2021年初二上册数学公开课教案

合集下载

2021年最新人教版八年级数学上册全册教学设计

2021年最新人教版八年级数学上册全册教学设计

11.1 与三角形有关的线段教学目标:1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)教学过程:一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.教师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )A.2个B.3个C.4个D.5个解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的一点组成n(n-1)2个三角形.探究点二:三角形的三边关系【类型一】判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是( ) A.3<x<11 B.4<x<7C.-3<x<11 D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a -b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边由不在同一直线上的三条线段首尾顺次相接所组成的图形.两边之和大于第三边,两边之差小于第三边.11.1.2 三角形的高、中线与角平分线教学目标:1.掌握三角形的高、中线和角平分线的定义,并能够对其进行简单的应用.(重点) 2.能够准确的画出三角形的高、中线和角平分线.(难点)教学过程:一、情境导入这里有一块三角形的蛋糕,如果兄弟两个想要平分的话,你该怎么办呢?本节我们一起来解决这个问题.二、合作探究探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选D.方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】根据三角形的面积求高如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC上移动,则BP的最小值为________.解析:根据垂线段最短,可知当BP⊥AC时,BP有最小值.由△ABC的面积公式可知12 AD·BC=12BP·AC,解得BP=245.方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.探究点二:三角形的中线【类型一】应用三角形的中线求线段的长在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比△ADC的周长大2cm,则BA=________.解析:如图,∵AD是△ABC的中线,∴BD=CD,∴△ABD的周长-△ADC的周长=(BA+BD +AD)-(AC+AD+CD)=BA-AC,∴BA-5=2,∴BA=7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD与△ADC的周长之差转化为边长的差.【类型二】利用中线解决三角形的面积问题如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF 和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,则S△ADF-S△BEF=________.解析:∵点D是AC的中点,∴AD=12AC.∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵EC=2BE,S△ABC =12,∴S△ABE=13S△ABC=13×12=4.∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.解析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC 的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.三、板书设计三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.11.1.3 三角形的稳定性1教学目标:1.通过观察、感悟三角形具有稳定性,四边形不具有稳定性.(重点)2.三角形的稳定性在生活、生产中的实际应用.(难点)教学过程:一、情境导入一天数学小博士听到三角形和四边形在一起争论“有稳定性好还是没有稳定性好?”先听它们是怎么说的.三角形:“具有稳定性的我最好,因为我牢固,不易变形,所以我最受欢迎,不像你四边形,你没有坚定的立场!”四边形:“灵活性强,可伸可缩,我的这些优点比起你三角形那呆板、简单、一成不变的形式不知有多优越!”三角形:“我广泛应用于人类的生产生活中,如三角尺、钢架桥、起重机、屋顶的钢架,我的用途大!”四边形:“我的用途广,像活动衣架、缩放尺、活动铁门等,人类的生活因为我而丰富多彩!”假如你是数学小博士,你会如何来调解它们的争论?二、合作探究探究点:三角形的稳定性【类型一】三角形稳定性的应用要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.【类型二】四边形的不稳定性大家经常看到有些学校、小区的大门都使用了伸缩门,它常常做成四边形的形状,你知道这是为什么吗?解析:从四边形特性的角度考虑.解:伸缩门做成四边形的形状,是利用四边形易变形这一特性.方法总结:四边形具有不稳定性,容易变形,我们生活中的很多实例都利用了这一性质,注意在日常生活中积累这方面的经验.三、板书设计三角形的稳定性1.三角形具有稳定性2.四边形没有稳定性3.三角形的稳定性的应用4.四边形的不稳定性的应用11.2.1 三角形的内角教学目标:1.理解三角形内角和定理及其证明方法.(难点)2.能用三角形的内角和定理解决一些简单问题.(重点)教学过程:一、情境导入多媒体展示:(三兄弟之争)在一个直角三角形村庄里,住着三个内角,平时它们非常团结,有一天,老三不高兴了,对老大说:“凭什么你的度数最大,我也要和你一样大!”老大说:“这是不可能的,否则我们这个家就要被拆散,围不起来了!”“为什么呢?”老二、老三纳闷起来……同学们,你们知道其中的道理吗?二、合作探究探究点一:三角形的内角和【类型一】求三角形内角的度数已知,如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,若∠A=46°,∠D=50°.求∠ACB的度数.解析:在Rt△DFB中,根据三角形内角和定理,求得∠B的度数,再在△ABC中求∠ACB 的度数即可.解:在△DFB中,∵DF⊥AB,∴∠DFB=90°.∵∠D=50°,∠DFB+∠D+∠B=180°,∴∠B=40°.在△ABC中,∵∠A=46°,∠B=40°,∴∠ACB=180°-∠A-∠B=94°.方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A.直角三角形 B.锐角三角形C.钝角三角形 D.无法判定解析:设这个三角形的三个内角的度数分别是x,2x,3x,根据三角形的内角和为180°,得x+2x+3x=180°,解得x=30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】三角形的内角与角平分线、高的综合运用在△ABC中,∠A=12∠B=13∠ACB,CD是△ABC的高,CE是∠ACB的角平分线,求∠DCE的度数.解析:根据已知条件用∠A表示出∠B和∠ACB,利用三角形的内角和求出∠A,再求出∠ACB,∠ACD,最后根据角平分线的定义求出∠ACE即可求得∠DCE的度数.解:∵∠A=12∠B=13∠ACB,设∠A=x,∴∠B=2x,∠ACB=3x.∵∠A+∠B+∠ACB=180°,∴x+2x+3x=180°,解得x=30°,∴∠A=30°,∠ACB=90°.∵CD是△ABC的高,∴∠ADC=90°,∴∠ACD=180°-90°-30°=60°.∵CE是∠ACB的角平分线,∴∠ACE=12×90°=45°,∴∠DCE=∠ACD-∠ACE=60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】直角三角形性质的运用如图,CE⊥AF,垂足为E,CE与BF相交于点D,∠F=40°,∠C=30°,求∠EDF、∠DBC的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF,再根据三角形的内角和定理求出∠C+∠DBC=∠F+∠DEF,然后求解即可.解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余三角形的外角第1课时教学目标:1.掌握三角形外角的定义和三角形内角和定理的两个推论.