奥数——平面图形的面积一
2022年暑期奥数教案 五升六《6 平面图形的周长与面积(一)》教案(打印版)
![2022年暑期奥数教案 五升六《6 平面图形的周长与面积(一)》教案(打印版)](https://img.taocdn.com/s3/m/c5c9e61e102de2bd970588ea.png)
《数学思维训练教程》教案第一课时复备内容及讨论记教学过程录一、导入〔课件播放导入,教师讲解〕师:图形大家庭里这些图形的周长,面积计算公式,我们一起回忆一下吧。
〔课件出示,一起回忆〕师:看来有关周长和面积的计算公式,大家已经掌握得非常扎实了。
但是从周长和面积的关系来看,它们之间还隐藏着许多秘密。
今天就让我们一起深入的学习一下平面图形的周长和面积。
二、教学新授〔一〕自主探究1例1:平行四边形的面积是48平方米,高为6米,求阴影局部的面积。
1.学生读题,观察图形。
2.师生互动,教师引导。
师:通过读题和观察图形,大家获取到了哪些信息?生1:平行四边形的面积是48平方米,高为6米;生2:阴影局部三角形的底等于平行四边形的底-6米。
师:看来大家已经很好的理解题意,下面请同学们自己思考,试着做一下。
3.学生独立解答。
4.全班集体汇报。
5.教师小结。
此题阴影局部是三角形,其中三角形的高是的,关键是求出三角形的底边长度,通过观察,我们可以看出,三角形的底边长度比平行四边形少6,通过先求平行四边形的底再减6得到三角形的底。
答案:平行四边形的底:48÷6=8〔米〕三角形底:8-6=2〔米〕阴影三角形面积:2×6÷2=6〔平方米〕答:阴影局部的面积是6平方米。
〔二〕自主探究2例2:如下列图,一个长方形被分成5个完全相同的小长方形,每个小长方形的长是7厘米,周长是18厘米,求这个大长方形的面积。
1.学生读题,明确题意。
2.师生互动,教师引导。
师:求这个大长方形的面积需要知道哪些条件?哪些条件是的,哪些条件是未知的?怎样求出来?生:要求大长方形的面积,需要知道大长方形的长和宽。
师:大长方形的长和宽和小长方形的长和宽之间,分别有什么关系呢?生:大长方形的宽是小长方形的长,是7厘米,大长方形的长是未知的,但大长方形的长=5个小长方形的宽。
师:那么你能求出小长方形的宽吗?大家尝试解答一下。
3.学生整理思路,尝试解答。
五年级奥数——平面图形面积计算
![五年级奥数——平面图形面积计算](https://img.taocdn.com/s3/m/d2a9e6287fd5360cba1adb67.png)
年 级授课日期 授课主题 第4讲——平面图形面积计算教学内容i.检测定位本讲所指平面图形面积计算主要指多边形及其组合图形面积的计算.这些图形面积计算一般都可以转化成三角形、长方形、平行四边形和梯形的面积计算,后者的计算公式都是我们在课内已经学过并且应该熟记的.主要的技巧在于如何将一般多边形及其组合图形“转化”为基本图形.【例1】在梯形中阴影部分面积是150平方厘米,求梯形面积.分析与解 已知梯形上、下底长分别为15厘米和25厘米,令梯形高为h ,则由已知三角形面积为150平方厘米,有 h ⨯⨯=1521150,得).(20厘米=h 所以,梯形面积S 为.40020251521(平方厘米))(=⨯+⨯=S 随堂练习1如图2-4,已知平行四边形面积是48平方厘米,求阴影部分面积.【例2】如图3-4是两个完全相同的直角三角形叠在一起,求阴影部分的面积.(单位:分米)分析与解 如图3-4,由于①+②的面积和②+③的面积相等,所以可以得出:①与③的面积相等,题目要求③的面积,其实只要求①的面积即可.所以 (分米);53-8==EF23)815(÷⨯+=S2313÷⨯=).(5.19239平方分米=÷=答:阴影部分的面积是19.5平方分米.【例3】如图4-4,将长为9厘米、宽为6厘米的长方形划分成四个三角形,其面积分别为1S 、2S 、3S 、4S ,且4321S S S S +==,求4S .分析与解 设长方形面积为S ,则 )(54694321S S S S S +++==⨯=所以.184321=+==S S S S设x BE =,.y DF =则有 x S ⨯⨯==921181, .621182y S ⨯⨯== 解得 4=x ,.6=y 从而,2=EC ,.3=FC所以 332213=⨯⨯=S , ).(153184平方厘米=-=S随堂练习2如图5-4,四边形ABCD 是直角梯形,其中ADE BC AB AD ∆===厘米,且厘米,厘米,15812、CDF DEBF ∆及四边形的面积相等,求三角形EBF 的面积.【例4】如图6-4,.904625︒=∠=∠====D B CD AB CF AE 厘米,厘米,厘米,厘米,求四边形AFCE 的面积.分析与解 四边形AFCE 是不规则四边形,连结AC ,则AC 将四边形AFCE 分成两个三角形(AFC ∆、CEA ∆).这两个三角形的面积利用已知条件可求.AB 是AFC ∆底边上的高,所以 ;平方厘米)(6622121=⨯⨯=⨯⨯=∆AB FC S AFC CD 是AE CEA 底边∆上的高,所以).(10452121平方厘米=⨯⨯=⨯⨯=∆CD AE S CEA 所以, 四边形AFCE 的面积CEA AFC S S ∆∆+=).(16106平方厘米=+=随堂练习3如图7-4,四边形ABCD 中,,厘米,厘米,厘米,厘米,︒=∠=∠====901512105D B DC FC AB AE 求四边形AFCE 的面积.【例5】如图4-8,求长方形中阴影部分的面积.(单位:厘米)分析与解 阴影部分的三个三角形高相等,那么它们的面积和就是它们的底的和乘高除以 2. .75215021015(平方厘米)=÷=÷⨯答:阴影部分的面积和是75平方厘米.【例6】如图9-4,平行四边形ABCD 的边长厘米10=BC ,直角三角形BCE 的直角边CE 长为8厘米.已知阴影部分的面积比三角形FEG 的面积大10平方厘米.求CF 的长.分析与解 因为直角三角形BCE 与平行四边形ABCD 共有梯形BCFG .所以平行四边形ABCD 的面积比直角三角形BCE 的面积大10平方厘米.由已知可知CF 垂直AD ,所以,1021+⨯=⨯CE BC BC CF 即 .50108102110=+⨯⨯=⨯CF 所以.5(厘米)=CF随堂练习4如图10-4,正方形ABCD 的边长为12厘米,已知.2倍长度的是EC DE 求:(1)DEF ∆的面积;(2)CF 的长.玩一玩只剩一个如图,一个三角形的棋盘放着15个棋子,一开始随意取走一个棋子,出现一个空格.然后按以下规则开始跳棋子:棋子A 越过它的临格中的棋子B 跳到棋子B 另一侧相邻的空格中,并将B “吃”掉.按以上规则不断跳下去,每跳一步少一个棋.请问:能否跳到最后还剩一个棋子?请你玩一玩.图中的数是位子的编号,先不要看答案,自己动手画一张如图所示的棋盘,并在每个棋盘中放一枚棋子(可利用围棋子),然后按规则任意取走一个棋子,开始游戏.若有困难,可先看提示,继续游戏,最后再看方案.答案 能.先取走1号、3号、5号位置上的棋子,依次从6号、10号、14号位置中的棋子起跳,经过13步可将棋盘中13个子“吃”掉.方案1 取走1号6→1,13→6,11→13,14→12,2→9,7→2,1→4,10→3,4→3,12→14,15→13,13→6,6→1(止于1号位)方案2 取走3号10→3,13→6,7→9,2→7,11→4,15→13,12→14,3→10,4→6,10→3,1→6,14→5,6→4(止于4号位)方案3 取走5号14→5,7→9,3→8,10→3,1→6 , 2→7 ,11→4,12→14,6→13,14→12,4→13,12→14,15→13(止于13号位) ii.针对培养1. 