热能与动力工程测量技术
热能与动力工程测试技术复习重点
第一至三章一、名词解释测量:是人类对自然界中客观事物获得数量观念旳一种认识过程。
它用特定旳工具和措施,通过试验将被测量与单位同类量相比较,在比较中确定出两者比值。
稳态参数:数值不随时间而变化或变化很小旳被测量。
瞬变参数:随时间不停变化数值旳被测量(非稳态或称动态参数),如非稳定工况或过渡工况时内燃机旳转速、功率等。
模拟测量:在测量过程中首先将被测物理量转换成模拟信号,以仪表指针旳位置或记录仪描绘旳图形显示测量旳成果(不体现为“可数”旳形式) 。
数字测量:测量可直接用数字形式表达。
通过模/数(A/D)转换将模拟形式旳信号转换成数字形式。
范型仪器:是准备用以复制和保持测量单位,或是用来对其他测量仪器进行标定和刻度工作旳仪器。
精确度很高,保留和使用规定较高。
实用仪器:是供实际测量使用旳仪器,它又可分为试验室用仪器和工程用仪器。
恒定度:仪器多次反复测量时,其指示值稳定旳程序,称为恒定度。
一般以读数旳变差来表达.敏捷度:它以仪器指针旳线位移或角位移与引起这些位移旳被测量旳变化值之间旳比例S来表达。
敏捷度阻滞:敏捷度阻滞又称为感量,感量是足以引起仪器指针从静止到作极微小移动旳被测量旳变化值。
一般仪器旳敏捷度阻滞应不不小于仪器容许误差旳二分之一。
指示滞后时间:从被测参数发生变化到仪器指示出该变化值所需旳时间,又称时滞。
测量值与真值之差称为误差。
因子:在试验中欲考察旳原因称为因子。
因子又可分为没有交互作用和有交互作用旳因子,前者是指在试验中互相没有影响旳因子,而后者则在试验中互相有制抑作用。
水平:每个因子在考察范围内提成若干个等级,将等级称为水平二、填空题常用旳测量措施有直接测量、间接测量、组合测量。
测试中,被测量按照其与否随时间变化可以分类稳态参数和瞬变参数。
有时被测参数旳量或它旳变化,不体现为“可数”旳形式,这时就不能用一般旳测量措施,对应旳就出现了模拟测量和数字测量。
按工作原理,任何测量仪器都包括感受件,中间件和效用件三个部分。
《热能与动力工程测试技术(第3版)》俞小莉(电子课件)第11章 振动测量(刘老师)
第11章 振动测量
11.2 振动测量的基本原理
测振仪模型一般可简化为由惯性元件质 量m和弹性元件弹簧k组成,并悬挂在刚 性的刚体上,框架安置在被测振动体上,
并随振动体振动。设振动体的振幅为
x1,m的振幅为x2,则m相对于框架的振动
为x2-x1。如忽略阻尼,质量m振动的微分 方程为
m x2 k ( x2 x1 ) 0
第11章 振动测量
11.3 测振系统概述
(1)电压放大器
加速度计-电缆-电压放大器电路
等效电路
实际上,Ri与Ra的阻值很大,相应的R值也较大。电压放大器输
入电压的最大值可写为:
um DF0 DF0 C C a Cc Ci
式中,D——压电晶
体的压电系数;F——作用于压电体上的周期力 F F0 sin t 。其中
Cc随着连接电缆的长度变化。若加长电缆,则灵敏度下降。
第11章 振动测量
11.3 测振系统概述
(2)电荷放大器 电荷放大器的输出电压与输入电荷成正比例,
它是一个具有电容负反馈的高输入阻抗的高增益运
算放大器。
u0 Aq a qa 1 A C F C F
电荷放大器的优点如下:
①电荷放大器的输出电压与连接电缆的长度无关。 ②电荷放大器的低频截止频率取决于反馈网络参数。
第11章 振动测量
11.1 概述
机械振动的分类
(1)从产生振动的原因来分: 自由振动:系统仅受到初始条件(初始位移、初始速度)的激励而引起
的振动
受迫振动:系统在持续的外作用力激励下的振动 自激振动:没有外激励作用的情况下,由系统自身激发所产生的一种
振动,简称自振
第11章 振动测量
热能与动力工程测试技术温度测量
3) 镍铬-镍硅热电偶〔分度号K〕 正极是镍铬合金,负极为镍硅。 测温范围:-200 ℃ ~+1300℃。 优点:测温范围很宽、热电动势与温度关系近
似线性、热电动势大、高温下抗氧化能力强、价 格低,所以在工业上应用广泛。
K分度表
镍铬—镍硅热电偶分度表〔冷端温度为0℃〕
测量端 温度 (℃)
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0
0.000 4.095 8.137 12.207 16.395 20.640 24.902 29.128 33.277 37.325 41.264 45.108 48.828 52.398
30
1.203 5.327 9.341 13.456 17.664 21.919 26.176 30.383 34.502 38.519 42.432 46.238 49.916 53.439
40
50
热电动势(mV)
1.611 5.733 9.745 13.874 18.088 23.346 26.599 30.799 34.909 38.915 42.817 46.612 50.276 53.782
Tt273.15
☆ 国际实用温标:ຫໍສະໝຸດ 是一个国际协议性温标,它与热力学温标
相接近,而且复现精度高,使用方便 。
● 温度计分类 据传感器的测温方式: 接触式:膨胀式、电阻式、热电偶式 非接触式: 辐射式 接触式的精度高、响应慢、受高温限制 非接触式的精度低、响应快、受低温限制
按照温度测量范围: 超低温: 0~10K 低温: 10~800K 中高温: 800~1900K;1900~2800K 超高温: 2800K以上
《热能与动力工程测试技术(第3版)》俞小莉(电子课件)第9章 转速、转矩和功率测量(黄老师)
第9章转速、转矩和功率测量
9.3 功率测量
负荷电阻控制方式直流电力测功机的基本特性如下图所示。
图中同时给出转矩Tt、测量功率PT、驱动转矩Tm、驱动功率 P与转速n 的关系。在测功状态下,A为最大电流线,此时对应于最大励磁电流和最小 负荷电阻,即为负荷调节处于最大位置时的固有特性;A1、A2分别为负荷 调节处于中间位置时的固有特性;B为最大转矩线,受电枢的机械强度限制; C为最大功率线,受电机散热条件限制;D为最高转速线,受旋转部分所能 承受的最大离心力限制;E为最小吸收转矩或功率线,此时虽无励磁电流通 过,但仍存在轴承及空气阻力,因而在E线之下存在不能测定区(图上剖面 线范围)。
1-弹性扭轴 2-卡盘 3-凸臂 4-钢铉
第9章转速、转矩和功率测量
9.2 转矩测量
假设弹性扭轴处于自由状态时,钢铉的固有频率为f0,受转矩T作用时 频率为f,则
T K ' ( f 2 f 02 )
式中,K’是常数,它由弹性扭轴的刚度、钢铉的尺寸及测量仪的特性 等决定。 测得频率f则可测量出转矩T。
磁致伸缩式转矩仪工作原理图
第9章转速、转矩和功率测量
9.3 功率测量
1.功率基本测量方法
主要测量方法: (1)通过电功率测量。又称损耗分析法,动力机械由电动机直接驱动,先测出 电动机的输入功率,再利用损耗分析计算电动机的输出功率,即为动力机械的轴功 率。 (2)通过转矩间接测量。由于动力机械的轴功率正比于转矩与转速的乘积,故 常采用间接测量方法。分别测量转矩和转速,再按下式求得功率