(重点)2.能运用三角形内角和定理的两个推论进行相关的几何计算和证明,并体会几何图形中的不等关系.(难点)教学过程一、情境导入足球比赛中的数学知识在绿茵场上,某球员在A处受到阻挡需要传球,请帮助他做出选择,应传给在B处的球员还是C处的球员,使其射门不易射偏.(不考虑其他因素)请同学们帮助他做出选择.二、合作探究探究点:三角形的外角【类型一】应用三角形的外角求角的度数如图所示,P为△ABC内一点,∠BPC=150°,∠ABP=20°,∠ACP=30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC -∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD=∠A+∠ABC=60°+50°=110°,∵BE平分∠ABC,CE平分∠ACD,∴∠1=12∠ACD=55°,∠2=12∠ABC=25°.∵∠E+∠2=∠1,∴∠E=∠1-∠2=30°;(2)猜想:∠E=12∠A;(3)∵BE、CE是两外角的平分线,∴∠2=12∠CBD,∠4=12∠BCF,而∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∴∠2=12(∠A+∠ACB),∠4=12(∠A+∠ABC).∵∠E+∠2+∠4=180°,∴∠E+12(∠A+∠ACB)+12(∠A+∠ABC)=180°,即∠E+12∠A+12(∠A+∠ACB+∠ABC)=180°.∵∠A+∠ACB+∠ABC=180°,∴∠E+12∠A=90°.方法总结:对于本题发现的结论要予以重视:图①中,∠E=12∠A;图②中,∠E=90°-12∠A.三、板书设计三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.11.3 多边形及其内角和11.3.1 多边形1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)2.正确区分凹多边形和凸多边形.(重点)3.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)一、情境导入利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).问题:请学生观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.二、合作探究探究点一:多边形的概念【类型一】多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D的图形不是凸多边形.故选D.方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( ) A.14或15或16 B.15或16C.14或16 D.15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出n(n-3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n边形的一个顶点出发有(n-3)条对角线,从而推导出n边形共有n(n-3)2条对角线.方法总结:(1)多边形有n条边,则经过多边形的一个顶点的对角线有(n-3)条;(2)多边形有n条边,对角线的条数为n(n-3)2.【类型二】根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( ) A.6 B.7C.8 D.9解析:设这个多边形是n边形.依题意,得n-3=5,解得n=8.故这个多边形的边数是8.故选C.【类型三】根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A.五边形 B.六边形C.七边形 D.八边形解析:设原多边形是n边形,则n-2=6,解得n=8.故选D.方法总结:从n边形的一个顶点出发可引出(n-3)条对角线,这(n-3)条对角线把n边形分成(n-2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A.等腰三角形B.长方形C.正方形D.五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C.方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.三、板书设计多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n边形从一个顶点出发的对角线条数为(n-3)条;n边形共有对角线n(n-3)条(n≥3).24.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.11.3.2 多边形的内角和1.理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式.(重点) 2.灵活运用多边形的内角和与外角和定理解决有关问题.(难点)一、情境导入多媒体演示:清晨,小明沿一个多边形广场周围的小路按逆时针方向跑步.提出问题:(1)小明是沿着几边形的广场在跑步?(2)你知道这个多边形的各部分的名称吗?(3)你会求这个多边形的内角和吗?导入:小明每从一条小路转到下一条小路时,身体总要转过一个角,你知道是哪些角吗?你知道它们的和吗?就让我们带着这些问题同小明一起走进今天的课堂.二、合作探究探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°.设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.方法总结:熟记多边形的内角和公式是解题的关键.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( ) A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x <180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.三、板书设计多边形的内角和与外角和1.性质:多边形的内角和等于(n-2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n边形:正n边形的内角的度数为(n-2)·180°n,外角的度数为360°n12.1 全等三角形教学目标:1.了解全等形、全等三角形的概念及全等三角形的对应元素.(重点)2.理解并掌握全等三角形的性质,能用符号正确地表示两个三角形全等.(重点)3.能熟练找出两个全等三角形的对应角和对应边.(难点)教学过程:一、情境导入在我们的周围,经常可以看到形状、大小完全相同的图形,这类图形在几何学中具有特殊的意义.观察下列图案,指出这些图案中形状与大小相同的图形.你能再举出一些例子吗?二、合作探究探究点一:全等形和全等三角形的概念及对应元素【类型一】全等形的认识2013年第十二届全运会在辽宁举行,下图中的图形是全运会的会徽,其中是全等形的是( )A.(1)(2) B.(2)(3)C.(1)(3) D.(1)(4)解析:根据能够完全重合的两个图形是全等形进行判断.由此可以判断选项D是正确的.方法总结:判断两个图形是不是全等形,可以通过平移、翻折、旋转等方法,将两个图形叠合起来观察,看其是否能完全重合,有时还可以借助网格背景来观察比较.【类型二】全等三角形的对应元素如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.解析:结合图形进行分析,分别写出对应边与对应角即可.解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.方法总结:找全等三角形的对应元素的关键是准确分析图形,另外记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.探究点二:全等三角形的性质【类型一】应用全等三角形的性质求三角形的角或边如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.解析:根据全等三角形对应边、对应角相等求∠DEF的度数和CF的长.解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC =EF=7,∴CF=BC-BF=7-4=3.方法总结:本题主要是考查运用全等三角形的性质求角的度数和线段的长,解决问题的关键是准确识别图形.【类型二】全等三角形的性质与三角形内角和的综合运用如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠ACB的度数.。

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。

那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。

八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。

已知点的坐标,能在平面直角坐标系中描出点。

3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。

八年级上册数学教案(6篇)

八年级上册数学教案(6篇)

八年级上册数学教案(6篇)八年级上册数学教案(篇1)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:想一想⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.算一算已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.剪剪拼拼把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:议一议→释一释→忆一忆→找一找议一议:已知,请问:① 可能是整数吗?② 可能是分数吗?释一释:释1.满足的为什么不是整数?释2.满足的为什么不是分数?忆一忆:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础找一找:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:画一画1→画一画2→仿一仿→赛一赛画一画1:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段画一画2:在右2的正方形网格中画出四个三角形(右1) 2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数仿一仿:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的赛一赛:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗? 3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级上册数学教案(篇2)教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入问题牵引请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2._2-4=()();3._2-2_y+y2=()2.师生共识把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究问题牵引(1)下列各式从左到右的变形是否为因式分解:①(_+1)(_-1)=_2-1;②a2-1+b2=(a+1)(a-1)+b2;③7_-7=7(_-1).(2)在下列括号里,填上适当的项,使等式成立.①9_2(______)+y2=(3_+y)(_______);②_2-4_y+(_______)=(_-_______)2.四、随堂练习,巩固深化课本练习.探研时空计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知复习交流下列从左到右的变形是否是因式分解,为什么?(1)2_2+4=2(_2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)_2+4_y-y2=_(_+4y)-y2;(4)m(_+y)=m_+my;(5)_2-2_y+y2=(_-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4_2-_和_y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4_2-_中的公因式是_,在_y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法教师提问多项式4_2-8_6,16a3b2-4a3b2-8ab4各项的公因式是什么?师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学例1把-4_2yz-12_y2z+4_yz分解因式.解:-4_2yz-12_y2z+4_yz=-(4_2yz+12_y2z-4_yz)=-4_yz(_+3y-1)例2分解因式,3a2(_-y)3-4b2(y-_)2思路点拨观察所给多项式可以找出公因式(y-_)2或(_-y)2,于是有两种变形,(_-y)3=-(y-_)3和(_-y)2=(y -_)2,从而得到下面两种分解方法.解法1:3a2(_-y)3-4b2(y-_)2=-3a2(y-_)3-4b2(y-_)2=-[(y-_)23a2(y-_)+4b2(y-_)2]=-(y-_)2 [3a2(y-_)+4b2]=-(y-_)2(3a2y-3a2_+4b2)解法2:3a2(_-y)3-4b2(y-_)2=(_-y)23a2(_-y)-4b2(_-y)2=(_-y)2 [3a2(_-y)-4b2]=(_-y)2(3a2_-3a2y-4b2)例3用简便的方法计算:0.84×12+12×0.6-0.44×12.教师活动引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.教师活动在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.探研时空利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知问题牵引请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).学生活动动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.学生活动从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学例1把下列各式分解因式:(投影显示或板书)(1)_2-9y2;(2)16_4-y4;(3)12a2_2-27b2y2;(4)(_+2y)2-(_-3y)2;(5)m2(16_-y)+n2(y-16_).思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.学生活动分四人小组,合作探究.解:(1)_2-9y2=(_+3y)(_-3y);(2)16_4-y4=(4_2+y2)(4_2-y2)=(4_2+y2)(2_+y)(2_-y);(3)12a2_2-27b2y2=3(4a2_2-9b2y2)=3(2a_+3by)(2a_-3by);(4)(_+2y)2-(_-3y)2=[(_+2y)+(_-3y)][(_+2y)-(_-3y)] =5y(2_-y);(5)m2(16_-y)+n2(y-16_)=(16_-y)(m2-n2)=(16_-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.探研时空1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3) _2-0.01y2.八年级上册数学教案(篇3)一、创设情景,明确目标多媒体展示:内角三兄弟之争在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标三角形的内角和活动一:见教材P11“探究”.展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.小组讨论:有没有不同的证明方法?反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.针对训练:见《学生用书》相应部分三角形内角和定理的应用活动二:见教材P12例1展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?小组讨论:三角形的内角和在解题时,如何灵活应用?反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.本节学习的数学知识是:三角形的内角和是180°.2.三角形内角和定理的证明思路是什么?3.数学思想是转化、数形结合.《三角形综合应用》精讲精练1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )A.5B.6C.7D.103.下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).《11.2与三角形有关的角》同步测试4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?(3)如图③,在Rt△ABC和Rt△DBE 中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?八年级上册数学教案(篇4)单元(章)主题第三章直棱柱任课教师与班级本课(节)课题3.1 认识直棱柱第 1 课时 / 共课时教学目标(含重点、难点)及设置依据教学目标1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.教学重点与难点教学重点:直棱柱的有关概念.教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型教学过程内容与环节预设、简明设计意图二度备课(即时反思与纠正)一、创设情景,引入新课师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?析:学生很容易回答出更多的答案。

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)人教版八年级数学上册教案篇一【教学目标】知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式。

【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

八年级上册数学教案(优秀5篇)

八年级上册数学教案(优秀5篇)

八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕1 一、教学目的:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的打破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的打破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中假如数据分布较为均匀时,比方教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,假设分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=0。

而用组中值51去乘以频数20恰好为1020≈0,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比拟合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

〔1〕、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

〔2〕、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比方组、组中值及频数在表中的详细意义。

2、教材P140的考虑的意图。

〔1〕、使学生通过考虑这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题〔2〕、帮助学生理解表中所表达出来的信息,培养学生分析数据的才能。

初二数学上册教案(精选5篇)

初二数学上册教案(精选5篇)

初二数学上册教案(精选5篇)八年级数学上册教案篇一为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

情境设置:汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?(2)时间t是速度v的函数吗?设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。

从而自然地引入“反比例函数”概念。

为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

一般式变形:(其中k均不为0)通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

为加深难度,我又补充了几个练习:1、为何值时,为反比例函数?2是的反比例函数,是的正比例函数,则与成什么关系?关于课堂教学:由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。

我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。

一路走来,非常轻松。

对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

经验感想:1、课前认真准备,对授课效果的影响是不容忽视的。

2、教师的精神状态直接影响学生的精神状态。

3、数学教学一定要重概念,抓本质。

2021初中数学8年级上册教案

2021初中数学8年级上册教案

2021最新初中数学8年级上册教案2021最新初中数学8年级上册教案1一.教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二.重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.3.认知难点与突破方法进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.三.例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的 .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自身说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,因此要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为 .若知道这个公式,就比较容易地用含有R1的式子表示R2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但物理的知识若不了解,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放到例8之后讲.四.课堂堂引入1.出示P18问题3.问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?五.例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:====(2)[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:=====六.随堂练习计算(1) (2)(3) (4)七.课后练习计算(1) (2)(3) (4)八.答案:四.(1) (2) (3) (4)1五.(1) (2) (3)1 (4)2021最新初中数学8年级上册教案2一.学情分析学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。

初二上册数学公开课教案

初二上册数学公开课教案

初二上册数学公开课教案一、教学目标1.知识与技能:掌握平方根的定义及性质,能够熟练计算平方根。

2.过程与方法:通过探究平方根的性质,培养学生的观察、分析和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生独立思考和合作学习的精神。