一块玉米地的形状如图所示,它的面积是_________平方米.2. 三个正方形如图所示放置,中心都重合,它们的边长依次是1厘米、3厘米、5厘米,那么图中阴影部分的面积是__________平方厘米.3. 如图,,,610==EC BC 直角三角形EDF 的面积比直角三角形FAB 的面积小5,那么长方形ABCD 的面积是__________4. 如图,正方形ABCD 的边长是9厘米,它的内部有一个内接三角形BFE ,厘米,厘米,24==DF AE 求三角形BFE 的面积.5. 如图,四边形ABCD 的两条对角线互相垂直相交于O ,厘米,厘米,54==BD AC 求四边形ABCD 的面积.6. 如图,四边形ABCD 中,厘米,厘米,,,3745,90==︒=∠︒=∠=∠AD BC BCD D B 求四边形ABCD 的面积.7. 如图由两个完全相同的梯形重叠在一起而组成,求图中阴影部分的面积.(单位:厘米)8. 如图,求阴影部分的面积.(单位:厘米)9. 如图,长方形的长为12厘米,宽为8厘米,图中阴影部分的面积与空白部分的面积哪个大?10. 如图,三角形ABC 的周长是30厘米,三角形内一点到三角形三条边的距离都是3厘米,求三角形ABC 的面积.11. 如图,已知正方形甲的边长为5厘米,正方形乙的边长为4厘米,那么图中阴影部分的面积是多少?12. 如图,ABCD 是长为8厘米、宽为6厘米的长方形,AF 长是4厘米,求阴影部分(三角形AEF )的面积.13. 如图,长方形ABCD 与三角形EBC 重叠,已知三角形EFD 的面积比三角形ABF 的面积大6平方厘米,且厘米,厘米,64==BC CD 求ED 的长.。
小学六年级奥数- 面积计算(一)
![小学六年级奥数- 面积计算(一)](https://img.taocdn.com/s3/m/bffd76760b1c59eef8c7b4e3.png)
小学奥数 举一反三
(六年级)
第18讲 面积计算(一) 一、知识要点 计算平面图形的面积时,有些问题乍一看,在已知条 件与所求问题之间找不到任何联系,会使你感到无从下手。 这时,如果我们能认真观察图形,分析、研究已知条件, 并加以深化,再运用我们已有的基本几何知识,适当添加 辅助线,搭一座连通已知条件与所求问题的小“桥”,就 会使你顺利达到目的。有些平面图形的面积计算必须借助 于图形本身的特征,添加一些辅助线,运用平移旋转、剪 拼组合等方法,对图形进行恰当合理的变形,再经过分析 推导,才能寻求出解题的途径。
因为S△ABD与S△ACD等底等高 因为S△BOC是S△DOC的2倍 所以S△ABO=6 所以△ABO是△AOD的2倍
所以△AOD=6÷2=3。
答:△AOD的面积是3。
二、精讲精练
练习2: 1.两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知 两个三角形的面积,求另两个三角形的面积是多少?
二、精讲精练
练习5: 1.如图所示,长方形ABCD的面积是20平方厘米,三角形ADF的面积为5平方 厘米,三角形ABE的面积为7平方厘米,求三角形AEF的面积。
二、精讲精练
练习5: 2.如图所示,长方形ABCD的面积为20平方厘米,S△ABE=4平方厘米, S△AFD=6平方厘米,求三角形AEF的面积。
小学六年级精品数学奥数培训教案(专题6)平面图形的面积
![小学六年级精品数学奥数培训教案(专题6)平面图形的面积](https://img.taocdn.com/s3/m/fe36237e77232f60ddcca18a.png)
专题六:平面图形的面积例1、如图,三角形ABC 中AE=EB ,BD=2DC 。
又知三角形ABC 的面积是18平方厘米,则四边形AEDC 的面积等于多少平方厘米?举一反三:1、如图,22,3,6cm S AF BF EC FE AEF ===∆,求三角形ABC 的面积。
2、三角形ABC 的面积是10c ㎡,AE=21AD,BD=3DC,求阴影部分的面积。
3、如图,ABCD 是平行四边形,DF 与BC 相交于E 点,三角形CEF 的面积是8平方厘米,三角形ABE 的面积是多少平方厘米?4、如图,在梯形ABCD 中,三角形AED 和三角形DEC 的面积分别是5平方厘米和20平方厘米,求梯形的面积。
例2、如图,长方形ABCD 中,AC 是10厘米,AB是8厘米,若把长方形绕C 点旋转90°,求AD 边所扫过的面积(阴影部分)练习:求下图中阴影部分的面积(单位:厘米)例3.求下图阴影部分的面积。
(单位:厘米)练习:例4.如图中BC是半圆的直径,阴影部分①的面积比②少5.12平方厘米.求AC长多少厘米?练习:1、如图,AB=20厘米,BC=15厘米,AB与BC互相垂直,图中阴影甲比阴影乙大多少?2、如图,长方形的长是5厘米,宽是4厘米,已知甲三角形的面积比乙三角形的面积大4平方厘米,求CE。
例5、如图,已知阴影部分的面积是40平方厘米。
求图中圆环的面积是多少平方厘米?练习:1.如图,已知阴影部分的面积为18平方厘米,求图中圆环的面积。
2.如图,三角形ABC是等腰三角形,面积为8平方分米,AB是圆的直径,求阴影甲与阴影乙的面积相差多少平方分米。
3、图中圆的周长是16.4厘米,,圆的面积与长方形的面积相等,阴影部分的周长是多少厘米?4、如图,已知r=3厘米,长方形宽是长的一半,求阴影部分的面积。
综合练习:1、把两个长方形叠放在一起,小长方形的宽是2米,A点是大长方形一边的中点。
那么,图中阴影部分的总面积等于多少平方米?乙甲O C B A2.如右图所示,∠AOB=90°,C 为AB 弧的中点。
五年级奥数平面几何图形的面积计算
![五年级奥数平面几何图形的面积计算](https://img.taocdn.com/s3/m/7afa3af74b35eefdc8d333f8.png)
第17讲平面图形的计算(一)例1.图中的甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)例2.计算右图的面积。
(单位:厘米)例3.如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。
求四边形ABCD的面积。
例4.右图是两面三刀个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:分米)例5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?(单位:米)练习与思考1.求图中阴影部分的面积。
2.求图中阴影部分的面积。
3.下左图的长方形中,三角形ADE与四边形DEBF和三角形CDF的面积分别相等,求三角形DEF的面积。
4.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?6.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。
7.如图,BC长为5,求画斜线的两个三角形的面积之和。
8.上右图是两个一样的直角三角形重叠在一起,按照图上标出的数,计算阴影部分的面积。
9.右图是一块长方形草地,长方形长为16,宽为12,中间有一条宽为2的道路,求草地(阴影部分)的面积。
简便计算作业(12月23日):1.996+19.97+199.82.894.68+4.686.11+4.68 754.7+15.925平均数问题作业(12月23日):1.已知九个数的平均数是72.去掉一个数之后,余下的数的平均数是78。
去掉的数是多少?2.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。
