,其中一等品和二等品的 件数 之比是19:1,又一等品比二等品多1764件, 这批产品的一等品、二等品各有几件? 解:设二等品有x 件,则一等品有19x 件。 等量关系:一等品件数-二等品件数=1764件
(1)买苹果的金额+买橘子的金额=18元 (设) x 18-x (2)苹果的重量+橘子的重量=6千克 (列) x 18-x 3.2 2.6
列代数式:
(1)某厂八月份原计划生产洗衣机y台,技术 革新后,实际超额完成计划的15%,则 0.15y 超额生产洗衣机______________台, 1.15y 实际生产洗衣机______________台。
依题意得:19x-x=1764 x=98 则19x=1862
答:这批产品的一等品有1862件,二等品有98件。
例3、甲、乙两仓库存货吨数比为4 :3,如果由
甲库中取出8吨放到乙库中,则甲、乙两库存货吨 数比为4 :5,两仓库原存货总吨数是多少吨?
分析:(1)设元,本题中有两个比,设其中的 哪个一份为x呢 ? (2)相等关系,题目中可以找到吗? 解:设甲、乙两仓库原存货的总吨数为4x吨和3x 吨。 依题意得: (4x – 8) :(3x + 8 )= 4 :5 x=9 则4x = 36,3x = 27 答:…….

北师大版(2024)七年级数学上册 第五章 习题课件 第8课 一元一次方程的应用(2)——盈不足问题

北师大版(2024)七年级数学上册 第五章 习题课件 第8课 一元一次方程的应用(2)——盈不足问题

7.《孙子算经》中有一道阐述“盈不足术”的问题, 原文如下: 今有木,不知长短,引绳度之,余绳四尺五寸;屈 绳量之,不足一尺.问:几何? 译文为:现在有一根木头,不知道有多长,用一段 绳子去测量,拉直后绳子还多四尺五寸;将绳子对 折后去量木头,木头还剩一尺,问木头多长?(一 尺等于十寸)
解:设木头长x尺,则绳子长(x+4.5)尺.
第五章 一元一次方程 第8课 一元一次方程的应用(2)——
盈不足问题
1.某班分两组去两处植树, 第一组22人, 第二组26人.
现第一组在植树中遇到困难,需第二组支援. 问从第
二组调多少人去第一组才能使第一组的人数和第二
组的人数同样多?设抽调x人, 则可列方程 ( C )
A.22+x=26
B.22+x=26+x
解:设这种三色冰淇淋中咖啡色配料为2x g,那么红色 和白色配料分别为3x g和5x g. 依题意,得2x+3x+5x=50,解得x=5. 则2x=10,3x=15,5x=25. 答:这种三色冰淇淋中咖啡色、红色和白色配料分别是
10 g,15 g和25 g.
5. 延安是中国革命圣地,是全国爱国主义、革命传统 和延安精神三大教育基地.某校组织学生去延安进 行研学,若租用同型号的客车5辆,还剩22人没有 座位;若租用6辆,有8个空座位.求该客车的载客 量.
依题意,得x- x 4.5 =1,解得x=6.5. 2
答:木头长6.5尺.
解:(1)设用x尺布做衣身,则用(300-x)尺布做袖管,那
x
么2·可x 2
x
只.依题意,得
,解得x=200.所以300-200=100(尺).
答:8 用200尺2 布做衣身,100尺布做袖管正好配套.
(2)可做多少件上衣? 解:(2)200÷8=25(件). 答:可做25件上衣.

一元一次方程的应用(利润问题)(2)

一元一次方程的应用(利润问题)(2)