二、教学重点与难点1.教学重点:平方根的定义及性质。

2.教学难点:平方根的性质的应用。

三、教学过程1.导入新课(1)引导学生回顾小学阶段学习的平方运算,例如:2的平方是4,3的平方是9等。

(2)提出问题:平方根是什么意思?你能举例说明吗?2.探究平方根的定义(1)引导学生通过小组讨论,尝试给出平方根的定义。

3.学习平方根的性质(1)引导学生观察平方根的例子,发现平方根的性质。

4.应用平方根的性质解决问题(1)给出一些实际问题,让学生运用平方根的性质解决。

(2)学生展示解题过程,教师点评并给出正确答案。

(2)布置课后作业:探究平方根在实际生活中的应用。

四、课后作业1.请列举5个平方根的例子,并指出它们的特点。

(1)已知一个数的平方是16,求这个数。

(2)已知一个数的平方根是3,求这个数。

五、教学反思本节课通过引导学生探究平方根的定义及性质,让学生在动手实践中掌握平方根的相关知识。

在教学过程中,注意启发学生思考,培养学生的观察、分析和解决问题的能力。

同时,通过课后作业的布置,让学生进一步巩固所学知识,提高运用数学知识解决实际问题的能力。

总体来说,本节课教学效果较好,达到了预期的教学目标。

重难点补充:教学过程:1.导入新课(1)教师:同学们,还记得我们小学时学的平方吗?比如说,2乘以2等于几?学生:4!教师:很好,那如果我问你,哪个数的平方是4呢?学生:2的平方是4。

教师:对,那2就是4的平方根。

今天我们就来学习平方根的概念。

2.探究平方根的定义(1)教师:请大家分成小组,一起讨论一下,你们认为平方根是什么?学生(小组讨论后):平方根就是一个数的平方等于另一个数,这个数就是另一个数的平方根。

人教版(2021版)八年级数学上册全册教案(87页)

人教版(2021版)八年级数学上册全册教案(87页)

第十一章三角形§11.1.1三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.学生回答:a.不在一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一部分至思考,一段课文,并回答以下问题:(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做同学们在画图计算的过程中,展开议论,并指定回答以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想六、练一练分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.§11.1.2三角形的高、中线与角平分线教学目标1.经历析纸,画图等实践过程,认识三角形的高、中线与角平分线.2.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.重点、难点重点:1.了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.2.了解三角形的三条高、三条中线与三条角平分线分别交于一点.难点:1.三角形平分线与角平分线的区别,三角形的高与垂线的区别.2.钝角三角形高的画法.3.不同的三角形三条高的位置关系.教学过程一、看一看把下面图表投影出来:三角形的重要线段意义图形表示法三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段1.AD是△ABC的BC上的高线.2.AD⊥BC于D.3.∠ADB=∠ADC=90°.三角形的中线三角形中,连结一个顶点和它对边中点的线段1.AD是△ABC的BC上的中线.2.BD=DC=BC.三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段1.AD是△ABC的∠BAC的平分线.2.∠1=∠2=∠BAC.1.指导学生阅读课本P71-72的课文.2.仔细观察投影表中的内容,并回答下面问题.三角形的中线是连结一个顶点和它对边的中点的线段, 而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.三角形的角平分线是三角形的一个内角平分线与它的对边相交, 这个角顶点与交点之间的线段,而角平分线指的是一条射线.三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.二、做一做三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点.三、议一议通过以上观察和操作你发现了哪些规律,并加以总结且与同伴交流.四、练习1.课本P5,练习1.2.2.画钝角三角形的三条高.五、作业1.P8-P9 习题11.1第 3.4.8§11.1.3三角形的稳定性教学目标:通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用重点:了解三角形稳定性在生产、生活的实际应用难点:准确使用三角形稳定性于生产生活之中课前准备:小木条8个,小钉若干教学过程:一、看一看,想一想课本P6投影出来二、做一做三、议一议三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性。

八年级上册教学数学教案设计5篇

八年级上册教学数学教案设计5篇

八年级上册教学数学教案设计5篇教学目标:1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:算术平方根的概念。

教学难点:依据算术平方根的概念正确求出非负数的算术平方根。

教学过程一、情境导入请同学们观赏本节导图,并回答下列问题,学校要进行金秋美术作品竞赛,小欧很快乐,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参与竞赛,这块正方形画布的边长应取多少 ?假如这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?这就要用到平方根的概念,也就是本章的主要学习内容。

这节课我们先学习有关算术平方根的概念。

二、导入新课:1、提出问题:(书P68页的问题)你是怎样算出画框的边长等于5dm的呢?(学生思索并沟通解法)这个问题相当于在等式扩=25中求出正数x的值。

一般地,假如一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。

a的算术平方根记为,读作根号a,a叫做被开方数。

规定:0的算术平方根是0。

也就是,在等式 =a (x0)中,规定x =。

2、试一试:你能依据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.3、想一想:以下式子表示什么意思?你能求出它们的值吗?建议:求值时,要根据算术平方根的意义,写出应当满意的关系式,然后根据算术平方根的记法写出对应的值。

例如表示25的算术平方根。

4、例1 求以下各数的算术平方根:(1)100;(2)1;(3) ;(4)0.0001三、练习P69练习 1、2四、探究:(课本第69页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,略;方法2:可还有其他方法,鼓舞学生探究。

问题:这个大正方形的边长应当是多少呢?大正方形的边长是,表示2的算术平方根,它究竟是个多大的数?你能求出它的值吗?建议学生观看图形感受的大小。

初中教研数学公开课(3篇)

初中教研数学公开课(3篇)

第1篇一、课题:《一元一次方程的应用》二、教学目标:1. 知识与技能:理解一元一次方程的应用,掌握解决实际问题的方法。

2. 过程与方法:通过小组合作、探究讨论,培养学生分析问题和解决问题的能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。