三个小组各植树多少棵?3.五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。
小学五年奥数-平面图形的面积
![小学五年奥数-平面图形的面积](https://img.taocdn.com/s3/m/4a348c43aa00b52acec7ca7a.png)
平面图形的面积【试金石】例1如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。
(单位;厘米)【针对性训练】如右图,已知一个四边形ABCD的两条边的长度AD=14厘米,BC=6厘米,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。
【试金石】例2右图中长方形的长是20厘米,宽是12厘米,求它的内部阴影部分的面积。
答:阴影部分的面积是120平方厘米。
【针对性训练】图中长方形的长是8米,宽是6米,A和B是宽的中点,求长方形内部阴影部分的面积。
【试金石】例3右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:分米)【针对性训练】右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?【试金石】例4如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。
【针对性训练】如右图,甲、乙两图形都是正方形,它们的边长分别是6厘米和8厘米,求阴影部分的面积。
【试金石】例5【针对性训练】【试金石】【针对性训练】【智能提速训练营】1、如图,已知BD长是2厘米,DC长是3厘米,E是AD的中点,如果三角形ABD的面积是5平方厘米,那么三角形DEC的面积是多少?2、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?3、如图,在平行四边形ABCD中,AE=ED,BF=FC,CG=GD,平行四边形ABCD的面积是阴影三角形EFG的多少倍?4、如图,BD=6厘米,BC=15厘米,△ABD的面积是24平方厘米,△ADC 的面积是多少平方厘米?5、右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:厘米)6、如图,梯形的面积是70平方厘米,上底8厘米,下底12厘米,阴影部分的面积是多少平方厘米?7、如图,四边形ABCD是平行四边形,DC=CE,如果△BCE的面积是15平方厘米,那么梯形ABED的面积是多少平方厘米?8、如图,平行四边形的面积是60平方厘米,阴影三角形的面积是多少平方厘米?9、如图,正方形ABCD的边长是4厘米,CG=3厘米,长方形DEFG的长DG=5厘米,那么它的宽DE是多少厘米?10、如图,四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形的周长是36厘米,四边形ABCD的面积是多少平方厘米?11、如图,已知ABFE是平行四边形,ABCD是长方形,且AD=6厘米,AB=3厘米,CO=2厘米,阴影部分的面积是多少平方厘米?12、一个长方形被两条直线分成四个长方形,其中三个的面积分别是20平方米、25平方米和30平方米,阴影部分的面积是多少平方米?13、如右图,已知正方形ABCD和正方形CEFG,且正方形ABCD每边长为10厘米,求图中阴影(三角形BFD)部分的面积。
小学的奥数面积计算(综合题型)
![小学的奥数面积计算(综合题型)](https://img.taocdn.com/s3/m/50e7028948d7c1c709a14577.png)
第十八周面积计算〔一〕专题简析:计算平面图形的面积时,有些问题乍一看,在条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究条件,并加以深化,再运用我们已有的根本几何知识,适当添加辅助线,搭一座连通条件与所求问题的小“桥〞,就会使你顺利到达目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进展恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
图形面积〕简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的面积.如果我们把这些图形画在方格纸上,不但容易识别,而且容易计算.上面左图是边长为4的正方形,它的面积是4×4=16〔格〕;右图是3×5的长方形,它的面积是3×5=15〔格〕.上面左图是一个锐角三角形,它的底是5,高是4,面积是5×4÷2=10〔格〕;右图是一个钝角三角形,底是4,高也是4,它的面积是4×4÷2=8〔格〕.这里特别说明,这两个三角形的高线一样长,钝角三角形的高线有可能在三角形的外面.上面左图是一个平行四边形,底是5,高是3,它的面积是5×3=15〔格〕;右图是一个梯形,上底是4,下底是7,高是4,它的面积是〔4+7〕×4÷2=22〔格〕.上面面积计算的单位用“格〞,一格就是一个小正方形.如果小正方形边长是1厘米,1格就是1平方厘米;如果小正方形边长是1米,1格就是1平方米.也就是说我们设定一个方格的边长是1个长度单位,1格就是一个面积单位.在这一讲中,我们直接用数表示长度或面积,省略了相应的长度单位和面积单位.一、三角形的面积用直线组成的图形,都可以划分成假设干个三角形来计算面积.三角形面积的计算公式是:三角形面积= 底×高÷2.这个公式是许多面积计算的根底.因此我们不仅要掌握这一公式,而且要会灵活运用.例1 右图中BD长是4,DC长是2,那么三角形ABD的面积是三角形ADC面积的多少倍呢?解:三角形ABD与三角形ADC的高一样.三角形ABD面积=4×高÷2.三角形ADC面积=2×高÷2.因此三角形ABD的面积是三角形ADC面积的2倍.注意:三角形的任意一边都可以看作是底,这条边上的高就是三角形的高,所以每个三角形都可看成有三个底,和相应的三条高.例2右图中,BD,DE,EC的长分别是2,4,2.F是线段AE的中点,三角形ABC的高为4.求三角形DFE的面积.解:BC=2+4+2=8.三角形ABC面积= 8×4÷2=16.我们把A和D连成线段,组成三角形ADE,它与三角形ABC的高一样,而DE长是4,也是BC的一半,因此三角形ADE面积是三角形ABC面积的一半.同样道理,EF是AE的一半,三角形DFE面积是三角形ADE面积的一半.三角形DFE面积= 16÷4=4.例3右图中长方形的长是20,宽是12,求它的内部阴影局部面积.解:ABEF也是一个长方形,它内部的三个三角形阴影局部高都与BE一样长.而三个三角形底边的长加起来,就是FE的长.因此这三个三角形的面积之和是FE×BE÷2,它恰好是长方形ABEF面积的一半.同样道理,FECD也是长方形,它内部三个三角形〔阴影局部〕面积之和是它的面积的一半.因此所有阴影的面积是长方形ABCD面积的一半,也就是20×12÷2=120.通过方格纸,我们还可以从另一个途径来求解.当我们画出中间两个三角形的高线,把每个三角形分成两个直角三角形后,图中每个直角三角形都是某个长方形的一半,而长方形ABCD是由这假设干个长方形拼成.因此所有这些直角三角形〔阴影局部〕的面积之和是长方形ABCD面积的的一半.例4 右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD〔阴影局部〕的面积是多少?解:把A和C连成线段,四边形ABCD就分成了两个,三角形ABC和三角形ADC.对三角形ABC来说,AB是底边,高是10,因此面积=4×10÷2=20.对三角形ADC来说,DC是底边,高是8,因此面积=7×8÷2=28.