一元一次方程的应用(利润问题)(2)一.解答题(共30小题)1.某种商品因换季准备打折出售,如按定价的五折出售,将赔20元;如按定价的八折出售,将赚40元,求这种商品的定价及成本?2.五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为1000元的商品,共节省280元,则用贵宾卡又享受了几折优惠?3.某个体户进了40套服装,以高出进价40元的售价卖出了30套,后因换季,剩下的10套服装以原售价的六折售出,结果40套服装共收款4320元,问每套服装进价是多少元?这位个体户是赚了还是亏了?4.某商品的进价为1600元,原售价为2200元,因库存积压需降价出售,若每件商品仍想获得10%的利润,需几折出售?5.某种品牌电风扇的标价为165元,若降价以九折出售,仍可获利10%(相对于成本价),那么该商品的成本价是多少?6.某商店进了一批商品,提高进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为多少元?7.某水果商店购进400千克水果,进价是每千克12元,进货过程中损耗8%,要使全部出售后赢利15%,水果商店应怎样定价?8.小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装,为了缓解资金的压力,小张决定打折销售.若每件服装按标价的五折出售将亏20元,若按标价的八折出售将赚40元.(1)每件服装的标价是多少元?每件服装的成本是多少元?(2)为了尽快减少库存,又要保证不亏本,请你告诉小张最多能打几折?9.某厂加工一种农副产品,每千克成本为20元,销售单价为30元.该厂为鼓励客户购买这种农副产品,决定当一次购买千克数超过50千克时,每多购买一千克,全部农副产品的销售单价均降低0.02元,但不能低于25元.(利润=售价﹣成本)(1)当一次购买多少千克时,销售单价恰为25元?(2)当客户一次购买400千克时,该厂获得的利润是多少?(3)当客户一次购买200千克时,该厂获得的利润是多少?10.某商店的一批电视机,原价2500元,现以8折销售,如果想使降价前后的月销售额都为10万元,那么月销量应增加多少台?11.某商品标价为1200元,打八折后,仍盈利60%,则该商品进价为多少元?12.某个体商贩由于不了解市场,进了一批过时服装,售价比进价提高20%售出,结果卖不出去,只好在此基础上将售价降低20%出售,这样每件服装只卖了96元钱,问该商贩每卖出一件服装是赚还是赔,还是不赔不赚,赚了赚多少,赔了赔多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元?14.某药品在2006年涨价30%后,2007年降价70%至39元,则这种药品在2006年涨价前的价格为多少元?15.“五一”期间,两家商场都在对某品牌电脑实行打折销售,已知电脑原价a元甲商场的打折方案是:先打八折,再降m元,乙商场的打折方案是:先降m元,再打八折.现在小明想买一台该品牌的电脑,打的去甲商场需20元车费,去乙商场需10元车费,你能给他提些什么建议呢?16.某商品的每件销售利润是72元,进价是120元,则该商品的售价是多少元?17.有一家商店以2000元卖出一台空调,又以2000元卖出一台彩电.其中空调赢利30%而彩电亏损20%.请你帮店主算一下,这笔买卖商店是赢还是亏?赢了多少或是亏了多少?18.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?19.(A类)汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶.已知A种帐篷每顶1700元,B种帐篷每顶1300元,该企业向灾区捐赠A,B两种帐篷各多少顶?(B类)商店对某种商品作调价,按标价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,该商品的标价是多少?(C类)某校组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)该校参加春游有多少人?(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,该校租用哪种车更合算?20.某商店售两件衣服,每件135元,其中一件赚25%,而另一件亏25%,(1)那么这家商店是赚了还是亏了,或是不赚也不亏呢?(2)把题中的135元改为任意正数a,情况如何?21.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款.求每台彩电的原价格.22.文化商场同时卖出两台电子琴,每台均卖960元,以成本计算.其中一台盈利20%,另一台亏本20%,则这次出售中商场是赚还是赔,数量是多少?23.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月底又可获利10%;如果月末出售可获利30%,但要付出仓储费700元.(1)如果这笔资金是25 000元,则什么时候出售好?(2)月初出售与月末出售获利一样能一样多吗?若能,请求出这笔资金数;若不能,说明理由.24.小明要到商店买一种学习用品,该用品在甲、乙两个商店的最初标价为a元,后来小明发现该用品在甲商店标价仍为a元,而乙商店现在的标价是原价a元九折的基础上涨10%得到的价格.请你帮小明选择一下去哪家商店便宜?25.某商场按彩电进价提高40%后,在广告上写出“大酬宾,8折优惠”,结果每台彩电可获利270元,请问每台彩电进价是多少元小红根据题意设每台彩电进价x元,列出方程为:x×40%×80%=x﹣270.你认为她列出的方程正确吗若正确,求出x的值:若不正确,请列出新的方程,并求出x的值.26.某商场元旦期间举行优惠促销活动,采取“满一百送五十”的酬宾方式,即顾客每消费满100元现金就送50元购物券,满200元现金就送100元购物券,依此类推,现有一位顾客第一次用了300元现金购物,第二次用所得购物券再加50元现金继续购物,那么他购回的商品相当于打了几折?27.甲、乙两种商品单价之和为100元,因季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原单价之和提高了2%,求甲、乙两种商品的单价.28.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?29.为了适应市场竞争,要把标价300元的某种商品折价销售,折价销售的利润率为20%,此商品的进价为200元,此商品是按几折销售的?如果此商品按标价的六折销售,是否有利润?请说明理由.30.商场将某种品牌的冰箱按进价提高50%作为标价,然后打出“八折酬宾,外送100元运装费”的广告,结果每台冰箱应获利300元,求每台冰箱的进价是多少元?一元一次方程的应用(利润问题)(2)参考答案与试题解析一.解答题(共30小题)1.某种商品因换季准备打折出售,如按定价的五折出售,将赔20元;如按定价的八折出售,将赚40元,求这种商品的定价及成本?考点:一元一次方程的应用。