三、教学重点与难点:1. 教学重点:掌握一元一次方程的应用,解决实际问题。

2. 教学难点:将实际问题转化为数学模型,建立方程。

四、教学准备:1. 教师:多媒体课件、实物教具、白板。

2. 学生:预习相关内容,准备好小组合作所需的材料。

五、教学过程:(一)导入新课1. 教师通过生活中的实例,如购物、旅行等,引导学生思考如何用数学方法解决实际问题。

2. 学生分享自己的思考,教师总结并提出本节课的学习目标。

(二)新课讲解1. 教师讲解一元一次方程的概念、性质及解法。

2. 学生通过小组合作,探究一元一次方程的应用。

3. 教师展示例题,引导学生分析问题、建立方程,并解答。

(三)课堂练习1. 学生独立完成练习题,巩固所学知识。

2. 教师巡视指导,解答学生疑问。

(四)拓展延伸1. 教师提出一个与生活实际相关的问题,让学生运用所学知识解决。

2. 学生分组讨论,提出解决方案,并进行展示。

(五)课堂小结1. 教师总结本节课所学内容,强调一元一次方程的应用。

2. 学生分享自己的学习心得,教师点评。

(六)布置作业1. 完成课后练习题,巩固所学知识。

2. 收集生活中的实际问题,尝试用一元一次方程解决。

六、教学反思:本节课通过导入、新课讲解、课堂练习、拓展延伸等环节,让学生在轻松愉快的氛围中掌握了“一元一次方程的应用”这一知识点。

在教学中,我注重以下几点:1. 注重学生的主体地位,引导学生主动参与课堂活动。

2. 通过小组合作、探究讨论,培养学生的团队协作精神。

3. 结合生活实际,激发学生的学习兴趣,提高学生解决实际问题的能力。

4. 关注学生的个体差异,因材施教,使每个学生都能在课堂上有所收获。

八年级上册数学优秀教案8篇

八年级上册数学优秀教案8篇

八年级上册数学优秀教案8篇初二数学上册教案篇一一、学生起点分析《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。

本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。

《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。

二、教学任务分析教学目标设计:知识目标:1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2、认识并能画出平面直角坐标系;3、能在给定的直角坐标系中,由点的位置写出它的坐标。

能力目标:1、通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。

情感目标:由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

教学重点:1、理解平面直角坐标系的有关知识;2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3、由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

教学难点:1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究;2、坐标轴上点的坐标有什么特点的总结。

三、教学过程设计第一环节感受生活中的情境,导入新课同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5— 6),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?第二环节分类讨论,探索新知1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。

2021年初二数学上册教案

2021年初二数学上册教案

初二数学上册教案你知道怎么写初二数学上册教案吗?把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;一起看看初二数学上册教案!欢迎查阅!初二数学上册教案1一、学习目标:1.多项式除以单项式的运算法则及其应用.2.多项式除以单项式的运算算理.二、重点难点:重点:多项式除以单项式的运算法则及其应用难点:探索多项式与单项式相除的运算法则的过程三、合作学习:(一) 回顾单项式除以单项式法则(二) 学生动手,探究新课1. 计算下列各式:(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.2. 提问:①说说你是怎样计算的②还有什么发现吗?(三) 总结法则1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______2. 本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)随堂练习:教科书练习五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.E、多项式除以单项式法则第三十四学时:14.2.1 平方差公式一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999 (2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差. 即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2初二数学上册教案2一、学习目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.二、重点难点:重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用难点:理解完全平方公式的结构特征并能灵活应用公式进行计算三、合作学习Ⅰ.提出问题,创设情境一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?Ⅱ.导入新课计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;(5)(a+b)2=________;(6)(a-b)2=________.两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2四、精讲精练例1、应用完全平方公式计算:(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2例2、用完全平方公式计算:(1)1022 (2)992初二数学上册教案3一、学习目标:1.添括号法则.2.利用添括号法则灵活应用完全平方公式二、重点难点重点:理解添括号法则,进一步熟悉乘法公式的合理利用难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.三、合作学习Ⅰ.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;如果括号前是负号,去掉括号后,括号里的各项都要变号。