第9章转速、转矩和功率测量
9.1 转速测量
b.磁电式转速传感器
1-传感器壳体 2-输出信号线 3-保护层 4-永磁体 5-感应线圈 6-杆销 7-触发齿轮 G-气隙
热能与动力工程测试技术(附答案)
1.测量方法:直接测量:凡是被测量的数值可以从测量仪器上读出,常用方法1.直读法2.差值法3.替代法4.零值法间接测量:被测量的数值不能直接通过测量仪器上读出,而直接测量与被测量有一定函数关系的量,通过运算被测量的测值。
组合测量:测量中各个未知量以不同的组合形式出现,根据直接测量与间接测量所得的数据,通过方程求解未知量的数值2.测量仪器:可分为范型仪器和实用仪器一、感受件:它直接与被测对象发生联系,感知被测参数的变化,同时对外界发出相应的信号。
应满足条件:1.必须随测量值的变化发生相应的内部变化 2.只能随被测参数的变化发出信号 3.感受件发出的信号与被测参数之间必须是单值的函数关系二、中间件:起传递作用,将传感器的输出信号传给效用件常用的中间件:导线,导管三、效用件:把被测信号显示出来。
分为模拟显示和数字显示3.测量仪器的主要性能指标:一、精确度:测量结果与真值一致的程度,系统误差与随机误差的综合反映二、恒定度:仪量多次重复测量时,其指示值的稳定程度三、灵敏度:认仪器指针的线位移或角位移与引起变化值之间的比例四、灵敏度阻滞:在数字测量中常用分辨率表示五、指示滞后时间:从被测参数发生变化到仪器指示出现该变化值所需时间4.传递函数是用输出量与输入量之比表示信号间的传递关系。
H(s)(s)(s)作用:传递函数描述系统的动态性能,不说明系统的物理结构,只要动态特性相似,系统可以有相似的传递函数串联环节:H(s)1(s)H2(s)并联环节H(s)1(s)2(s)反馈环节H(s)(s)/1(s)(s)5.测量系统的动态响应:通常采用阶跃信号和正弦信号作为输入量来研究系统对典型信号的响应,以了解测量系统的动态特性,依次评价测量系统测量系统的阶跃响应:一阶测量系统的阶跃响应二阶测量系统的阶跃响应测量系统的频率响应:一阶测量系统的频率响应二阶测量系统的频率响应7.误差的来源:每一参数都是测试人员使用一定的仪器,在一定的环境下按一定的测量方法和程序进行的,由于受到人们的观察能力,测量仪器,方法,环境条件等因素的影响,所得到的测量值只能是接近于真值的近似值,测量值与真值之差称为误差。
热能与动力工程测试技术要点
J I A N G S U U N I V E R SI T Y热能与动力工程测试技术要点简析主编:邝锡金副主编:代冲主审:邝锡金目录第一章概述 (3)第二章测量系统的动态特性 (4)第三章测量系统误差分析及处理 (5)第四章传感器的基本类型及工作原理 (6)第五章温度测量 (8)第六章压力测量 (10)第七章流速测量 (11)第八章流量测量 (12)第一章概述1、在热能与动力工程领域中,需要测量的物理量主要有?温度、压力、流量、功率、转速等。
2、按照得到最后结果的过程不同,测量方法可以分为哪几类?简述各类方法的定义。
1)直接测量:凡被测量的数值可以直接从测量仪器上读得的测量:2)间接测量:被测量的数值不能直接从测量仪器上读得,而需要通过直接测得与被测量有一定函数关系的量,然后经过运算得到被测量的数值:3)组合测量:测量中使各个未知量以不同组合形式出现(或改变测量条件以获得不同的组合),根据直接测量或间接测量所得数据,通过求解联立方程组求得未知量的数值。
3、按工作原理,任何测量仪器都应包括哪三部分?各部分的功能和作用?包括感受器、中间件和效应件三个部分。
1)感受器或传感器:它直接与被测对象发生关系(但不一定直接接触),感知被测参数的变化,同时对外界发出相应的信号;2)中间件或传递件:最简单的中间件是单纯起“传递”作用的元件,它将传感器的输出信号原封不动的传递给效应件;3)效应件或显示元件:显示元件的功能是把被测信号显示出来,按显示原理与方法不同,又可分为模拟显示和数字显示两种。
4、测量仪器按照用途可以分为哪两类?其特点为?范型仪器和实用仪器两种。
范型仪器精确度很高,对它的保存和使用有较高要求:实用仪器使用起来方便、可靠,测量结果只要在工程测量允许范围内即可。
5、测量仪器的主要性能指标包括?各指标的含义?测量仪器的性能指标主要有:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。
精确度:表示测量结果与其真值一致的程度,它是系统误差与随机误差的综合反映。
(完整版)热能与动力工程测试技术
⒈什么是测量?答:测量是人类对自然界中客观事物取得数量概念的一种认识过程.⒉测量方法有哪几类?直接测量与间接测量的主要区别是什么?答:测量方法有①直接测量(直读法、差值法、替代法、零值法)②间接测量③组合测量直接测量与间接测量区别:直接测量的被测量的数值可以直接从测量仪器上读得,而间接测量的被测量的数值不能从测量仪器上读得,而需要通过直接测得与被测量有一定函数关系的量,经过运算得到被测量。
⒊任何测量仪器都包括哪三个部分?各部分作用是什么?答:①感受件或传感器,作用:直接与被测对象发生联系(但不一定直接接触),感知被测参数的变化,同时对外界发出相应的信号.②中间件或传递件,作用:“传递"、“放大”、“变换”、“运算”。
③效用件或显示元件,作用:把被测量信号显示出来.⒋测量仪器按用途可分为哪几类?答:按用途可分为范型仪器和实用仪器两类。
⒌测量仪器有哪些主要性能指标?各项指标的含义是什么?答:①精确度,表示测量结果与真值一致的程度,它是系统误差与随机误差的综合反应。
②恒定度,仪器多次重复测量时,其指示值的稳定程度。
③灵敏度,以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例S来表示④灵敏度阻滞,灵敏度阻滞又称为感量,此量是足以引起仪器指针从静止到作极微小移动的被测量的变化值。
⑤指示滞后时间,从被测参数发生变化到仪器指示出该变化值所需的时间,称为指示滞后时间或称时滞。
⒍测量误差有哪几类?各类误差的主要特点是什么?答:①系统误差,特点:按一定规律变化,有确定的因素,可以加以控制和有可能消除。
②随机误差,特点:单峰性、对称性、有限性、抵偿性,无法在测量过程中加以控制和排除。
③过失误差,特点:所测结果明显与事实不符,可以避免。
⒎什么叫随机误差?随机误差一般都服从什么分布规律?答:随机误差(又称偶然误差)是指测量结果与同一待测量的大量重复测量的平均结果之差。
随机误差一般都服从正态分布规律。
热能与动力工程测试技术(第2版)教学配套课件严兆大主编第六章压力测量
1.L形总压管
L形总压管的结构如图6-17所示,它制造简单,安 装和使用比较方便,且支杆对测量结果的影响较 小,是最常见的总压管。其缺点是不敏感偏流角αp 比较小,一般为±10°~±15°。
07236-05A
2.圆柱形总压管