四边形ABCD面积= 20+28=48.这一例题再一次告诉我们,钝角三角形的高线有可能是在三角形的外面.例5在边长为6的正方形内有一个三角形BEF,线段AE=3,DF=2,求三角形BEF 的面积.解:要直接求出三角形BEF的面积是困难的,但容易求出下面列的三个直角三角形的面积三角形ABE面积=3×6×2=9.三角形BCF面积= 6×〔6-2〕÷2=12.三角形DEF面积=2×〔6-3〕÷2=3.我们只要用正方形面积减去这三个直角三角形的面积就能算出:三角形BEF面积=6×6-9-12-3=12.例6 在右图中,ABCD是长方形,三条线段的长度如下图,M是线段DE的中点,求四边形ABMD〔阴影局部〕的面积.解:四边形ABMD中,的太少,直接求它面积是不可能的,我们设法求出三角形DCE 与三角形MBE的面积,然后用长方形ABCD的面积减去它们,由此就可以求得四边形ABMD 的面积.把M与C用线段连起来,将三角形DCE分成两个三角形.三角形DCE的面积是7×2÷2=7.因为M是线段DE的中点,三角形DMC与三角形MCE面积相等,所以三角形MCE 面积是7÷2=3.5.因为BE=8是CE=2的4倍,三角形MBE与三角形MCE高一样,因此三角形MBE面积是3.5×4=14.长方形ABCD面积=7×〔8+2〕=70.四边形ABMD面积=70-7- 14=49.二、有关正方形的问题先从等腰直角三角形讲起.一个直角三角形,它的两条直角边一样长,这样的直角三角形,就叫做等腰直角三角形.它有一个直角〔90度〕,还有两个角都是45度,通常在一副三角尺中.有一个就是等腰直角三角形.两个一样的等腰直角三角形,可以拼成一个正方形,如图〔a〕.四个一样的等腰直角三角形,也可以拼成一个正方形,如图〔b〕.一个等腰直角三角形,当知道它的直角边长,从图〔a〕知,它的面积是直角边长的平方÷2.当知道它的斜边长,从图〔b〕知,它的面积是斜边的平方÷4例7 右图由六个等腰直角三角形组成.第一个三角形两条直角边长是8.后一个三角形的直角边长,恰好是前一个斜边长的一半,求这个图形的面积.解:从前面的图形上可以知道,前一个等腰直角三角形的两个拼成的正方形,等于后一个等腰直角三角形四个拼成的正方形.因此后一个三角形面积是前一个三角形面积的一半,第一个等腰直角三角形的面积是8×8÷2=32.这一个图形的面积是32+16+8+4 +2+1=63.例8 如右图,两个长方形叠放在一起,小长形的宽是2,A点是大长方形一边的中点,并且三角形ABC是等腰直角三角形,那么图中阴影局部的总面积是多少?解:为了说明的方便,在图上标上英文字母D,E,F,G.三角形ABC的面积=2×2÷2=2.三角形ABC,ADE,EFG都是等腰直角三角形.三角形ABC的斜边,与三角形ADE的直角边一样长,因此三角形ADE面积=ABC面积×2=4.三角形EFG的斜边与三角形ABC的直角边一样长.因此三角形EFG面积=ABC面积÷2=1.阴影局部的总面积是4+1=5.例9如右图,一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角B 和D是直角,角A是45°.求这个四边形的面积.解:这个图形可以看作是一个等腰直角三角形ADE,切掉一个等腰直角三角形BCE.因为A是45°,角D是90°,角E是180°-45°-90°=45°,所以ADE是等腰直角三角形,BCE也是等腰直角三角形.四边形ABCD的面积,是这两个等腰直角三角形面积之差,即7×7÷2-3×3÷2=20.这是1994小学数学奥林匹克决赛试题.原来试题图上并没有画出虚线三角形.参赛同学是不大容易想到把图形补全成为等腰直角三角形.因此做对这道题的人数不多.但是有一些同学,用直线AC把图形分成两个直角三角形,并认为这两个直角三角形是一样的,这就大错特错了.这样做,角A是45°,这一条件还用得上吗?图形上线段相等,两个三角形相等,是不能靠眼睛来测定的,必须从几何学上找出根据,小学同学尚未学过几何,千万不要随便对图形下结论.我们应该从题目中已有的条件作为思考的线索.有45°和直角,你应首先考虑等腰直角三角形.现在我们转向正方形的问题.例10 在右图11×15的长方形内,有四对正方形〔标号一样的两个正方形为一对〕,每一对是一样的正方形,那么中间这个小正方形〔阴影局部〕面积是多少?解:长方形的宽,是“一〞与“二〞两个正方形的边长之和,长方形的长,是“一〞、“三〞与“二〞三个正方形的边长之和.长-宽=15-11=4是“三〞正方形的边长.宽又是两个“三〞正方形与中间小正方形的边长之和,因此中间小正方形边长=11-4×2=3.中间小正方形面积=3×3=9.如果把这一图形,画在方格纸上,就一目了然了.例11从一块正方形土地中,划出一块宽为1米的长方形土地〔见图〕,剩下的长方形土地面积是15.75平方米.求划出的长方形土地的面积.解:剩下的长方形土地,我们道长-宽=1〔米〕.还知道它的面积是15.75平方米,那么能否从这一面积求出长与宽之和呢?如果能求出,那么与上面“差〞的算式就形成和差问题了.我们把长和宽拼在一起,如右图.从这个图形还不能算出长与宽之和,但是再拼上同样的两个正方形,如下列图就拼成一个大正方形,这个正方形的边长,恰好是长方形的长与宽之和.可是这个大正方形的中间还有一个空洞.它也是一个正方形,仔细观察一下,就会发现,它的边长,恰好是长方形的长与宽之差,等于1米.现在,我们就可以算出大正方形面积:15.75×4+1×1=64〔平方米〕.64是8×8,大正方形边长是8米,也就是说长方形的长+宽=8〔米〕.因此长=〔8+1〕÷2=4.5〔米〕.宽=8-4.5=3.5〔米〕.那么划出的长方形面积是4.5×1=4. 5〔平方米〕.例12 如右图.正方形ABCD与正方形EFGC并放在一起.小正方形EFGC的边长是6,求三角形AEG〔阴影局部〕的面积.解:四边形AECD是一个梯形.它的下底是AD,上底是EC,高是CD,因此四边形AECD面积=〔小正方形边长+大正方形边长〕×大正方形边长÷2三角形ADG是直角三角形,它的一条直角边长DG=〔小正方形边长+大正方形边长〕,因此三角形ADG面积=〔小正方形边长+大正方形边长〕×大正方形边长÷2.四边形AECD与三角形ADG面积一样大.四边形AHCD是它们两者共有,因此,三角形AEH与三角形HCG面积相等,都加上三角形EHG面积后,就有阴影局部面积=三角形ECG面积=小正方形面积的一半= 6×6÷2=18.十分有趣的是,影阴局部面积,只与小正方形边长有关,而与大正方形边长却没有关系.三、其他的面积这一节将着重介绍求面积的常用思路和技巧.有些例题看起来不难,但可以给你启发的内容不少,请读者仔细体会.例13 画在方格纸上的一个用粗线围成的图形〔如右图〕,求它的面积.解:直接计算粗线围成的面积是困难的,我们通过扣除周围正方形和直角三角形来计算.周围小正方形有3个,面积为1的三角形有5个,面积为1.5的三角形有1个,因此围成面积是4×4-3-5-1.5=6.5.例6与此题在解题思路上是完全类同的.例14 下列图中ABCD是6×8的长方形,AF长是4,求阴影局部三角形AEF的面积.解:三角形AEF中,我们知道一边AF,但是不知道它的高多长,直接求它的面积是困难的.如果把它扩大到三角形AEB,底边AB,就是长方形的长,高是长方形的宽,即BC的长,面积就可以求出.三角形AEB的面积是长方形面积的一半,而扩大的三角形AFB是直角三角形,它的两条直角边的长是知道的,很容易算出它的面积.因此三角形AEF面积=〔三角形AEB面积〕-〔三角形AFB面积〕=8×6÷2-4×8÷2=8.这一例题告诉我们,有时我们把难求的图形扩大成易求的图形,当然扩大的局部也要容易求出,从而间接地解决了问题.前面例9的解法,也是这种思路.