2021人教版数学八年级上册教案四篇

2021人教版数学八年级上册教案四篇

2021人教版数学八年级上册教案【四篇】15.4.1因式分解 ;教学目标 ;1.知识与技能 ;了解因式分解的意义,以及它与整式乘法的关系. ;2.过程与方法 ;经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用. ;3.情感、态度与价值观 ;在探索因式分解的大型活动方法的活动中,培养学生言简意赅的思考、表达与交流的能力,培养应积极的进取意识,体会数学知识的内在含义与价值. ;重、难点与关键 ;1.重点:探知因式分解的意义,感受其作用. ;2.难点:整式乘法与因式分解之间的关系. ;3.关键:通过分解因数引入到分解吸纳因分离式,并进行类比,加深理解. ;教学方法 ;采用“激趣导学”的教学方法. ;教学过程 ;一、创设情境,激趣导入 ;【问题牵引】 ;可否同学们探究下面的2个问题: ;问题1:720能被哪些数整除?谈谈你的想法. ;问题2:当a=102,b=98时,求a2-b2的值. ;二、丰富联想,展示思维 ;探索:你会做下面的填空吗? ;1.ma+mb+mc=()(); ;2.x2-4=()(); ;3.x2-2xy+y2=()2. ;【师生共识】把一个多项式化成博尔希夫卡几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式. ;三、小组活动,共同探究 ;【问题牵引】 ;(1)下列各式从左到右的变形是否为: ;①(x+1)(x-1)=x2-1; ;②a2-1+b2=(a+1)(a-1)+b2; ;③7x-7=7(x-1). ;(2)在下列括号里,填上适当的项,使等式成立. ;①9x2(______)+y2=(3x+y)(_______); ;②x2-4xy+(_______)=(x-_______)2. ;四、随堂练习,巩固深化 ;课本练习. ;【探研时空】计算:993-99能被100整除吗? ;五、课堂总结,发展潜能 ;由学生自己或进行小结,教师提出如下纲目: ;1.什么叫因式分解? ;2.因式分解与整式加减乘除运算有何区别? ;六、布置作业,专题突破 ;选用补充作业. ;板书设计 ;15.4.2提公因式法 ;教学目标 ;1.知识与技能 ;能确定多项式各项的公因式,会用提公因式法把多项式分解因式. ;2.过程与方法 ;使学生经历探索多项式各项公因式这两项的过程,依据数学化归方法论思想方法需要进行因式分解. ;3.情感、态度与价值观 ;培养学生分析、类比以及化归的思想,增进学生的加强合作交流意识,主动积极推动地积累确定公因式的初步经验,体会其应用价值. ;重、难点与关键 ;1.重点:掌握用提公因式法把多项式分解因式. ;2.难点:正确地确定多项式的推算出公因式. ;3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项数值系数的公约数;字母施于各项相同的字母,并且各字母的指数取纳指最低次幂. ;教学方法 ;采用“启发式”教学方法. ;教学过程 ;一、回顾交流,导入新知 ;【复习交流】 ;下列从左到右的变形是否是因式分解,为什么? ;(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t); ;(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my; ;(5)x2-2xy+y2=(x-y)2. ;问题: ;1.多项式mn+mb中各项所含相同因式吗? ;2.多项式4x2-x和xy2-yz-y呢? ;请将上述多项式前述分别写成四个因式的乘积的形式,并说明理由. ;【教师归纳】我们把多项式中各项都有的公用的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y. ;概念:如果一个多项式的这两项各项含有公因式,那么就可以把这个公因式明确提出来,从而将多项式化成两个因式有理数形式,这种分解因式的方法叫做提公因式蒙第十四条. ;二、小组合作,探究方法 ;【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么? ;【师生共识】提公因式的方法是先确定各项的公因式再将算子除以这个公因式得到另一个因式,接公因式一看系数、二看字母,公因式的矛状系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数前三名取最高者次幂. ;三、范例学习,应用所学 ;【例1】把-4x2yz-12xy2z+4xyz分解因式. ;解:-4x2yz-12xy2z+4xyz ;=-(4x2yz+12xy2z-4xyz) ;=-4xyz(x+3y-1) ;【例2】分解因式,3a2(x-y)3-4b2(y-x)2 ;【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面做出两种分解方法. ;解法1:3a2(x-y)3-4b2(y-x)2 ;=-3a2(y-x)3-4b2(y-x)2 ;=-[(y-x)2•3a2(y-x)+4b2(y-x)2] ;=-(y-x)2[3a2(y-x)+4b2] ;=-(y-x)2(3a2y-3a2x+4b2) ;解法2:3a2(x-y)3-4b2(y-x)2 ;=(x-y)2•3a2(x-y)-4b2(x-y)2 ;=(x-y)2[3a2(x-y)-4b2] ;=(x-y)2(3a2x-3a2y-4b2) ;【例3】用简便的工具计算:0.84×12+12×0.6-0.44×12. ;【教师活动】引导学生观察并分析怎样计算方法更为简便. ;解:0.84×12+12×0.6-0.44×12 ;=12×(0.84+0.6-0.44) ;=12×1=12. ;【教师活动】在学生完全例3之后,指出例3算式是因式分解在计算中其的应用,提出比较例1,例2,例3的公因式有什么不同? ;四、随堂练习,巩固深化 ;课本P167练习第1、2、3题. ;【探研时空】 ;通过提公因式法计算: ;0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69 ;五、课堂总结,发展潜能 ;1.利用提公因式法加减乘除,关键是发挥优势公因式.•在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找来最低次幂. ;2.因式分解应该注意分解彻底,也就是说,分解到不能再分解为止. ;六、布置作业,专题突破 ;课本P170习题15.4第1、4(1)、6题. ;板书设计 ;15.4.3公式法(一) ;教学目标 ;1.知识与技能 ;会应用平方差公式进行因式分解,发展学生推理能力. ;2.过程与方法 ;经历恒等式探索利用平方差公式进行因式分解的过程,健康发展学生的逆向思维,感受数学知识的一致性. ;3.情感、态度与价值观 ;培养学生良好的互动交流的习惯,体会数学品牌价值在实际问题中的纳米技术价值. ;重、难点与关键 ;1.重点:利用平方差公式分解因式. ;2.难点:领会因式分解的解题步骤和分解因式的彻底性. ;3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意不等式其特征,其次要做好式的变形,把问题技术转化成能够应用公式的方面上来. ;教学方法 ;采用“问题解决”的教学方法,让学员在问题的牵引下,推进自己的思维. ;教学过程 ;一、观察探讨,体验新知 ;【问题牵引】 ;请同学们计算结果下列各式. ;(1)(a+5)(a-5);(2)(4m+3n)(4m-3n). ;【学生活动】动笔计算出上面的两道题,并踊跃上台板演. ;(1)(a+5)(a-5)=a2-52=a2-25; ;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2. ;【教师活动】引导学生完成下面一道的两道题目,并运用数学“互逆”的思想,找寻因式分解的规律. ;1.分解因式:a2-25;2.分解因式16m2-9n. ;【学生活动】从逆向思维入手,很快博得下面答案: ;(1)a2-25=a2-52=(a+5)(a-5). ;(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n). ;【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解. ;平方差公式:a2-b2=(a+b)(a-b). ;评析:阿提斯鲁夫尔谷公式中的字母a、b,教学中所还要强调一下,可以表示数、含字母的代数式(单项式、多项式). ;二、范例学习,应用所学 ;【例1】把下列各式分解因式:(投影显示或板书) ;(1)x2-9y2;(2)16x4-y4; ;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2; ;(5)m2(16x-y)+n2(y-16x). ;【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解. ;【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演. ;【学生活动】分四人小组,合作探究. ;解:(1)x2-9y2=(x+3y)(x-3y); ;(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y); ;(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by); ;(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y); ;(5)m2(16x-y)+n2(y-16x) ;=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n). ;15.4.3公式法(二) ;教学目标 ;1.知识与技能 ;领会运用完全平方公式进行因式分解的方法,发展推理能力. ;2.过程与方法 ;经历探索利用完全平方公式进行的过程,感受逆向思维的意义,掌握因式分解的基本步骤. ;3.情感、态度与价值观 ;培养良好的推理灵活性,体会“化归”与“换元”的思想方法,成形灵活的应用能力. ;重、难点与关键 ;1.重点:理解完全平方公式因式分解,并学会应用. ;2.难点:灵活地纳米技术法公式法进行因式分解. ;3.关键:应用“化归”、“换元”的思想方法,把结构性问题进行形式上的转化,•达到能应用关系式公式法分解因式的目的. ;教学方法 ;采用“自主探究”教学方法,在教师适当指导下完成本节课内容. ;教学过程 ;一、回顾交流,导入新知 ;【问题牵引】 ;1.分解因式: ;(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2; ;(3)x2-0.01y2. ;【知识迁移】 ;2.计算下列各式: ;(1)(m-4n)2;(2)(m+4n)2; ;(3)(a+b)2;(4)(a-b)2. ;【教师活动】引导学生完成下面几道题,并运用数学“互逆”的思想,寻找因式分解的规律. ;3.分解因式: ;(1)m2-8mn+16n2(2)m2+8mn+16n2; ;(3)a2+2ab+b2;(4)a2-2ab+b2. ;【学生活动】从逆向思维的层次入手,很快得到下面答案: ;解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2; ;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2. ;【归纳公式】完全平方公式a2±2ab+b2=(a±b)2. ;二、范例学习,应用所学 ;【例1】把下列各式分解因式: ;(1)-4a2b+12ab2-9b3;(2)8a-4a2-4; ;(3)(x+y)2-14(x+y)+49;(4)+n4. ;【例2】如果x2+axy+16y2是完全平方,求a的值. ;【思路点拨】根据完全平方式的定义,解此题时应分六种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3. ;三、随堂练习,巩固深化 ;课本P170练习第1、2题. ;【探研时空】 ;1.已知x+y=7,xy=10,求下列各式的值. ;(1)x2+y2;(2)(x-y)2 ;2.已知x+=-3,求x4+的值. ;四、课堂总结,发展潜能 ;a2-b2=(a+b)(a-b); ;a2±ab+b2=(a±b)2. ;在运用公式因式分解时候,要注意: ;(1)每个公式的形式与特点,通过对素数的项数、•次数等的总体分析来确定,为何可以用公式分解以及用哪个公式分解分解,通常是,当多项式是二项式前会,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式换句话说分解;(2)•在有些情况下,微分不一定随意能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式氧化. ;五、布置作业,专题突破 ;。