圆柱形总压管的结构如图6-18所示,它的最大优点 是可以做成很小的尺寸,且工艺性能好、使用方 便,但其不敏感偏流角也较小。
07236-05A
3.带导流套的总压管
图6-17 L形总压管的结构 07236-05A
3.带导流套的总压管
图6-18 圆柱形总压管的结构 07236-05A
3.带导流套的总压管
图6-19 带导流套的总压管 07236-05A
4.多点总压管
图6-20 梳状总压管 a) 凸嘴型 b) 凹窝型 c) 带套型 07236-05A
四、典型测压传感器
图6-11 石英晶体压电传感器结构 a) 普通型 b)与火花塞做成一体的石英晶体压电传感器
1—弹性膜片 2—传力件 3—底座 4—石英片 5—玻璃导管 6—胶玻 璃导管 7—引出导线接头 8—导
电环 9—金属箔 10—火花塞 11—传感器
07236-05A
1. 石英晶体压电传感器
二、动态标定
图6-28 激波管内的工作过程 a)压力传播过程 b)压力—时间图 07236-05A
二、动态标定
07236-05A
图6-29 激波管标定系统传 感器的输出曲线U=f(t)
第五节 压力测量系统的动态特性
一、容腔效应 二、传输管道的数学模型和频率特性
07236-05A
一、容腔效应
在动态压力测量系统中,压力传感器是按动态参数测量的要求设计制 造的,它的固有频率很高,响应也很快,但由于测压元件前的空腔和 导压管的存在,必然导致压力信号的幅值衰减和相位滞后,这种效应 称为动态压力测量的容腔效应。
《热能与动力工程测试技术(第3版)》俞小莉(电子课件)第3章 测量误差分析及数据处理(俞老师)
1
i i i
1
=4.736 103
i i i
1
n 1
1
n 1 ˆ2
故可判断测量结果不存在周期性系统误差。
第3章测量误差分析及数据处理
3.3 系统误差分析与处理 (3)算术平均值与标准差比较法
s
s1 s2
2
2
p p( x ts )
n
x)
2
ˆ
n -1
i
1
n
2 i
n-1
④判断:
第3章测量误差分析及数据处理
3.3 系统误差分析与处理
i i i
1
n 1
1
n 1 ˆ2
若上式成立,则测量结果存在周期性系统误差。 (2)偏差核算法——马力科夫准则(检查是否含有线性系统误差) 将 按 照 测 量 先 后 排 序 的 测 量 结 果 分 为 前 半 组 x1,x2,…xm 和 后 半 组 xm+1,xm+2,…xn,计算两组测量值偏差和的差值,即
max e
A 2000 ( 1%) 10% Am 200
A 2000 ( 1%) 1.33% Am 1500
当示值为1500 r/min时的最大相对误差为:
r21(1)
(11 n 13)
r22(n )
和
x n x n 2 xn x3 x1 x 3 x1 x n 2
r22 (1)
(n 14)
第3章测量误差分析及数据处理
3.4 疏失误差的消除
⑤剔除含疏失误差的测量结果后,重新②-④步骤,直至计算得到的统计 量均小于临界值。
《热能与动力工程测试技术(第3版)》俞小莉(电子课件)第4章 温度测量(黄老师)
热电偶原理
热 电 偶 测 量 优 点
测量范围宽,它的测温下限可达-250℃, 某些特殊材料做成的热电偶,其测温上限可达 2800℃,并有较高的精度。 可以实现远距离多点检测,便于集中控制、 数字显示和自动记录。
可制成小尺寸热电偶,热惯性小,适于快 速动态测量、点温测量和表面温度测量。
第4章温度测量
4.2 接触式测温计
第4章温度测量
4.2 接触式测温计
1. 膨胀式测温计 原理:物质的体积随温度升高而膨胀 a. 玻璃液体温度计 基于液体在透明玻璃外壳中的热膨胀作用,其测量范围取决于温度计 所采用的液体。
1)零点漂移 2)露出液柱的校正 式中,n为露出部分液柱所占的度数(℃);为工作液体在玻璃中的 视膨胀系数(水银≈0.00016);tB为标定分度条件下外露部分空气温度 (℃);tA为使用条件下外露部分空气温度(℃)。
分度号 S K E
热电偶材料 铂铑10-铂 镍铬-镍硅 镍铬-康铜
校验点温度(℃) 600、800、1000、1200 400、600、800、1000 300、400、500、600
第4章温度测量
4.2 接触式测温计
热电偶的校验装置如下图所示,它由交流稳压电源、调压器、管式电 炉、冰点槽、切换开关、直流电位差计和标准热电偶等组成。
属于贱金属热电偶,E型热电偶测温范围-200℃~900℃,其灵敏度在这 六种热电偶中最高,价格也最便宜,应用前景非常广泛。缺点是抗氧化 及抗硫化物的能力较差,适于在中性或还原性气氛中使用。
第4章温度测量
4.2 接触式测温计
c.常用热电偶的结构 (1)普通工业热电偶
工业热电偶结构图
1-接线盒 2-绝缘套管 3-保护套管 4-热电偶丝
热能与动力工程测试技术习题及答案
热能与动力工程测试技术一、填空(30)1.仪器测量的主要性能指标:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间。
P52.在选用仪器时,应在满足被测要求的前提下,尽量选择量程较小的仪器,一般应使测量值在满刻度要求的2/3为宜P53.二阶测量系统的阻尼比通常控制于ξ=~,对于二阶测量系统的动态性能的两个重要指标是稳定时间t s和最大过冲量A d。
P184.测量误差可分为系统误差、随机(偶然)误差、过失误差。
5.随机误差的四个特性为单峰性、对称性、有限性、抵偿性。
6.热电偶性质的四条基本定律为均质材料定律、中间导体定律、中间温度定律、标准电极定律。
7.造成温度计时滞的因素有:感温元件的热惯性和指示仪表的机械惯性。
P1098.流量计可分为:容积型流量计、速度型流量计、质量型流量计。
P1619.扩大测功机量程的方法有:采用组合测功机、采用变速器。
P20810.除利用皮托管测量流速外,现代常用的测速技术有:热线(热膜)测速技术、激光多普勒测速技术(LDV)、粒子图像测速技术。
11.在热能与动力工程领域中,需要测量的物理量主要有温度、压力、流量、功率、转速等。
12.按照得到最后结果的过程不同,测量方法可以分为直接测量,间接测量和组合测量。
13.按工作原理,任何测量仪器都应包括感受件,中间件和效用件。
14.系统误差的综合包括代数综合法、算数综合法和几何综合法。
15.金属应变式电阻传感器温度补偿的方法有桥路补偿和应变片自补偿。
16.自感式电感传感器分为变气隙式、变截面式和螺管式。
17.常见的光电转换元件包括光电管、光电池、光敏电阻和光敏晶体管。
18.使用较多的温标有热力学温标、国际实用温标、摄氏温标和华氏温标。
19.热力学温标T和摄氏温标t的转换关系T=t+20.可用于压力测量的传感器有压阻式传感器、压电式传感器和电容式差压传感器。
21.常用的量计的节流元件有孔板、喷嘴、文丘里管等。
22.某待测水头约为90米,现有级0~⨯和级0~⨯的两块压力表,问用哪一块压力表测量较好答:后者。
《热能与动力工程测试技术(第3版)》俞小莉(电子课件)第1章 绪论
全面准确地 产生能够表达被 测试对象状态的 信息!