例15 下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草局部的面积〔阴影局部〕有多大?解:我们首先要弄清楚,平行四边形面积有多大.平行四边形的面积是底×高.从图上可以看出,底是2,高恰好是长方形的宽度.因此这个平行四边形的面积与10×2的长方形面积相等.可以设想,把这个平行四边形换成10×2的长方形,再把横竖两条都移至边上〔如前页右图〕,草地局部面积〔阴影局部〕还是与原来一样大小,因此草地面积=〔16-2〕×〔10-2〕=112.例16 右图是两个一样的直角三角形叠在一起,求阴影局部的面积.解:实际上,阴影局部是一个梯形,可是它的上底、下底和高都不知道,不能直接来求它的面积.阴影局部与三角形BCE合在一起,就是原直角三角形.你是否看出,ABCD也是梯形,它和三角形BCE合在一起,也是原直角三角形.因此,梯形ABCD的面积与阴影局部面积一样大.梯形ABCD的上底BC,是直角边AD的长减去3,高就是DC的长.因此阴影局部面积等于梯形ABCD面积=〔8+8-3〕×5÷2=32.5.上面两个例子都启发我们,如何把不容易算的面积,换成容易算的面积,数学上这叫等积变形.要想有这种“换〞的本领,首先要提高对图形的观察能力.例17 下列图是两个直角三角形叠放在一起形成的图形. AF,FE,EC都等于3,CB,BD都等于4.求这个图形的面积.解:两个直角三角形的面积是很容易求出的.三角形ABC面积=〔3+3+3〕×4÷2=18.三角形CDE面积=〔4+4〕×3÷2=12.这两个直角三角形有一个重叠局部--四边形BCEG,只要减去这个重叠局部,所求图形的面积立即可以得出.因为AF=FE=EC=3,所以AGF,FGE,EGC是三个面积相等的三角形.因为CB=BD=4,所以CGB,BGD是两个面积相等的三角形.2×三角形DEC面积= 2×2×〔三角形GBC面积〕+2×〔三角形GCE面积〕.三角形ABC面积= 〔三角形GBC面积〕+3×〔三角形GCE面积〕.四边形BCEG面积=〔三角形GBC面积〕+〔三角形GCE面积〕=〔2×12+18〕÷5=8.4.所求图形面积=12+18- 8.4=21.6.例18 如下页左图,ABCG是4×7长方形,DEFG是2×10长方形.求三角形BCM与三角形DEM面积之差.解:三角形BCM与非阴影局部合起来是梯形ABEF.三角形DEM与非阴影局部合起来是两个长方形的和.〔三角形BCM面积〕-〔三角形DEM面积〕=〔梯形ABEF面积〕-〔两个长方形面积之和=〔7+10〕×〔4+2〕÷2-〔4×7 +2×10〕=3.例19 上右图中,在长方形内画了一些直线,边上有三块面积分别是13,35,49.那么图中阴影局部的面积是多少?解:所求的影阴局部,恰好是三角形ABC 与三角形CDE 的公共局部,而面积为13,49,35这三块是长方形中没有被三角形ABC 与三角形CDE 盖住的局部,因此〔三角形 ABC 面积〕+〔三角形CDE 面积〕+〔13+49+35〕=〔长方形面积〕+〔阴影局部面积〕.三角形ABC ,底是长方形的长,高是长方形的宽;三角形CDE ,底是长方形的宽,高是长方形的长.因此,三角形ABC 面积,与三角形CDE 面积,都是长方形面积的一半,就有阴影局部面积=13 + 49+ 35= 97.例题1。
完整版)五年级奥数平面图形面积计算
![完整版)五年级奥数平面图形面积计算](https://img.taocdn.com/s3/m/18e0e93691c69ec3d5bbfd0a79563c1ec5dad7c0.png)
完整版)五年级奥数平面图形面积计算五年级奥数第六讲——平面图形面积的计算一、知识要点1.基本平面图形特征及面积公式正方形:特征:四条边相等,四个角都是直角,有四条对称轴。
面积公式:S=边长的平方长方形:特征:对边相等,四个角都是直角,有二条对称轴。
面积公式:S=长×宽平行四边形:特征:两组对边平行且相等,对角相等,相邻的两个角之和为180°,容易变形。
面积公式:S=底边×高三角形:特征:两边之和大于第三条边,两边之差小于第三条边,三个角的内角和是180°,具有稳定性。
面积公式:S=底边×XXX÷2梯形:特征:只有一组对边平行,中位线等于上下底和的一半。
面积公式:S=(上底+下底)×高÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。
典型例题】例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。
例2】求图中阴影部分的面积。
例3】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。
例4】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?练与拓展】1.计算下面图形的面积。
2.下面的梯形中,阴影部分面积是150平方厘米,求梯形的面积。
3.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,求三角形DEF的面积和CF的长。
4.平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.正方形ABCD的面积是100平方厘米,AE=8厘米,请计算以下图形的面积。
1.在一块长80米、宽30米的长方形地上,修了宽为2米和3米的两条小路,求草地的面积。
六年级上册奥数第18讲 面积计算(1)
![六年级上册奥数第18讲 面积计算(1)](https://img.taocdn.com/s3/m/ea4afc0fc850ad02df804134.png)
第18讲面积计算讲义专题简析计算平面图形的面积时,有些间题在已知条件与所求问题之间找不出任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,便会使你顺利地达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
例1、已知图18-1中,三角形ABC的面积为8cm²。
AE=ED,BD=23BC。
求阴影部分的面积。
练习:1、如图18—2所示,AE=ED,BC=3BD,S△ABC=30cm²。
求阴影部分的面积。
2、如图18—3所示,AE=ED,DC=13BD,S△ABC=21cm²。
求阴影部分的面积。
3、如图18—4所示,DE=12AE,BD=2DC,S△EBD=5cm²。
求三角形ABC的面积。
例2、如图18-5所示,在三角形ABC中,三角形BDE,DCE,ACD的面积分别是90cm²,30cm²,28cm²。
那么三角形ADE的面积是多少?练习:1、如图18—6所示,在三角形ADE中,三角形ABC,BCE,CDE的面积分别是50cm²,24cm²,37cm²。
求三角形BDC的面积。
2、如图18—7所示,在三角形AGH中,三角形ABC,BCD,CDE,DEF,EFG,FGH的面积分别是19cm²,21cm²,23cm²,25cm²,28cm²,29cm²。
求三角形EFH的面积。
3、如图18—8所示,在三角形ABC中,三角形ADE,DEF,EFG,FGH,CGH,BCH的面积分别是5cm²,7cm²,11cm²,15cm²,20cm²,12cm²。
六年级图形问题综合(奥数)含答案
![六年级图形问题综合(奥数)含答案](https://img.taocdn.com/s3/m/30052eb0cf84b9d529ea7a1c.png)
平面图形计算(一)经典图形:1. 任意三角形ABC 中,CD=31AC,EC=43BC ,则三角形CDE 的面积占总面积的31⨯43=41(为什么?)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。