2021人教版八年级上册数学教案

2021人教版八年级上册数学教案

2021人教版最新八年级上册数学教案2021人教版最新八年级上册数学教案1一,说教材(教材分析)《正方形》这节课是九年义务教育人教版数学教材初二年级下册第十九章章第二节的内容.纵观整个初中平面几何教材,《正方形》是在学生掌握了平行线,三角形,平行四边形,矩形,菱形等关于知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察,操作等活动经验的基础上出现的.目的在于让学生通过探索正方形的性质,进一步学习,掌握说理和进行简单推理的数学方法.这一节课既是前面所学知识的延续,又是对平行四边形,菱形,矩形进行综合的不可缺少的重要环节.教材从学生年龄特征,文化知识实际水平出发,先让学生动手做,动脑思考,然后与同伴交流,探索,总结归纳,升华得出正方形的概念,再由概念去探索正方形的性质.这样的安排使学生在整个学习过程中真正享受到探索的乐趣.本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形,矩形,菱形之间的内在联系.根据大纲要求及本班学生的实际情况,本节课制定了知识,能力,情感三方面的目标.(一)知识目标:1,要求学生掌握正方形的概念及性质;2,能正确利用正方形的性质进行简单的计算,推理,论证;(二)能力目标:1,通过本节课培养学生观察,动手,探究,分析,归纳,总结等能力;2,发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;(三)情感目标:1,让学生树立科学,严谨,理论联系实际的不错学风;2,培养学生互相帮助,团结协作,相互讨论的团队精神;3,通过正方形图形的完美性,培养学生品格的完美性.二,说学生:(学生分析)这节几何课是在初二年级三班上的一节课.该班学生基础一般,但上课很积极,有很强的表现欲,通过前一学期的培养,有一定的独立思考和探究的能力.但该班学生的口头语言表达能力方面稍有欠缺,因此在本节课的教学过程中,设计了让学生自身组织语言培养说理能力,让学生们能逐步提升.三,说教法(教法分析)针对本节课的特点,采用"实践--观察--总结归纳--利用"为主线的教学方法.通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念.通过观察,讨论,归纳,总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义,性质理解,巩固加以升华.整个教学过程中教师通过提问,观察,思考,讨论,充分调动学生非智力因素,让学生在老师的引导下自始至终处于一种积极思维,主动学习的学习状态.而教师在其中当好课堂教学的组织者.四,说学法:(学法分析)本节课重点以培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手,观察,思考,分析,总结得出结论.在小组讨论中通过互相学习,让学生体验合作学习的乐趣.五,说教学程序:(一)(第一环节)相关知识回顾以提问的形式复习平行四边形,矩形,菱形的定义及性质之后,引导学生发现矩形,菱形的实质是由平行四边形角度,边长的转变得到的.(由课件演示以上两种变化)并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形让学生们通过手上的学具演示以上两种变化,从而得出结论.(二)(第二环节)新课讲解通过学生们的发现引出课题"正方形"1,(第一个知识点)正方形的定义引导学生说出自身变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边,角的转变演变出正方形的过程.请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形.(投影仪显示)再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另一个定义:一个角是直角的菱形是正方形.或者把一个角是直角与平行四边形组合成矩形,再加上一组邻边相等这个条件,可得正方形的第三个定义:一组邻边相等的矩形是正方形;此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质.{2,正方形的性质(由课件演示)定理1:正方形的四个角都是直角,四条边都相等;定理 2:正方形的两条对角线相等,并且互相垂直,平分,每条对角线平分一组对角.}(不念)以上是对正方形定义和性质的学习,之后进行例题讲解.{ 3,例题讲解(由课件显示)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.}(不念)此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知,求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学明确提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写.从而培养他们语言表达能力,让学生的个性得到充分的展示4,课堂练习(然后我又设计了两种不同类型的练习题第一部分设计了三道关于正方形的周长,面积,对角线,边长计算的填空,目的是对正方形性质的进一步理解,并考察学生掌握的情况.第二部分是选优题,通过这道生活中实际问题,来提升学生所学的知识,并加以综合练习,提升他们的综合素质,使他们深刻认识到数学实质是来源于生活并要服务于生活.5课堂小结(由课件演示)此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样完美的品质,从而要努力学习以丰富的知识充实自身,达到理想中的完美.6,欣赏实际生活中正方形的应用(课件显示)第6个环节是我设计了一些正方形在实际生活中应用的图片,在优美的音乐中欣赏实际生活中正方形的应用,再一次让学生们感受正方形的美 .7,作业设计(我设计的是教材159页,第12,14两小道证明题,通过此作业让同学们进一步巩固关于正方形的知识.六,说教学评价:本课的教学注意挖掘教材中培养创新意识的素材,利用计算机辅助教学,为学生营造一种创新的学习氛围.把学生引上探索问题之路,为学生构造一道亮丽的思维风景线,必将调动学生学习的主动性,积极性,体现学生的主体地位.同时,本课以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学力水平,使传授知识与培养能力融为一体,体现素质教育的精神.七,教学反思一,本节课通过课件播放平行四边形一个角的转变和一组对边的转变得到正方形,成功的达到了学生对正方形直观认识,并轻松地总结出正方形的性质.二,本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生语言描述,然后进行引导交流形成规范语言.三,通过一道拓展延伸练习题,鼓励学生大胆尝试,同时鼓励其他同学进行互帮互助,交流自身解决问题的过程及成功的体验,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作,合作交流和逻辑推理能力,提升学生分析和解决问题的能力,使学生有成功体验.2021人教版最新八年级上册数学教案2一. 说教材1. 教材的地位和作用《中位数与众数》是北师大版《数学》八年级上册第8章第2节内容。