7年级-上册-数学-第5章《一元一次方程》5.4一元一次方程的应用(2)等积变形问题-分节好题挑选

7年级-上册-数学-第5章《一元一次方程》5.4一元一次方程的应用(2)等积变形问题-分节好题挑选

浙教版-7年级-上册-数学-第5章《一元一次方程》5.4一元一次方程的应用(2)等积变形问题-每日好题挑选【例1】用一个棱长为20厘米的立方体容器(已装满水)向一个长、宽、高分别是50厘米,10厘米和8厘米的长方体铁盒内倒水,当铁盒内装满水时,立方体容器中水的高度下降了。

【例2】根据图中给出的信息,可得正确的方程是。

【例3】如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,它们内部的底面积分别为80cm2,100cm2,且甲容器装满水,乙容器是空的.若将甲容器中的水全部倒入乙容器中,则乙容器中的水位比原先甲容器中的水位降低了8cm,则甲容器的容积为cm3。

【例4】一辆自行车换胎,若新轮胎安装在前轮,则自行车行驶2500km后报废;若新轮胎安装在后轮,则自行车行驶1500km后报废.已知自行车在行驶一定的路程后可以交换前后轮轮胎,如果通过交换前后轮轮胎使一辆自行车的一对新轮胎同时报废,那么这对新轮胎一共支撑自行车行驶了km。

【例5】如图,6位朋友均匀地围坐在圆桌旁共度佳节,圆桌半径为60cm,每人离圆桌的距离均为10cm。

现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x(cm),根据题意,可列方程。

【例6】拟有一玻璃密封器皿如图①,测得其底面直径为20cm,高为20cm,现装有蓝色溶液若干。

正放时的截面如图②,测得液面高10cm;倒放时的截面如图③,测得液面高16cm,则该玻璃密封器皿的总容量为cm3。

(结果保留π)【例7】一种圆筒状包装的保鲜膜如图所示,其规格为“20cm×60m”,经测量这筒保鲜膜的内径、外径的长分别是3.2cm, 4.0cm,则这种保鲜膜的厚度约为cm。

(结果精确到0.0001cm)【例8】爷爷病了,需要挂一瓶100mL的药液(如图所示),小明守在旁边,观察到输液流量是3mL/min,输液10min后,吊瓶的空出部分容积是50mL,利用这些数据,计算整个吊瓶的容积是mL。

一元一次方程的应用第2课时 利率与销售问题

一元一次方程的应用第2课时 利率与销售问题

B.x+4.25%x=42315
C.3×4.25%x=42315
D.3(x+4.25%x)=42315
2.李明存入1000元,定期一年,该种储蓄的年利率为2.25%,到期后得到本息和为
() C
A.1225 B.225 C.1022.5 D.22.5
3.从2019年3月26日开始,由支付宝给信用卡还款将开始收取服务费.据规定,每 月还款2000元及以内不收费,超过2000元的部分将按照0.1%的比例来收取服务 费.按此规定,小李下期通过支付宝给信用卡还款将支付5元的服务费.若小李此 次还款总额为x元,则x满足的方程为 _____(_x_-__2_0_0_0_)×__0_._1_%_=__5.
解:设每次应付款x元, 根据题意得:(8224-x)+(8224-x)×5.6%=x,解得:x=4224,答:每次应付款 是4224元
14.蚌埠白马服装城某品牌服装店,因换季销售打折商品,如果按定价6折出售, 将赔20元,如果按定价的8折出售,将赚15元,问这种商品定价多少元?
解:设这种商品定价为x元,则这种商品进价为(0.6x+20)元,根据题意得0.8x- (0.6x+20)=15进行促销活动,某商品的优惠措施是“第二件商品半价”.现购
买2件该商品,相当于这2件商品共打了( )
D
A.5折 B.5.5折 C.7折 D.7.5折
8.(1)小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的 实际售价为______元.160
(2)一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按 售价的九折出售,每件还能盈利____元. 8
知识点❷:销售问题[0考/8年]
6.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元