试验装置的核心作用是表达与输出被测试对象的待测信息, 是测试系统的“信号发生器”。 测量系统主要由传感器、信号调理、信号处理和显示记录等 单元构成。
第1章绪论
1.2 测试系统的基本组成
传感器 能够感受被测量并按照一定的规律转换成可输出信号的器件或装置。 信号敏感元件 传感器中能够直接感受或响应被测量的部分。 信号变换元件 传感器中将敏感元件感受到或做出响应的被测量转换成适合 于传输并测量的物理量的部分。 信号调理单元的 把来自传感器的信号转换成更适合于进一步传输和处理的 形式
等精度测量 非等精度测量
等方差性检验
第1章绪论
1.3 测量的基本类别
三、按照测量对象的时空变化性质分类 1. 稳态与非稳态 稳态测量(静态):针对量值不随时间变化的被测量实施的测量。 非稳态测量(动态):针对随时间变化的被测量实施的测量,是为了确 定被测量的瞬时值或被测量随时间的变化规律。 2. 单点与分布 单点测量方法:被测量量值在其空间范围内是均匀一致的时采用的测量。 分布测量方法:被测量量值在其空间范围内处于不均匀分布状态时采用 的测量。 具体采用哪种测量方法,除了被测量本 身的分布差异外,还与测试要求有关。
《热能与动力工程测试技术》·第3版
热能与动力工程测试技术
教学课件
教材:热能与动力工程测试技术 第3版 作者:俞小莉 严兆大 ISBN: 978-7-111-58644-9 出版社:机械工业出版社
《热能与动力工程测试技术》·第3版
第1章 绪论
1.1 测试工作的内涵及其作用
1.2 测试系统的基本组成 1.3 测量的基本类别 1.4 测试技术的发展及其在热能与动力工程 领域的应用概况 1.5 热能与动力工程测试技术课程学习要求
热能与动力工程测试技术速成课
热能与动力工程测试技术速成课热能与动力工程测试技术,听起来是不是特别高大上?别慌,别紧张,这其实就像是汽车修理工拿着扳手修车一样,工程师们拿着各种仪器来测量和分析热能和动力系统的表现。
你别看这些测试技术那么复杂,但其实它们的工作原理比你想象的简单多了。
说白了,就是在确保设备在运行过程中,能量不会浪费,系统不会出故障,效率也能最大化。
要是这些方面做得好,机器能跑得更远,能省下不少能源,甚至减少污染。
是不是听着就有点意思?你想啊,热能和动力工程测试其实跟你家里做饭也挺像的。
我们做饭的时候,锅里要有火,火要有温度,锅要够热,菜要煮熟,才能出美味的菜肴。
而热能与动力工程测试技术就像是检查火候和锅底的温度,确保锅不会太热烧焦,也不会太冷煮不熟。
设备运行时,热能传递的效率就决定了它能不能发挥最大功效,动力系统的测试就像是给一辆车做保养检查,看看发动机是不是运转得顺畅、油耗是不是合理,关键时刻发动机还能不能爆发出那股劲儿。
毕竟谁都不想在高速公路上开车突然熄火,对吧?这种测试技术,就像是给大机器做健康体检。
比如,锅炉、发电机、空调系统等大型设备,都是用热能和动力原理来工作的。
如果这些设备出问题了,咱们可就麻烦了。
想象一下,突然停了热水、停了空调,或者大电机突然“罢工”,那场面可真是一团糟。
所以,这些测试技术可以说是“背后的英雄”,就像是穿着白大褂的医生,时刻监控着设备的“健康状况”。
没它们在背后默默地捣鼓,哪能保障我们的生活舒适和工业生产顺利呢?更有意思的是,这种技术测试不仅仅局限于工业设备。
你知道吗,它还在环保、节能方面大有用处。
现在大家都知道,全球变暖是个大问题。
能源浪费和污染排放就是罪魁祸首之一。
所以,通过这些高精尖的测试技术,能精准地找出设备哪里不节能,哪里需要改进。
比如,老旧的锅炉,如果能通过改进热能传输效率,减少不必要的热量流失,那么就能大大减少二氧化碳的排放。
想象一下,减少了多少污染,空气就清新了,地球就能稍微喘口气。
《热能与动力工程测试技术(第3版)》俞小莉(习题解答)-课后习题及答案
第2章1. 传递函数是指零初始条件下输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
(√)2. 传递函数既描述了系统的动态性能,也说明了系统的物理结构。
(×)3. 幅频特性 和 相频特性 共同表达了测量系统的频率响应特性。
4. 测量系统的动态特性一般可以从 时(间)域 和 频(率)域 两方面进行分析。
5. 用试验测定动态参数的方法有频率响应法、阶跃响应法、随机信号法。
6. 测量系统的输出量与输入量之间关系可采用传递函数表示,试说明串联环节、并联环节及反馈联接的传递函数的表示方法。
答:串联环节:并联环节:正反馈环节:负反馈环节:7. 试述测量系统的动态响应的含意、研究方法及评价指标。
答:含义:在瞬态参数动态测量中,要求通过系统所获得的输出信号能准确地重现输入信号的全部信息,而测量系统的动态响应正是用来评价系统正确传递和显示输入信号的重要指标。
研究方法:对测量系统施加某些已知的典型输入信号,包括阶跃信号、正弦信号、脉冲信号、斜升信号,通常是采用阶跃信号和正弦信号作为输入量来研究系统对典型信号的响应,以了解测量系统的动态特性,以此评价测量系统。
评价指标:稳定时间t s 、最大过冲量A d 。
8. 某一力传感器拟定为二阶系统,其固有频率为800Hz ,阻尼比为0.14。
问使用该传感器)()()()()()()()()(21s H s H s Z s X s Y s Z s X s T s H ===)()()()()()()()(2121s H s H s X s Y s Y s X s Y s H +=+==)()(1)()()()(s H s H s H s X s Y s H B A A -==)()(1)()()()(s H s H s H s X s Y s H B A A +==作频率为400Hz 正弦变化的外力测试时,其振幅和相位角各为多少?解:()2222411⎪⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=n n A ωωξωωω()222280040014.0480040011⎪⎭⎫ ⎝⎛⨯+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=31.1≈()212⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=n n arctg ωωωωξωϕ2800400180040014.02⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⨯⨯-=arctg 6.10-≈9. 用一阶系统对100Hz 的正弦信号进行测量时,如果要求振幅误差为10%以内,时间常数应为多少?如果用该系统对50Hz 的正弦信号进行测试,其幅值误差和相位误差为多少? 解:(1)%10)2100(111)(111)(1)(22≤⨯+-=+-=-=∆πτωτωωA A 则 s 41071.7-⨯≤τ (2)%81.2)1071.7250(111)(111)(1)(242≤⨯⨯⨯+-=+-=-=∆-πωτωωA Aτ取7.71×10-4时, ︒-=⨯⨯⨯-=-=-62.13)1071.7250()(24πωτωϕarctg arctg相位误差小于等于13.62°10. 用传递函数为1/(0.0025s +1)的一阶系统进行周期信号测量。
《热能与动力工程测试技术(第3版)》俞小莉(习题解答)-课后习题及答案
第2章1. 传递函数是指零初始条件下输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
(√)2. 传递函数既描述了系统的动态性能,也说明了系统的物理结构。
(×)3. 幅频特性 和 相频特性 共同表达了测量系统的频率响应特性。