2021初二数学公开课教案范文

2021初二数学公开课教案范文

2021初二数学公开课教案范文教学督导对教学质量监控可发挥积极作用,它具有监督检查、沟通协调、分析评价、指导激励、信息反馈、参谋咨询等功能,以督教、督学、督管为主,对学校的专业、课程、教材的建设方案和实施情况进行检查、评议,并提出合理化建议。

今天小编在这里给大家分享一些有关于____初二数学公开课教案范文,希望可以帮助到大家。

____初二数学公开课教案范文1教学目标1.掌握等边三角形的性质和判定方法.2.培养分析问题、解决问题的能力.教学重点:等边三角形的性质和判定方法.教学难点:等边三角形性质的应用教学过程I创设情境,提出问题回顾上节课讲过的等边三角形的有关知识1.等边三角形是轴对称图形,它有三条对称轴.2.等边三角形每一个角相等,都等于60°3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.II例题与练习1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?①在边AB、AC上分别截取AD=AE.②作∠ADE=60°,D、E分别在边AB、AC上.③过边AB上D点作DE∥BC,交边AC于E点.2. 已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB 与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.3. P56页练习1、2III课堂小结:1.等腰三角形和性质;等腰三角形的条件V布置作业: 1.P58页习题12.3第ll题.2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?____初二数学公开课教案范文2教学目的1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

2021年初二上册数学公开课教案

2021年初二上册数学公开课教案

2021年初二上册数学公开课教案数学家也研究纯数学,就是数学本身的实质性内容,而不以任何实际应用为目标。

你知道八年级的数学教案应该怎么写吗?这次小编给大家整理了2021年初二上册数学公开课教案,供大家阅读参考,希望大家喜欢。

2021年初二上册数学公开课教案1教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用;2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知△ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗?提出课题:能得到直角三角形吗讲授新课:⒈如何来判断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:5,12,13;6,8,10;8,15,17.(1)这三组数都满足a2+b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?随堂练习:⒈下列几组数能否作为直角三角形的三边长?说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉已知∆ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋习题1.3课堂小结:⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.§1.3.勾股定理的应用教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①、蚂蚁怎么走最近出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A→A′→B;(2)A→B′→B;(3)A→D→B;(4)A—→B.哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.②、做一做:教材14页。

初二数学上册教案2021 [人教版八年级上册数学教案]

初二数学上册教案2021 [人教版八年级上册数学教案]

初二数学上册教案2021 [人教版八年级上册数学教案]数学教案设计的好坏是决定数学教师课堂教学效果的重要因素之一。

为大家整理了人教版八年级上册数学教案,欢迎大家阅读!第四课时三角形的高、中线与角平分线(3)一、新课导入请画出∠AOB的角平分线。

二、学习目标3 AB1、了解三角形的角平分线的概念;2、会用工具准确画出三角形的角平分线。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

(1)定义:三角形一个内角的与它的相交,这个角与之间的线段,叫做三角形的角平分线。

(2)几何语言(右图):AD是△ABC的角平分线 = 1 2 逆向:C D AD是△ABC的角平分线图3(3)画出下列三角形的角平分线思考:(三)在研读的过程中,你认为有哪些不懂的问题?(2) (1)四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?(3)第五课时三角形的稳定性(角)一、新课导入盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条(如右图),为什么这样做呢?二、学习目标1、了解三角形的稳定性,四边形没有稳定性,2、理解稳定性与没有稳定性在生产、生活中广泛应用。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

活动1、自主探究1、如图(1),用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、如图(2),用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、如图(3),在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?活动2、议一议从上面实验过程你能得出什么结论?与同伴交流。

三角形木架形状改变,四边形木架形状改变,这就是说,三角形具有性,四边形不具有性。

斜钉一根木条的四边形木架的形状改变,原因是四边形变成了两个三角形,这样就利用了三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年初二上册数学公开课教案数学家也研究纯数学,就是数学本身的实质性内容,而不以任何实际应用为目标。

你知道八年级的数学教案应该怎么写吗?这次小编给大家整理了2021年初二上册数学公开课教案,供大家阅读参考,希望大家喜欢。

2021年初二上册数学公开课教案1教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用;2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知△ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗?提出课题:能得到直角三角形吗讲授新课:⒈如何来判断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:5,12,13;6,8,10;8,15,17.(1)这三组数都满足a2+b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?随堂练习:⒈下列几组数能否作为直角三角形的三边长?说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉已知∆ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋习题1.3课堂小结:⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.§1.3.勾股定理的应用教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①、蚂蚁怎么走最近出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A→A′→B;(2)A→B′→B;(3)A→D→B;(4)A—→B.哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.②、做一做:教材14页。

李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测∠DAB=90°,∠CBA=90°.连结BD 或AC,也就是要检测△DAB和△CBA是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题.③、随堂练习出示投影片1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).3.试一试(课本P15)在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?我们可以将这个实际问题转化成数学模型.解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得(x+1)2=x2+52,x2+2x+1=x2+25解得x=12则水池的深度为12尺,芦苇长13尺.④、课时小结这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.⑤、课后作业课本P25、习题1.522021年初二上册数学公开课教案2教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是[]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P53练习1、2、3。

IV课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?V布置作业:P56页习题12.3第5、6题2021年初二上册数学公开课教案3《因式分解》教学目标:1、理解运用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的综合运用。

3、进一步培养学生综合、分析数学问题的能力。

教学重点:运用平方差公式分解因式。

教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。

相关文档
最新文档