4.3《一元一次方程的应用》省优获奖学案2

4.3《一元一次方程的应用》省优获奖学案2

4.3 一元一次方程的应用(2)1、会找等积变形问题类型应用题的相等关系设未知数列方程;2、掌握用方程解决实际问题的基本步骤:理解题意,寻找等量关系,设未知数列方程,解方程,作答.重点:列方程解决等积问题.难点:将实际问题转化成一元一次方程来解决.1、借助表格分析应用题,列方程解决实际问题;2、在探索的过程中积极动手、动脑、动口,加强交流互助,达到合作共赢.1、圆柱的底面半径为r ,高为h ,那么圆柱的底面面积是_______,圆柱的体积是_______.如果一个圆柱的底面直径是10cm ,高为h ,则圆柱的体积可表示为 .2、一个正方体的棱长为a ,这个正方形的体积是 .3、一个长方体的长为a ,宽为b ,高为c ,这个长方形体积是_____________.4、长方形长为m ,宽为n ,此时长方形周长为________,面积为________.一、知识链接,明确目标(10分钟)如图,将一个底面直径为20cm 、高为9cm直径为10cm 变,那么圆柱的高变成了多少?1、在这个问题中有什么等量关系?.根据等量关系,列出方程:.解这个方程,得x= .因此,高变成了cm.【温馨提示】1、如果题目没有要求,在表示圆的周长或面积、圆柱圆锥的体积时保留π的形式。

2、解方程时要注意选择简单的方法巩固练习:要锻造一个直径为10cm,高为8cm的圆柱形毛坯,应截取直径为8cm的圆钢多长?小结:列方程解应用题的一般步骤是:、、、、、 .二、自主学习,点拨释疑(限时15分钟)【例1 】用一根长为10m的铁丝围成一个长方形.探究(1)使得这个长方形的长比宽多1.4m,此时长方形的长、宽各为多少米?【分析】由题意知,长方形的始终是不变的,所以可得等量关系 =在解决这个问题的过程中,要抓住这个等量关系。

解:(1)设此时长方形的为xm,则它的为 m,由题意得探究(2)使得这个长方形的长比宽多0.8m,此时长方形的长、宽各为多少米?解:探究(3)使得这个长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?解后反思:1、本题列方程时用的等量关系是什么?2、在表示未知量时抓住关键字:“多、少、倍、分、比”.三、巩固练习,提升能力(限时5分钟)1、第一块试验田的面积比第二块试验田的3倍还多100平方米,这两块试验田共2900平方米,两块试验田的面积分别是_________和________平方米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题(共 11 小题)
1.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为 2:3,甲桶果汁与乙桶果汁的体积比为 4:5,若 甲桶内的果汁刚好装满小纸杯 120 个,则乙桶内的果汁最多可装满几个大纸杯( )
A. 64
B. 100
C. 144
D. 225
2.如图所示,是本月份的日历表,任意圈出一横行或一竖列相邻的三个数, 这三个数的和不可能是( )
A. 24
B. 43
C. 57
D. 69

3. 一种进价为 200 元的商品, 如果按标价的八折出售, 每件商品的利润率是 10%, 设这种商品的标价为 x 元, 列出的方程是 (
A. 8x-200=200×10%
B. 0.8x-200=200×10% C. 0.8x+200×10%=200 D. 10%x-200=200×0.8
4.A、B 两地相距 450 千米,甲、乙两车分别从 A、B 两地同时出发,相向而行.已知甲车速度为 120 千米/时,乙车速度为 80 千米/时,经过 t 小时两车相距 50 千米,则 t 的值是( )
A. 2 或 2.5
B. 2 或 10
C. 10 或 12.5
D. 2 或 12.5