4. 测量系统的动态特性一般可以从 时(间)域 和 频(率)域 两方面进行分析。
5. 用试验测定动态参数的方法有频率响应法、阶跃响应法、随机信号法。
6. 测量系统的输出量与输入量之间关系可采用传递函数表示,试说明串联环节、并联环节及反馈联接的传递函数的表示方法。
答:串联环节:并联环节:正反馈环节:负反馈环节:7. 试述测量系统的动态响应的含意、研究方法及评价指标。
答:含义:在瞬态参数动态测量中,要求通过系统所获得的输出信号能准确地重现输入信号的全部信息,而测量系统的动态响应正是用来评价系统正确传递和显示输入信号的重要指标。
研究方法:对测量系统施加某些已知的典型输入信号,包括阶跃信号、正弦信号、脉冲信号、斜升信号,通常是采用阶跃信号和正弦信号作为输入量来研究系统对典型信号的响应,以了解测量系统的动态特性,以此评价测量系统。
评价指标:稳定时间t s 、最大过冲量A d 。
8. 某一力传感器拟定为二阶系统,其固有频率为800Hz ,阻尼比为0.14。
问使用该传感器)()()()()()()()()(21s H s H s Z s X s Y s Z s X s T s H ===)()()()()()()()(2121s H s H s X s Y s Y s X s Y s H +=+==)()(1)()()()(s H s H s H s X s Y s H B A A -==)()(1)()()()(s H s H s H s X s Y s H B A A +==作频率为400Hz 正弦变化的外力测试时,其振幅和相位角各为多少?解:()2222411⎪⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=n n A ωωξωωω()222280040014.0480040011⎪⎭⎫ ⎝⎛⨯+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=31.1≈()212⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=n n arctg ωωωωξωϕ2800400180040014.02⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⨯⨯-=arctg 6.10-≈9. 用一阶系统对100Hz 的正弦信号进行测量时,如果要求振幅误差为10%以内,时间常数应为多少?如果用该系统对50Hz 的正弦信号进行测试,其幅值误差和相位误差为多少? 解:(1)%10)2100(111)(111)(1)(22≤⨯+-=+-=-=∆πτωτωωA A 则 s 41071.7-⨯≤τ (2)%81.2)1071.7250(111)(111)(1)(242≤⨯⨯⨯+-=+-=-=∆-πωτωωA Aτ取7.71×10-4时, ︒-=⨯⨯⨯-=-=-62.13)1071.7250()(24πωτωϕarctg arctg相位误差小于等于13.62°10. 用传递函数为1/(0.0025s +1)的一阶系统进行周期信号测量。
《热能与动力工程测试技术(第3版)》俞小莉(电子课件)第7章 流量测量(俞老师)
第7章流量测量
7.2 节流式流量计 2 )直管段的截面必须为圆形,而且其圆度要求很高。在节流元件前 2D范围内,分别于0D、0.5D、1D和2D处的四个截面上,以角等分方式各测 取4个管道内径,共16个测量值,记为Di(i=1,2…16),偏差要求:
Di - D ×100% 0.3% D
式(7-4)中, (3)安装要求
在实际流量测量中,当被测流体的密度、温度、压力和 其它特性与流量计刻度时所用介质的参数值不同时,必须将 根据工况条件 被测流体在实际状态下的流量变化范围换算成流量计刻度状 选择 态下相应介质(如水或空气)的流量,以此作为流量计量程 的选择依据。
其它
安装位置、安装尺寸以及流通管路的振动情况等,有时 还要考虑测量过程产生的永久压力损失带来额外能耗费用的 大小。
第7章流量测量
7.2 节流式流量计 1.测量原理与流量方程 原理:当流体流经管道中急骤收缩的局部截面时,将产生增速降压的节 流现象,流体的流速越大,即在相同流通截面积条件下的流量越大,节流压 降也越大。 根据流动的连续性方程和伯努利(Bernoulli)方程,可推导出反映流量 与节流压降关系的流量方程为:
;
第7章流量测量
7.2 节流式流量计 d.标准节流装置主要参数α和ε的确定 (1)流量系数α
α = K1 K2 K3α0
式中,K1为粘度修正系数;K2为管壁粗糙度修正系数;K3为孔板磨损修 正系数,对于喷嘴、文丘利管以及新的节流元件,K3=1。 各种标准节流装置的K1、K2、K3值可从有关流量测量标准和手册中查到。
第7章流量测量
7.4 光纤流量计 1.光纤差压式流量计 光纤差压式流量计实质上也是一种节流式流量计,其特点是利用光纤传 感技术检测节流元件前后的差压p,原理如下图所示。
热能与动力工程测试技术
1、何为动压静压总压P129答:静压是指运动气流里气体本身的热力学压力;总压是指气流熵滞止后的压力,又称滞止压力;动压为总压与静压之差;2、试画出皮托管的结构简图,说明皮托管的工作原理,并导出速度表达式条件自拟,不考虑误差;P143~P1443、某压力表精度为级,量程为0~,测量结果显示为,求精确度、最大绝对误和差示值相对误差δ4、在选用仪器时,应在满足被测要求的前提下,尽量选择量程较小的仪器,一般应使测量值在满刻度要求的2/3为宜;P55、测量误差可分为系统误差、随机偶然误差、过失误差;6、随机误差正态分布曲线的四个特性为单峰性、对称性、有限性、抵偿性;7、热电偶性质的四条基本定律为均质材料定律、中间导体定律、中间温度定律、标准电极定律;8、流量计可分为:容积型流量计、速度型流量计、质量型流量计;P1619、除利用皮托管测量流速外,现代常用的测速技术有:热线热膜测速技术、激光多普勒测速技术LDV、粒子图像测速技术;10、简述金属应变式传感器的工作原理;答:金属应变式传感器的工作原理是基于金属的电阻应变效应,即导体或半导体在外力作用下产生机械形变时,电阻值也随之产生相应的变化;P6311、在热能与动力工程领域中,需要测量的物理量主要有温度、压力、流量、功率、转速等;12、按照得到最后结果的过程不同,测量方法可以分为直接测量,间接测量和组合测量;13. 按工作原理,任何测量仪器都应包括感受件,中间件和效用件;14. 测量误差按照产生误差因素的出现规律以及它们对测量结果的影响程度来区分可以将测量误差分为系统误差,随机误差和过失误差;15. 系统误差的综合包括代数综合法、算术综合法和几何综合法;16. 金属应变式电阻传感器温度补偿的方法有桥路补偿补偿片法和应变片自补偿;17. 自感式电感传感器分为变气隙式、变截面式和螺管式;18. 光电效应分为三类:外光电效应元件有光电管、光电倍增管、内光电效应元件有光敏电阻、光导管、光生伏特效应元件光电池、光敏晶体管19. 使用较多的温标有热力学温标、国际实用温标、摄氏温标和华氏温标;20. 热力学温标T和摄氏温标t的转换关系T=t+21. 可用于压力测量的传感器有压阻式传感器、压电式传感器和电容式差压传感器;22. 