(为什么?)3. 任意梯形,连接对角线,构成四个三角形。
(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。
(为什么?)4. 正方形的面积等于边长的平方,或者等于对角线的平方÷2。
等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么?)例题: 例1. 如右图,三角形ABC 的面积是10,BE=2AB,CD=3BC,求三角形BDE 的面积.例2. 如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积.例3. 如图,三角形ABC 的面积是180平方厘米,D 是BC 的中点,AE=ED ,EF=2BF ,求AEF 的面积。
例4. 如图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在BC 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。
求三角形BEK 的面积。
FK BEC DGA例5. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。
三角形ABC 面积是500,求图中阴影部分的面积?例6. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?ABC DFEG例7. 在如图所示的三角形AGH 中,三角形ABC,BCD ,CDE ,DEF,EFG,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?ABCD EFG H例8. 如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。
六年级奥数-面积计算
![六年级奥数-面积计算](https://img.taocdn.com/s3/m/ea6de5b57c1cfad6195fa7cc.png)
面积计算(一)专题简析:计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
例题1。
已知图18-1中,三角形ABC 的面积为8平方厘米,AE =ED ,BD=23 BC ,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF 的面积无法直接计算。
由于AE=ED,连接DF ,可知S △AEF =S △EDF (等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF 的面积。
因为BD=23 BC ,所以S △BDF =2S △DCF 。
又因为AE =ED ,所以S △ABF =S △BDF =2S △DCF 。
因此,S △ABC =5 S △DCF 。
由于S △ABC =8平方厘米,所以S △DCF =8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。
求阴影部分的面积。
2、 如图18-3所示,AE=ED ,DC =13 BD ,S △ABC =21平方厘米。
求阴影部分的面积。
3、 如图18-4所示,DE =12AE ,BD =2DC ,S △EBD =5平方厘米。
求三角形ABC 的面积。
AB CFD E18-2ABCFE D18-1 ABCFED 18-3CB D EF 18-4例题2。
两条对角线把梯形ABCD 分割成四个三角形,如图18-5所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S △BOC 是S △DOC 的2倍,且高相等,可知:BO =2DO ;从S △ABD 与S △ACD相等(等底等高)可知:S △ABO 等于6,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。
小学五年级奥数-平面图形面积
![小学五年级奥数-平面图形面积](https://img.taocdn.com/s3/m/e0075df29e3143323968937f.png)
五年级思维第三讲基础知识:ah1.三角形面积公式:S=122.平行四边形(含正方形,长方形)面积公式:S=ah3.等底等高的三角形面积相等,等底等高的平行四边形面积相等4.解题思路:将难以求解的图形进行拆分,利用等积变换化为可求解图形求解例题:例1.如图1,每一个小方格的面积都是1平方厘米,那么粗线围成的图形的面积是多少平方厘米?例2.每个小方格面积是1平方厘米,那么下面三张图的面积之和是多少平方厘米?例3.如图,如果每一个小三角形的面积是1平方厘米,那么三角形ABC的面积是多少平方厘米?例4.如图2,如果每一个三角形的面积都是1平方厘米,那么四边形ABCD的面积是多少平方厘米?例5.把同一个三角形的三条边分别五等分,七等分,适当连接这些分点,便得到了若干个面积相等的小三角形。
已知下方左图中粗线围成的面积为294,那么下方右图粗线围成的面积是多少平方分米?例6.如图,三角形ABC 和DEF 是两个完全相同的等腰直角三角形,其中DF 长9厘米,CF 长3厘米,那么阴影部分的面积是多少平方厘米?例7.如图,大正方形的边长是10厘米。
连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点和正方形中心和一个顶点相连,那么图中阴影部分面积总和等于多少平方厘米?例8.已知一个四边形的两条边长度和三个角,那么这个四边形的面积是多少?B E例9.如图,两个形状和大小都一样的直角三角形ABC 与DEF 如图放置,它们的面积都是2011平方厘米,而每一个直角三角形直角的顶点都恰好落在另一个直角三角形的斜边上。
这两个直角三角形的重叠部分是一个长方形,那么四边形ADEC 的面积是多少平方厘米?例10.如图所示,在任意凸四边形ABCD 中取各边的中点,并与它相对的一个顶点连结,那么所围成的中央四边形面积与周围那四个阴影三角形的面积总和相等吗?为什么?作业题:1.在面积为1平方米的正六边形中,连结相隔一个顶点的各对顶点,则阴影部分的面积是多少平方米?2.如图的大正方形由三十六个面积为1平方分米的小正方形拼成。
六年级奥数—面积问题(一)
![六年级奥数—面积问题(一)](https://img.taocdn.com/s3/m/64585d1b02020740be1e9b91.png)
16-3-4-2.5=6.5。
练习5
1.如图所示,长方形ABCD的面积是20平 方厘米,三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米,求三角形 AEF的面积。
练习5
2.如图所示,长方形ABCD的面积为20平 方厘米,S△ABE=4平方厘米,S△AFD= 6平方厘米,求三角形AEF的面积。
已知如图,三角形ABC的面积为8平方 厘米,AE=ED,BD=2/3BC,求阴影部分 的面积。
【思路导航】
阴影部分为两个三角形,但三角形AEF的面积无 法直接计算。由于AE=ED,连接DF,可知 S△AEF=S△EDF(等底同高),采用移补的方法,将 所求阴影部分转化为求三角形BDF的面积。
【思路导航】
3.如图所示,DE=1/2AE, BD=2DC,S△EBD=5平方厘 米。求三角形ABC的面积。
两条对角线把梯形ABCD分割成 四个三角形,如图所示,已知两个三角 形的面积,求另两个三角形的面积各是 多少?