5.甲、乙两个运输队,甲队 32 人,乙队 28 人,若从乙队调走 x 人到甲队,此时甲队人数为乙队人数的 2 倍,则列方程为(
A. 32-x=28×2
B. 32×2=28-x
C. 32=( 28-x) ×2
D. 32+x=2( 28-x)
6.某中学冬季进行体育锻炼,举行跳绳和踢毽比赛,该校七年一班准备购买 6 根绳和 10 个毽,已知绳比毽的单价少 2 元,班长 算了一下,他们共需要 36 元钱.如果设绳的单价为 x 元,那么下列方程正确的是( )
A. 6x+10( x+2) =36
B. 6x+10( x-2) =36 C. 6( x+2) +10x=36 D. 6( x-2) +10x=36
7.某单位 A、B、C 三个部门的人数依次是 84 人、56 人、60 人,如果每个部门都按相同的比例裁减人员,使三个部门共留下 150 人,那么 A 部门留下的人数是( )
A. 56 人
B. 60 人
C. 63 人
D. 65 人
8.某道路一侧原有路灯 56 盏,相邻两盏灯的距离为 24 米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为 30 米, 则需更换的新型节能灯有( )
A. 44 盏
B. 45 盏
C. 46 盏
D. 47 盏
9.某商场对顾客实行优惠,规定: (1)如一次购物不超过 200 元,则不予折扣; (2)如一次购物超过 200 元但不超过 500 元的,按标价给予九折优惠; (3)如一次购物超过 500 元的,其中 500 元按第(2)条给予优惠,超过 500 元的部分则给予八折优惠. 某人两次去购物,分别付款 168 元与 423 元,如果他只去一次购买同样的商品,则应付款是( )
A. 522.8 元
B. 510.4 元
C. 560.4 元
D. 472.8 元

10.服装店同时销售两种商品,销售价都是 100 元,结果一种赔了 20%,另一种赚了 20%,那么在这次销售中,该服装店(
A. 总 体 上 是 赚 了 B. 总 体 上 是 赔 了 C. 总 体 上 不 赔 不 赚 D. 没 法 判 断 是 赚 了 还 是 赔 了
二.填空题(共 7 小题)


11.一件工作,甲单独做 20 小时完成,乙单独做 12 小时完成,现由甲独做 4 小时,剩下的甲、乙合做,还需几小时?设剩下部 分要 x 小时完成,列方程得 12.某市在端午节举行划龙舟大赛,有 16 个队共 352 人参加.已知每个队一条船,每条船上人数相等,且每条船上有 1 人击鼓, 1 人掌舵,其余的人同时划桨.设每条船上划桨的有 x 人,那么可列出一元一次方程为 13.在甲处工作的有 272 人,在乙处工作的有 196 人,如果要使乙处人数是甲处人数的 1/3,应从乙处调多少人到甲处?若设应从 乙处调 x 人到甲处,则所列方程为 14.国家规定存款利息的纳税标准:利息税=利息×5%,如果银行一年定期储蓄的年利率为 2.25%,某储户在取出一年到期本金及 利息时,缴纳了利息税 22.5 元,则该储户一年前存入银行的钱为 元.
15.中国足球队首次进入了世界杯决赛圈,实现了近五十年的愿望,足球一般是由许多黑白相同的小皮块缝合而成的,黑块成五边 形,白块成六边形(如图所示),已知黑块有 12 块,则白块有
16.摄制组从 A 市到 B 市有一天的路程,计划上午比下午多走 100 千米到 C 市吃午饭.由于堵车,中午才赶到一个小镇,只行驶 了原计划的三分之一,过了小镇,汽车赶了 400 千米,傍晚才停下来休息.司机说,再走从 C 市到这里路程的二分之一就到达目 的地了.则 A、B 两市相距 千米.
17.如图,航空母舰始终以 200 千米/时的速度由西向东航行,飞机以 800 千米/时的速度从舰上起飞,向西航行执行任务,如果 飞机在空中最多能连续飞行 3 个小时,那么它在起飞 小时后就必须返航,才能安全停在舰上.
18.七年级男生入住的一楼有 x 间,如果每间住 6 人,恰好空出一间;如果每间住 5 人就有 4 人不得住.求一楼共有多少间?根 据题意可列出关于 x 的方程为
三.解答题(共 7 小题)
19.某班将举行“庆祝建党 90 周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:
请根据上面的信息,试求两种笔记本各买了多少本?