流量计的类型有容积型流量计、速度型流量计和质量型流量计;;24①易于实现集中检测、控制和远距离测量②响应速度快,可以测量瞬时值及动态过程③使热动测试的连续测量、自动记录和自动控制成为可能④测量的准确度和灵敏度高,可以测量微弱信号并将其放大与长距离传输⑤易于和计算机等进行连接,记录和处理数据方便25、电阻式传感器原理—将物理量的变化转换为敏感元件电阻值的变化,再经相应电路处理后转换为电信号输出;26、金属应变式传感器原理—导体或半导体在歪理作用下产生机械变形时,电阻值也随之产生相应的变化---------应变片结构:基底,敏感栅,覆盖层,引出线应变片的温度补偿:1桥路补偿2应变片自补偿:选择特定的应变片,采用双金属敏感栅自补偿应变片,热敏电阻补偿;27、半导体压阻式传感器:压阻效应—固体材料在受到应力作用后,电阻率都会发生变化的效应;28、电感式传感器—在电磁感应基础上,利用线圈自感或互感变化,把被测量转换为线圈电感量变化的传感器;分为自感式和互感式两种1自感式:①变气隙式—电感量L=N 2N0N2N;δ:气隙厚度A:气隙截面积μ:真空磁导率;δ越小,灵敏度越高;②变截面式;③螺管式:结构简单、制作容易,但由于磁阻较大因而灵敏度低,主要用于测量大位移的场合2互感式电感传感器:又称差动变压器,他把被测位移变化转化为传感器互感变化;目前用的最多的就是螺管形差动变压器,由线圈和铁芯组成;29、电容式传感器—功率小、阻抗高、动态性能好、结构简单,可用于非接触式测量两极板间的电容量C=NNN =N N NN×8.854×10−12;A:面积,N:介电常数,N=N N N N,N N=N.NNN×NN−NN N N⁄;d:极板间距,改变其中任意一个,C都会变化,因此可再分为:变极板间隙型、变面积型、变介电常数型30、压电式传感器—基于某些物质的压电效应,这些物质在外力作用下表面会产生电荷,经过电荷放大器的放大,可实现电测的目的;压电效应:某些结晶物质,当沿它的某个结晶轴施力时,内部会出现极化现象,从而在表面形成电荷集结,电荷量大小和作用力大小成正比逆压电效应:在晶体某些表面之间施加电场,在晶体内部会出现极化现象,促使晶体变形31、磁电式传感器—转速测量时最常用的传感器之一,也称感应式传感器;32、热电式传感器是将温度变化转为电量变化的传感器;1热电阻式传感器→热电阻效应:电阻率随本身温度变化而变化的现象;电阻随温度变化导体或半导体称为热电阻器件;金属随温度升高电阻增大,半导体随温度升高电阻下降;2热电偶式传感器→热电现象:两种不同的导体A和B组成闭合回路,若两连接点温度T和T不同,则在回路中产生热电动势,形成热电流的现象;A和B两导体称为热电极,他们组合称为热电偶;接触热场的一端温度为T为工作端,另一端称为自由端;热电偶输出电动势的大小只取决于两种金属的性质和两端温度;热电偶四大基本定律:①均质材料定律:一种材料组成的闭合回路不会产生热电动势②中间导体定律:插入第三种多种,只要插入材料的两端温度相同,就不会使热电偶的热电动势发生变化③中间温度定律:EAB t,t=EABt,tn+EABtn,t④标准电极定律:EAB t,t=EACt,t-EBCt,t对热电极材料的要求:①测量结果不随时间变化②足够的物理化学稳定性③热电动势应尽可能大并与温度成单值线性或近似于线性关系④电阻温度系数小,电导率高⑤材料复制性好,制造简单,价格便宜33 1.在光线的作用下能使电子溢出物质表面的称为外光电效应,有光电管,2.在光线作用下使物体电阻率改变的称为内光电效应,有光敏电阻和由光敏电阻制成的光导管等;3.在光线作用下使物体产生一定方向电动势的称为光生伏特效应,有光电池和光敏晶体管等;34、霍尔传感器:利用半导体的霍尔效应进行测量的传感器35、温标:用来度量温度高低的尺度称为温度标尺,简称温标,它规定了温度的零点和基本361接触式温度计则无此问题;2接触式温度计感温元件与被测物体达到热平衡需要一定时间,所以产生的时间滞后比较大;非接触式温度计直接测量被测物体的热辐射,响应速度较快;3由于感温元件难以承受很高的温度,所以接触式温度计测量高温时受到限制,非接触式温度计则无此问题;4由于低温时物体热辐射很小,所以非接触式温度计不适合测量低温;5一般来说,接触式温度计的测量精度比非接触式温度计高;37、1膨胀式温度计:利用物质体积随温度升高而膨胀的特性制作的温度计;具体有三种:玻璃管液体温度计、压力式温度计、双金属温度计;玻璃管液体温度计:常用水银温度计,水银不粘玻璃,不易氧化,在相当大的温度范围内-38~356℃保持液体,在200℃以下,膨胀系数几乎与温度呈线性关系,所以可做精密标准温度计;使用玻璃管温度计注意两个问题:①零点漂移②露出液柱校正压力式温度计:基于密闭系统内的气体或液体受热后压力变化的原理而制成,由温包、毛细管和弹簧管组成;双金属温度计:线膨胀系数不同的两金属构成的金属片作为感温元件,当温度变化时,由于两种金属的线膨胀系数不同,双金属片就产生与被测温度大小成比例的变形,这种变形通过相应的传动机构由指针指示出温度数值,分为螺旋形和盘形双金属温度计两种;2热电阻温度计:利用导体或半导体的电阻值随温度的变化而变化的特性制成;3热电偶温度计:利用热电效应而制成的感温元件见热电偶传感器;4温度计的校验①热电阻温度计的校验:a、比较法 b、两点法;5接触式温度计的感温元件正确反映物体温度,必须满足的两个条件:①热力平衡条件,使感温元件与被测对象组成孤立的热力学系统,并经历足够的时间,使两者完全达到热平衡;②当被测对象温度变化时,感温元件的温度能实时的跟着变化,即使传感器的热容和热阻为零6造成温度计时滞的两个因素:①感温元件的热惯性②指示仪表的机械惯性;38、非接触式温度计:基于热辐射原理;39、气体温度计:常用于测量热力学温度;根据热力学原理,理想气体的状态方程pV=nRT,用理想气体温度计测出的温度就是热力学温度;气体温度计分为三种:定容气体温度计、定压气体温度计、测温泡定温气体温度计;40、压力——流体对单位面积上的垂直作用力,即压强;绝对压力:以完全真空作为零标准的压力,也就是作用于单位面积上的全部压力;表压力相对压力:在压力仪表上指示的压力,其数值为绝对压力减当地大气压;绝对压力=表压力+当地大气压常用单位有Pa帕、at工程大气压、atm标准大气压、bar巴、mmHg毫米汞柱O= Pa1bar=1×105 Pa;1atm=101325 Pa;1at= Pa;1mmHg= Pa;1mmH2压力测量方法:重力与被测压力的平衡法;弹性力与被测压力的平衡法;利用物质某些与压力有关的物理性质进行测压41、液柱式测压仪表:利用工作液又称封液,常用的有水、酒精、水银的液柱重力与被测压力平衡,根据液柱高度确定被测压力大小的压力计;①U型管压力计②单管压力计③斜管微压计1液柱式压力计的测量误差及修正A、环境温度变化的影响:环境温度偏离规定20℃时的修正公式B、重力加速度变化的影响C、毛细现象的影响:封液引起的误差,误差大小取决于封液种类、温度、管径等,实际中,可以加大管径减小毛细现象,封液为酒精时,管内径d≥3mm;水或水银则≥8mmD、水和酒精读数,应与凹面持平;水银与凸面持平2弹性测压仪表:弹簧管压力计、膜式压力计膜片和膜盒两种、波纹管式压差计单波纹管和双波纹管两种3弹簧管压力计属于弹性测压仪表:由弹簧管、齿轮传动机构、指针和刻度盘组成;弹簧管的横截面呈椭圆形或扁圆形,是一根空心金属管,其一端封闭为自由端,另一端固定在仪表的外壳上,并用与被测介质相通的管接头联接;原理:当具有压力的介质进入管内腔后,在压力的作用下,弹簧管会发生变形,由于椭圆形短轴方向的内表面积比长轴方向大,因此受力也大,管子截面趋于变圆,产生弹性变形,使弯成圆弧状的弹簧管向外伸张,在自由端产生位移,通过拉杆带动齿轮传动机构,使指针相对于刻度盘转动;当变形引起的弹性力与被测压力平衡时,变形停止,指针指示出被测压力值;为了提高弹簧管的灵敏度,可采用螺旋形弹簧管或S形回形弹簧管;齿轮传动机构的作用是把自由端的位移转换成指针的角位移;4弹性压力计弹性测压仪表误差分析:①迟滞误差主要原因,同一元件在相同压力下正反行程的变形量不一样,而且元件变形远远落后于压力的变化,可采用迟滞误差极小的全弹性材料,如熔炼石英;②温度误差,仪表精度标定是在标准温度下进行的,当使用环境的温度偏离标准温度很多时,弹性元件的弹性模量会产生变化,因而误差,可采用恒弹性材料做弹性元件,如合金Ni42CrTi等;间隙和摩擦误差,传动系统机构间的间隙和摩擦阻力或仪表安装不当会引起附加误差,可采用新传动技术,减小或取消中间传动机构,如采用电阻应变转换技术,还可以采用无感摩擦弹性支承或磁悬浮支承;42、1气流压力是指气流单位面积上所承受的法向表面力;在静止气体中,不存在切向力,这个表面力与所取面积的方向无关,该压力称为静压;在流动气体中,静压是指运动气流里气体本身的热力学压力,当感受器在气流中与气流以相同的速度运动时,感受到的就是静压;总压是指气流熵制止后的压力,又称制止压力;动压=总压-静压2总压的测量工具是总压管,原理为理想气体的伯努利方程;为了得到满意的测量结果,必须使总压管口无毛刺且壁面光滑,并要求感受孔轴线对准来流方向;习惯上取测量误差为速度头1%的偏流角α作为总压管的不敏感偏流角,记作αp ,αp越大越好;半圆形感受头αp角最小,带导流套的总压管αp角最大;总压管的类型:L形总压管、圆柱形总压管、带导流套的总压管、多点总压管、边界层总压管;静压管的类型:L形静压管、圆盘形静压管、带导流套的静压管;43、容腔效应:由于测压元件前的空腔和导压管存在,必然导致压力信号的幅值衰减和相位滞后,这种效应称为动态压力测量的容腔效应;44、上止点位置的确定:磁电法、气缸压缩线法、电容法;曲轴转角信号的测定:磁电法、光电法、上止点基准法;45、1皮托管测流速皮托管:由总压探头和静压探头组成,利用总压和静压之差,即动压来测流速;又称动压管、风速管;它的优点是:结构简单,价格低廉,制造使用方便,较高测量精度;皮托管测取的是流场空间某点的平均速度;皮托管测速原理:p+12NN2=N0;p:静压;p0:总压;12NN2:动压;ρ:流体密度,v:流速;∴流速N=√2(N0−N)N;这就是皮托管的基本测速原理;最终用马赫数Ma表示气体流速,Ma=ζ√2(N0−N)NN(1+N);ζ皮托管校准系数,一般1.01~1.02;κ气体等熵指数,空气κ= 1.40;ε压缩性修正系数,查表可得。
《热能与动力工程测试技术(第3版)》俞小莉(试卷及其答案)
《热能与动力工程测试技术》试题I姓名:学号:专业:得分:一、填空题(填空题(2020分,每空1分)1.1.和共同表达了测量系统的频率响应特性。
和共同表达了测量系统的频率响应特性。
2.2.与之差称为误差。
与之差称为误差。
3.3.当激光照射到跟随流体一起运动的微粒上时,与之间的频率偏离量称作多普勒频移。
当激光照射到跟随流体一起运动的微粒上时,与之间的频率偏离量称作多普勒频移。
4.4.电磁流量计(简称电磁流量计(简称EMF EMF)是基于进行工作的。
)是基于进行工作的。
5.光电式转速传感器是利用光电元件对光的敏感性来测量转速的,可分为、两种。
6.6.测振系统分为、以及。
测振系统分为、以及。
7.7.传声器是一种声传声器是一种声传声器是一种声--电信号转换器件,有、和等种类。
8.8.温标有、温标有、、和四种。
9.9.就大多数测量而言,其随机误差都服从规律。
就大多数测量而言,其随机误差都服从规律。
二、是非题(是非题(1010分,每题2分)1.振动测量的主要参数为位移、速度、加速度。
()2.从本质上讲,液位测量是一门检测气体-液体之间分界面的技术。
()3.3.差压式液位计的理论依据是可压缩流体(液体)的静力学原理。
差压式液位计的理论依据是可压缩流体(液体)的静力学原理。
()4. A 计权网络模拟人耳40phon 等响度曲线设计,主要衰减人耳不敏感的低频声音,对中频段声音有一定衰减。
()5. 声功率级不能直接测得,可在一定条件下利用声压级进行换算。
()三、简答题(共35分)1.1.测量系统的输出量与输入量之间关系可采用传递函数表示,测量系统的输出量与输入量之间关系可采用传递函数表示,试说明串联环节、并联环节及反馈联接的传递函数的表示方法。
(10分)2.2.什么叫做传递误差?为何测量系统中采用负反馈可以提高测量精度?(什么叫做传递误差?为何测量系统中采用负反馈可以提高测量精度?(什么叫做传递误差?为何测量系统中采用负反馈可以提高测量精度?(1010分)分)3.3.试说明为何水银温度计可作为精密标准温度计?(试说明为何水银温度计可作为精密标准温度计?(试说明为何水银温度计可作为精密标准温度计?(55分)分)4.4.简述光纤流量计和超声波流量计的工作原理、特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热能与动力工程测量技术复习提纲与复习题复习提纲第一章自动测量系统的组成:1、传感元件。
作用:感受被测量并将其转换为可用的规范信号输出,通常这种信号为电信号。
2、变换元件。
作用:他将传感元件变成显示元件易于接受的信号。
3、显示元件。
作用:向观测者显示被测参数的量值。
误差的分类:系统误差:指在相同条件下,多次测量同一被测量值时,误差的大小和符号保持不变或者条件变化时按某一确定的规律变化的误差。
用“正确度”表示。
随机误差:指在相同条件下,多次测量同一被测量值中,误差值的大小和符号总以不可准确预计的方式变化,但具有抵偿性的误差。
用“精密度”表示。
粗值:无意义。
允许误差:仪表出厂时规定的基本误差不超过某一给定值,此给定值就是仪表的允许误差。
基本误差:最大引用相对误差。
精确度等级(允许误差去掉百分号):0.1、0.2、0.5、1.0、1.5、2.5、4.0变差:在全量程范围内,上下行程测量差异最大的数值与仪表量程之比的百分数,称为变差,公式:随机误差的特性:对称性、单峰性、有界性、抵偿性。
分辨率、线性度(越小越好)、灵敏度。
第二章温标——用来度量温度高低的标尺摄氏温标(℃)华氏温标(℉)热力学温度(T)国际实用温标水的三相点热力学温度是273.16K,卡尔文一度等于水三相点热力学温度的1/273.16。
摄氏温度(t),单位℃t = T-273.15热电效应:将两种不同材料的导体组成一个闭合回路,如果两端接点的温度不同,回路中将产生电势,称为热电势。
这个物理现象称为热电效应或塞贝克效应.热电势=接触电势+ 温差电势(可忽略不计)1均质导体定律:由一种均质导体(或半导体)组成的闭合回路,不论导体(或半导体)的截面和长度如何,各处的温度分布如何,都不能产生热电势。
2中间导体定律:由不同材料组成的闭合回路中,若各种材料接触点的温度都相同,则回路中热电势的总和等于零3中间温度定律:热电偶回路中接入第三种材料的导线,只要第三种材料导线的两端温度相同,就不会影响热电偶的热电势。
热电偶的补偿导线:延伸型、补偿型两种-----结构与电缆一样,1、延伸型补偿导线的材料与相应的热电偶相同,准确度略低。
2、补偿型补偿导线材料与对应的热电偶不同,用贱金属制成,低温下它们的热电性质相同。
注意:补偿导线应该与热电偶配套使用;连接时极性不可接错;(正极:红色(P),负极:其它色(N),如:SP,SN)补偿型补偿导线,必须保证它与热电偶连接的两个接点温度一致标准化热电偶:1)定义:是指生产工艺成熟、成批生产、性能优越并已列入工业标准文件中的热电偶。
标准化热电偶:(1)铂铑10-铂(S):偶丝直径:0.5~0.020 mm;适用范围:0~1100℃,1100~1600℃;适用于氧化性气氛中测温;长期最高使用温度为1300℃,短期最高使用温度1600℃,不推荐在还原气氛中使用,短期内可用于真空中测温特点:复制性好、测量精度高;价格贵、热电势小,灵敏度低。
(2)镍铬-镍硅(镍铬-镍铝) (K)偶丝直径:0.3、0.5、0.8、1.0、1.2、1.5、2.0、2.5、3.2 mm;适用范围:-200~1300℃;用于氧化和中性气氛中测温,不推荐在还原气氛中使用,可短期在还原气氛中使用,但必须外加密封保护管。