两条对角线把梯形ABCD分割成 四个三角形,如图所示,已知两个三角 形的面积,求另两个三角形的面积各是 多少?
如图所示,长方形ADEF的面积积。
【思路导航】 连接AE。 仔细观察添加辅助线AE后, 使问题可有如下解法。
【思路导航】
由图上看出:三角形ADE的面积等于长方 形面积的一半(16÷2)=8用 。8减去3得到三 角形ABE的面积为5。 同理,用8减去4得到三角形 AEC的面积也为4。因此可知三角形AEC与三 角形ACF等底等高, C为EF的中点, ABE与三
练习2
2.已知AO=1/3OC,求梯形ABCD 的面积(如图所示)。
经典小学奥数题型(几何图形)
![经典小学奥数题型(几何图形)](https://img.taocdn.com/s3/m/605f48ae18e8b8f67c1cfad6195f312b3069eb4e.png)
经典小学奥数题型(几何图形)经典小学奥数题型(几何图形)在小学奥数竞赛中,几何图形是一个常见的考点。
通过熟悉和掌握一些经典的几何题型,学生能够提高解题能力,增强空间想象力,并且培养逻辑思维。
一、平面图形的边、角和面积计算1. 边和角计算设某个多边形的边数为 n,则它的内角和为 (n-2) × 180 度。
如果该多边形是正多边形,则每个内角都相等,即每个内角为 [(n-2) ×180]/n 度。
2. 正多边形的面积计算设正多边形的边长为 a,边数为 n,则正多边形的面积 S = (n ×a^2)/(4 × tan(π/n)) 平方单位。
3. 三角形的面积计算设三角形的底边长为 a,高为 h,则三角形的面积 S = (a × h) /2 平方单位。
二、相似三角形的性质当两个三角形的相应角相等时,我们可以推论他们是相似三角形。
相似三角形之间存在以下几个性质:1. 边长的比例如果两个三角形 ABC 和 XYZ 是相似的,那么对应边长之间的比例应该相等: AB/XY = BC/YZ = AC/XZ。
2. 面积的比例如果两个三角形 ABC 和 XYZ 是相似的,那么对应边长之间的比例的平方等于对应面积之间的比例:(AB/XY)^2 = (BC/YZ)^2 =(AC/XZ)^2 = S(ABC)/S(XYZ)。
三、三角形的周长和面积计算1. 三角形的周长计算将三角形的三条边长相加,即可得到三角形的周长。
2. 海伦公式设三角形的三条边长为 a、b、c,令 p = (a+b+c)/2 为半周长,则三角形的面积S = √( p × (p-a) × (p-b) × (p-c) ) 平方单位。
四、平行四边形和矩形的性质1. 平行四边形的性质平行四边形的对边互相平行且相等,对角线互相等分,并且对角线相交的点将对角线份平分。
2. 矩形的性质矩形是一种特殊的平行四边形,它的对边相等且互相平行,且所有角都是直角。
举一反三- 六年级奥数 -第18讲 面积计算(一)
![举一反三- 六年级奥数 -第18讲 面积计算(一)](https://img.taocdn.com/s3/m/374b17103169a4517723a34a.png)
第18讲面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
练习1:1、如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2、如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3、如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?2、已知AO=1/3OC,求梯形ABCD的面积(如图所示)。
【例题3】四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15平方厘米。
求四边形ABCD的面积(如图所示)。
练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分,且四边形AECG的面积为15平方厘米。
求四边形ABCD的面积(如图)。
2、如图所示,求阴影部分的面积(ABCD为正方形)。
【例题4】如图所示,BO=2DO,阴影部分的面积是4平方厘米。
那么,梯形ABCD的面积是多少平方厘米?练习4:1、如图所示,阴影部分面积是4平方厘米,OC=2AO。
求梯形面积。
第二十八讲 平面图形的面积(1)-小学奥数
![第二十八讲 平面图形的面积(1)-小学奥数](https://img.taocdn.com/s3/m/382a7ac9aa00b52acfc7caf1.png)
第二十八讲 平面囝形的面积(1)告诉你本讲的重点、难点小学阶段我们学过三角形、平行四边形、梯形和圆形的面积计算,而对一些不规则的图形的面积的计算,我们要变换思路,用转换、割补、添辅助线等方法来找出解题的思路.看老师画龙点睛,教给你解题诀窍【例1】如图(1)是两个完全相同的直角三角形叠在一起,求阴影部分的面积.(单位:厘米)分析与解 如图(2),我们把图形分成①②③三部分,由于①+②的面积和②+③的面积相等,我们可以判断①和③的面积相等,题目要求③的面积,其实只要求①的面积即可.①是梯形,上底为538=-厘米,下底8厘米,高5厘米,面积为5.3225)85(⋅=÷⨯+(平方厘米).所以阴影部分的面积是32.5平方厘米,【例2】下面长方形的长为12厘米,宽为6厘米,把它的长3等份,宽2等份,然后在长方形内任取一点,把这一点与分点及顶点连接.求图中阴影部分的面积.分析与解 ①③两个三角形底相等,它们的面积的和是底×高的和÷2(高的和是长方形的宽);②④两个三角形也是底相等,面积和是底×高的和÷2(高的和是长方形的长).所以,阴影部分的面积==+++④②③①)312(÷301812212)26(26=+=÷⨯÷+÷⨯(平方厘米).【例3】如图(1)所示,有两个正方形,其中大正方形的边长是10 cm ,求阴影部分的面积,分析与解 添加辅助线(如图)(2),图中1号图形和3号图形的面积和一大正方形的边长×小正方形的边长÷2,2号图形和3号图形的面积和一大正方形的边长×小正方形的边长÷2.1号图形和3号图形的面积和=2号图形和3号图形的面积和,所以1号图形面积-2号图形面积.这样阴影部分的面积正好是大正方形面积的一半.5021010=÷⨯(平方厘米)【例4】一个正方形,一条边增加5厘米,另一条边增加3厘米,面积就增加87平方厘米,原 来正方形的面积是多少平方厘米?分析与解 将图(1)增加的面积分割成三部分(如图(2》从增加的部分中减去阴影部分,剩下部分是两个等长的长方形,这两个长方形能拼成一个宽是8的大长方形(如图(3)),这样就能求出长方形的长,也就是原来正方形的边长,长为9)53()5387(=+÷⨯-厘米,于是,正方形的面积是81平方厘米.【例5】 -个长方形如图(1)所示被分割成四个小长方形,其中三个的面积分别是8,10,15,求第四个小长方形的面积.