20.(1)关心生活:如下的两幅不完整的统计图反映了某中学校男子篮球队的年龄分布情况:
请根据图中提供的信息,解答下列问题: ①该校男子篮球队队员有多少人? ②将条形统计图补充完整; ③在扇形统计图中,求出“15 岁”部分所对应的圆心角的度数; (2)学以致用:小明同学路过一家家电商场,发现工商部门正在查处,小明经过打听得知,这家商场将某型号空调先按进价提高 40%后标价, 然后在广告中写上“大酬宾, 八折优惠”, 结果被工商部门发现有欺诈行为, 为此按每台空调所得利润的 10 倍处以 2700 元的罚款,小明稍加思索,他就知道了这种空调的每台标价,聪明的你一定也知道,请你用数学知识告诉别人?
21.某校 5 名老师带领若干学生到张家界旅游,他们联系了 A、B 两家旅行社,两家旅行社的标价都为每人 500 元.经洽谈,A 旅 行社给的优惠条件是:教师全额付费,学生按七折付费;B 旅行社给的优惠条件是:全体师生按八折付费.经核算,选择 A 旅行社 更合算(即选择 A 旅行社所花费用不会多于 B 旅行社所花费用).请你计算,这次参加旅游的学生至少有多少人?
22.某市原来的自来水价格为 2 元/吨,为了鼓励节约用水,从 2013 年 1 月起对用户的自来水收费实行阶梯价格,标准如下:一 家一个月的基本用水量(即第一级)为 10 吨,第一级水价为 1.5 元/吨;超过 10 吨,不超过 15 吨为第二级,超过部分的水价为第 一级水价的 2 倍;超过 15 吨为第三级,超过部分的水价为第一级的 3 倍. (1)小李家去年 12 月用自来水 17 吨,如果按今年的阶梯价格计算,小李家要比实际多交水费多少元? (2)如果小李家今年 1 月用自来水 m 吨(10<m≤15),请用含 m 的代数式表示小李家应交的水费. (3)小张用阶梯价格计算出自己家去年 12 月的自来水费为 43.5 元,问小张家去年 12 月用自来水几吨?
23.在一条直的河流中有甲、乙两条船,现同时由 A 地顺流而下.乙船到 B 地时接到通知需立即返回到 C 地执行任务,甲船继续 顺流航行.已知甲、乙两船在静水中的速度都为每小时 7.5km,水流速度为每小时 2.5km,A、C 两地间的距离为 10km.如果乙 船由 A 地经 B 地到达 C 共用了 4h,问乙船从 B 地到达 C 地时,甲船离 B 地多远?


24.某电信公司给顾客提供了两种手机上网计费方式: 方式 A:以每分钟 0.05 元的价格按上网时间计费; 方式 B:除收月基本费 10 元外,再以每分钟 0.03 元的价格按上网时间计费. 假设小王一个月手机上网的时间共有 x 分钟. (1)用含 x 的代数式分别写出小王按 A、B 两种方式计费的上网费用; (2)如果小王每月的上网费用为 40 元,选择哪种方式更合算?
25.为保护环境,鼓励市民节约用电,从 2012 年开始,深圳实施“阶梯电价”收费方案,收费标准如下: 收费标准 用电量 第一档 0~200 度 电费单价 0.68 元/度 收费说明 用电量在第一档时,按每度 0.68 元收费 用电量在第二档时,先收第一档费用,超出部分按每度 0.73 元收费
第二档 201~400 度 0.73 元/度 第三档 401 度以上
0.98 元/度 用电量在第三档时,先收第一档和第二档费用,超出部分按每度 0.98 元收费
(1)已知某用户一月份的用电量不超过 400 度,若该用户这个月的电费平均每度 0.69 元,该用户一月份用电多少度?应交电费多 少元? (2)若某用户一月份的用电量为 x 度,请你用含 x 的代数式表示该用户在这个月应交的电费. 显示解析













相关文档
最新文档