特点:测温范围较宽、热电势较大、E-t线性度好、价格适中;但长期使用后,镍铝氧化变质使热电特性改变影响测量精确度。
(3)镍铬-康铜(E);偶丝直径:0.3、0.5、0.8、1.2、1.6、2.0、3.2 mm;适用范围:-200~900℃;适用氧化或弱还原性气氛中测温特点:常用热电偶中,每摄氏度对应的热电势最高、灵敏度高,价格低廉,适合在0℃以下测温热电偶的冷端温度补偿问题1、为什么要进行补偿?答:1、热电势与温度直接关联,必须使温度恒定,所测热电势才准确;2、仪表在设计时是以0度为条件的。
冷端补偿方法:1. 冰点法特点:实现方便、测量准确;但只局限于实验室,不利于在线测量。
2. 计算法(冷端温度校正法)3. 补偿导线法补偿导线仅将热电偶冷端延长到温度相对恒定的地方,如果这地方温度不是0℃,尚须继续进行其冷端温度补偿。
热电偶正、负极必须与补偿导线正、负极相接,不能错接;两者分度号必须—致。
补偿导线应工作在100℃以下,否则其热电特性将不符合热电偶要求。
4. 仪表机械零点调整法5. 补偿电桥法(冷端温度补偿器)是采用不平衡电桥产生的电势来补偿热电偶因冷端温度变化而引起的热电势的变化值,从而等效地使冷端温度恒定的一种自动补偿法。
热电阻:测温范围为-200~500℃。
电阻温度系数(α)——温度变化1℃时,导体电阻值的相对变化量,单位为1/℃。
α ↑→ 灵敏度↑。
金属导体: t↑→Rt↑ ,∴α为正值;而半导体: t↑→Rt↓ ,∴α为负值。
金属纯度↑→α↑。
有些合金材料,如锰铜α→0(1)铂热电阻(Pt)特点:稳定性好、精确度高、性能可靠。
铂电阻的纯度通常用R100/R0表示。
(2)铜热电阻(Cu)(3)镍热电阻(Ni)特点:电阻温度系数大,灵敏度高。
三线制连接法:使两根连接导线电阻的变化分别加在电桥的两个桥臂上。
这样,两根连接导线的电阻变化对测量结果的影响可以抵消一部分,从而减小连接导线电阻因环境温度变化而引起的测量误差。
半导体热敏电阻工作原理:是利用半导体材料的电阻随温度显著变化这一特性制成的感温元件。
辐射测温的基础理论:普朗克定律。
全色辐射高温计的理论依据全辐射体辐射定律(斯忒藩-波尔兹曼定律)单色辐射高温计1、测温原理:物体在高温状态下会发光,具有一定的亮度。
物体在波长λ下的亮度Lλ和它的光谱辐射出射度Mλ成正比。
亮度温度在波长为λ的单色辐射中,若物体在温度T时的亮度Lλ和全辐射体在温度Ts时的亮度L0λ相等,则把Ts称为被测物体在波长λ时的亮度温度。
测到的温度总是低于物体的真实温度。
辐射温度若物体在温度为T时的总辐射出射度与全辐射体在温度为T’时的总辐射出射度相等,则把T’称为实际物体的辐射温度。
测到的温度总是低于物体的真实温度。
比色温度若温度为T的实际物体在两个波长下的光谱辐射出射度的比值与温度为Tc的全辐射体在同样两波长下的光谱辐射出射度的比值相等,则把Tc称为实际物体的比色温度。
对于黑体和灰体,T=T’对多数金属:T>Tc ,对非金属:T<Tc。
第三章1、压力表示方法(1)、压力:对应于物理概念中的压强,即指均匀而垂直作用于单位面积上的李,有符号p表示。
(2)、绝对压力:指被测介质作用在物体单位面积上的全部压力,是物体所受的实际压力。
(3)、表压力:指绝对压力与大气压力的差值。
(4)、差压:指两个压力的差值。
习惯上把较高一侧的压力称为正压,较低一侧的压力称为负压。
2、弹性元件的测量及特性(1) 原理:弹性元件在弹性限度内侯受压后会产生变形,变形的大小与被测压力成正比关系。
特性:(2) 特性输出特性:弹性元件上的压力与弹性元件产生的相应唯一活弹性力的关心为线性关系弹性迟延:给弹性元件加压力或减压力时,输出特性曲线不相重合的现象。
弹性后效:当弹性元件加压力或减压力到某一数值时,弹性变形不能同时达到相应值,而是要经历过一段时间之后才能达到应有的应变量。
刚度:弹性元件产生单位变形所需要的压力灵敏性:在单位压力作用下产生的输出变形。
固有频率:弹性原件的无阻尼自由振动频率或自振频率。
3、弹性原件的应用:弹性膜片,波纹管和弹簧管。
4、电气式压力测量技术(1)电阻式原理:px →弹性元件s1 →电位器滑动触点s2 →Rx →U注意事项:测量精度高,测量范围宽,压损小。
存在滑动摩擦阻力,电位器易磨损、受污染。
不宜在有振动和有腐蚀性气氛的环境中使用。
(2)电感式原理:p x →弹性元件s →线圈的电感L→感应电势U注意事项:电源i 、f 变大则灵敏度变大;但i 过大线圈发热,f 过高则铁芯涡流损失变大。
由于两次级线圈不完全对称,S=0时有残存电势(3)电容式原理:电容器的可动极板是测压弹性膜片。
p x →弹性膜片s →极板间距d →电容c→I特点:具有最少的可动部分,结构简单。
测量范围宽,精确度高(达0.2级),灵敏度高,体积小,且能输出(4—20)mA 的直流标准信号。
(4)应变式工作原理:p x →弹性元件s →应变片电阻R→I 金属应变片和半导体压阻片应变效应:有几何尺寸引起的电阻变化率压阻效应:由材料的电阻率变化引起的电阻(5)霍尔压力式霍尔效应:半导体单晶薄片置于磁场(B)中,纵向通控制电流I ,则横向产生电势EH。
E H=K H I B工作原理:p x →s →B → E H注意事项:对霍尔元件进行恒温或采用其它温度补偿措施;应减少不等位电势,例如注意霍尔元件各处的电阻率、厚度、材料性质等不均匀性以及不对称焊接等(6)振弦式工作原理: p x →弹性膜片s →振弦张力F →固有频率f特点:输出为频率信号,因此具有较强的抗干扰能力,而且零飘小,温度特性好、准确度高, 通常为0.2级,易于与计算机等数字监控系统联接(7)力平衡式工作原理: 利用力平衡原理 p x →弹性元件的集中力F →I特点: 结构复杂、 体积和重量大、动态特性差。
0.5 级5、 仪表量程的选择和安装(1)量程上限为1、1.6、2.5、4.0、6.0kPa 以及他们的10n 倍数。
压力稳定式,被测压力在满量程的1/3~2/3范围内。
压力波动较大或脉动压力时,被测压力值应为仪表满量程的1/2左右,且不低于满量程的1/3.(2)压力测量仪表的安装使用要求①取压位置:测量液体——引自管道截面的下部,与最低点成45度角。
测量气体压力——引自管道截面上部水蒸气压力——引自管道两侧②导压管路应垂直或倾斜敷设,不应水平敷设,以防止测液体时聚集气泡,测气体时聚集水柱。
(3)安装冷凝盘管或弯头的原因:为隔离弹性元件,免受介质加热,切便于加装密封垫片。
(4)读数修正:第四章1、基本概念(1) 瞬时流量:单位时间内通过管道中某一截面积的流体量。
(2) 体积流量:用流体体积表示的流量(3) 质量流量:用了流体的质量表示流量(4) 标准体积流量:在温度为20(0 0C )、压力为1.013×105Pa 下的体积数值。
(5) 累积流量:一段时间间隔内流体通过管道横截面的流体总量2、流量测量的主要方法和分类差压式流量测量:节流变压降式、均速管式、楔形、弯管式以及浮子流量测量速度式流量测量:涡轮式、涡街式、电磁式、超声波式容积式流量测量:椭圆式、腰轮式、刮板式、活塞式3、差压式流量测量(1)节流变压降式流量测量(电厂中使用最多的流量测量方法)原理:对于一定形状和尺寸的阻力件,一定的测压位置和前后直管段,在一定的流体参数情况下,阻力件前后的差压与体积流量之间有一定的函数关系流量公式: 流量系数 α与下列因素有关:节流件的形式、β值、雷诺数、管道粗糙度及取压方式等(2)为何要进行温度补偿:密度计受被测温度、压力影响很大,一旦运行工况偏离设计工况,被测流体参数温度、压力将发生变化,将引起节流件前流体密度发生较大的变化,因而必须对得到的流量进行补偿。