(单位:平方厘米)分析与解 方法1:如图(2)所示,因为A 和B 的长相等,B 的面积是A 的面积的1.5倍(15÷10)也就是6是a 的1.5倍,在图中,C 和D 的长也相等,D 的宽是C 的宽的1.5倍,所以D 的面积是C 的面积的1.5倍.8 X 1.5=12(平方厘米)方法2:,,,,bd s ad S bc S ac s D C B A ====显然,.d c b a S s S S B C D A ⨯⨯⨯=⨯=⨯由此得到一个结论,形如例5这样的一个长方形分成四个小长方形,对角上的两个长方形的面积的乘积相等,运用这个结论,我们还可以这样计算:1210158=÷⨯(平方厘米)【倒6】以长方形ABCD 的四条边为边长,画四个正方形,这四个正方形的面积之和是68平方厘米,长方形ABCD 的周长是16厘米,求长方形ABCD 的面积,分析与解 因为四个正方形的面积之和是68平方厘米,那么②与③的面积的和就是68÷2=34(平方厘米).①②③④组成的正方形的边长是长方形ABCD 的长加宽的和,所以面积是(16÷2)2=82=64(平方厘米),由于①与④的长和宽分别相等,所以面积也相等,那么①的面积(也就是ABCD 的面积)就是(64-34)÷2=15(平方厘米).做题也有小窍门噢!求多边形的面积,要运用添辅助线、旋转等方法将它转变为求三角形、正方形、长方形或梯形的面积问题.快来试一试你的身手吧!1.有两个正方形如下图所示,其中小正方形的边长是6 cm ,求阴影部分的面积.2.一个长方形的长增加2厘米,宽增加5厘米,就变成了一个正方形,面积增加了60平方厘米,那么原来长方形的面积是多少平方厘米?3.一个正方形如图所示,被分成四块,其中两块是正方形,面积分别是80平方厘米和20平方厘米,求整个大正方形的面积.4.以长方形ABCD 的四条边为边长,画四个正方形,这四个正方形的面积的和是120平方厘米,长方形ABCD 的周长是20厘米,求长方形ABCD 的面积.通往初中名校的班车1.两个大小不同的等腰直角三角形,它们的直角边分别是7厘米和10厘米,现如图所示重叠起来,且使BF=1,求阴影部分的面积.2.有红、黄、绿三块大小一样的正方形纸片,放在一个底面为正方形的盒内,它们之间互相叠合(如图所示).已知露在外面的部分中,红色面积是20平方厘米,黄色面积是14平方厘米,绿色面积是10平方厘米.求正方形盒底的面积.3.如图,把三角形沿虚线折叠,得到一个多边形,这个多边形的面积是原三角形面积的,75已 知下图的阴影部分的面积是60平方厘米,求原三角形的面积.4.正方形与阴影长方形的边分别平行,正方形的边长是10厘米,阴影部分的面积为6平方厘米.求图中四边形ABCD 的面积.答案。
六年级奥数-15图形面积(一)
![六年级奥数-15图形面积(一)](https://img.taocdn.com/s3/m/e1c29a1a4a35eefdc8d376eeaeaad1f346931103.png)
面积计算(一)1.学会用割补、拼接、等面积变换等基本技巧计算平面图形面积2.了解平面几何六大模型3.熟悉圆与扇形的面积求法1.计算平面图形面积的技巧:割补拼接、等面积变换、和差法、转化法2.几何六大模型:等积变换、鸟头模型、蝴蝶模型、相似模型、燕尾模型、一半模型3.圆形与扇形的面积公式。
☞考点说明:研究的是怎样把一个三角形内部两个成燕子尾巴关系的三角形(其实两个三角形的关系是共边)面积的比转化成线段长度之间的比1.燕尾模型:一个三角形内部,内部某个点与三个顶点分别相连后,会形成左、右、下三个燕尾三角形,并会形成(左、右)(左、下)(右、下)三组燕尾。
2.燕尾定理(1)S△ABG:S△ACG=S△BGE:S△CGE=BE:CE(2)S△BGA:S△BGC=S△GAF:S△GCF=AF:CF(3)S△AGC:S△BGC=S△AGD:S△BGD=AD:BD3.证明燕尾定理例:如右图,D是BC上任意一点,请你说明:1423:::S S S S BD DC==类型一、几何六大模型——燕尾模型S 3S 1S 4S 2E D C B A【解析】三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得,1423:::S S S S BD DC ==.例1.已知在下面两幅图中,三角形ABD 的面积都是15,三角形ACD 的面积都是20,三角形CDE 的面积都是8,求三角形BDE 的面积.练习1.如图,已知三角形ABD 的面积是35平方厘米,三角形ACD 的面积是25平方厘米,三角形BCD 的面积是24平方厘米.求三角形CDE 的面积是多少?燕尾定理结合分比定理、风筝模型等解题例2.如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于.练习2.如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.题目条件比较少,那么创造条件——做辅助线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面图形的面积(一)——图形的等分
例1 有一个三角形花坛,要把它平均分成两个相等的三角形,可以怎样分?
练习将任一三角形分成面积相等的六个三角形,应怎么分?
例2 三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
练习已知AE=3AB,BD=2BC,三角形ABC的面积是6,求三角形BDE的面积。
练习如图所示,找出梯形ABCD中有几组面积相等的三角形。
例3 已知三角形ABC的面积是12平方厘米,并且BE=2EC,F是CD的中点。
求阴影部分面积。
练习AC是CD的3倍,E是BC的中点,三角形CDE的面积为2平方厘米。
求三角形ABC的面积。
练习如图,正方形ABCD的边长是4厘米,CG=3厘米,长方形EFGD的长是5厘米,DE长几厘米?
例4 在一块长方形的地里有一口长方形的水井,试画一条线把除井处的这块地平分成两块。
练习下图为5个面积为1的正方形拼成的。
试用一直线将此图形划分为面积相等的两块。
例5 将下图分成4个形状、大小完全相同的图形,且每个部分中都有一个小黑圈。
练习将下图分成4个形状相同、面积相等的小块。
作业
1、三角形的面积公式:________________。
同底等高的三角形面积___________。
平行线间的距离处处___________。
2、甲、乙两个三角形的高相等,若甲的底是乙的底的5倍,则甲的面积就是乙面积的_____倍。
3、甲、乙两个三角形的底相等,若甲的高是乙的高的4倍,则甲的面积就是乙面积的______倍。
4、把一个等边三角形分成面积相等的三个三角形,有________种不同的方法。
5、如图1,该图是一个直角梯形,面积相等的三角形有_________组,请分别写出________________ __________________________________。
6、如图2,AD与BC平行,AD=5,BC=10,三角形ADC面积为10,则三角形ABC的面积是_______________。
7、如图3,三角形ABC中,E、D、G分别是AB、BC、AD的中点,图中与三角形ADE面积相等的三角形一共有__________个。
8、如图4,梯形ABCD的面积为55,点E在BC上,三角形ADE的面积是三角形ABE面积的2倍,BE的长为2,EC的长为5,求三角形DEC的面积。
9、如图5、已知长方形ABCD的面积为160,E、F是长和宽的中点,求四边形ACFE的面积。
10、如图6,正方形ABCE的面积为12平方分米,求长方形CEFG的面积。
11、下图是由5个同样大小的正方形组成,试将图形分割成4块形状、大小都一样的图形。
12、将下图分成大小、形状都相同的三块,并且每块中都有一个字母。