旋转图案设计练习题
小学数学西师大版五年级上册图形的平移、旋转与对称-设计图案(五年级)同步测试.doc
小学数学西师大版五年级上册图形的平移、旋转与对称-设计图案(五年级)同步测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】用平移的方法设计一条花边。
【答案】【解析】根据平移变换的性质,利用网格与已知图形设计即可。
【题文】用和设计花纹。
【答案】评卷人得分【解析】图形的平移只改变图形的位置,而不改变图形的形状和大小.据此即可找出能平移到的位置,涂色即可。
【题文】利用旋转画一朵小花。
【答案】【解析】根据旋转图形的特征,把这个图形绕O点顺时针旋转90°,再旋转90°,再旋转90°就可能得到一朵小花。
【题文】利用旋转画一朵小花。
【答案】【解析】把原图绕点O顺时针(或逆时针)旋转90°、180°、270°即可成为一朵小花。
【题文】利用旋转变换设计美丽的图案。
【答案】【解析】根据旋转变换图形的性质,在旋转变换图形中,对应点旋转的角度相等,由此把这个菱形连续顺时针旋转120°,使它成为一个美丽的图案--三个花瓣。
【题文】利用旋转,设计自己喜欢的图案。
【答案】【解析】把三角形绕着顶点为旋转中心,以旋转角为90°顺时针连续旋转4次,得到一个图形;把正方形分别以四个顶点为旋转中心旋转180°得出一个图形。
【题文】绕A点旋转设计图案。
【答案】如图,BC绕A点旋转90°、180°、270°得到的花朵图形.【解析】找到两个关键点B、C,使这两个点绕点A,旋转90度角到达B’C’,连接B’C’A;两个关键点B、C,使这两个点绕点A,旋转180度角到达B“C“,连接B“C“A,使这两个点绕点A,旋转270度角到达B’“C“‘,连接B’“C“‘A,得到一个优美的四瓣型花朵。
简单的旋转作图
60° 正六边形至少旋转_____能够与自身重合。
正六边形可以被经过中心的射线平分成6个全等的部分,则旋转至少 360÷6=60度,能够与本身重合. 正六边形是旋转对称图形 72°
正五边形至少旋转_____能够与自身重合。
正八边形至少旋转_____能够与4自5°身重合。
A D
E
B
C
例1 将A点绕O点沿顺时针方向旋转60˚.
A
B
思考题7.
如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合。如果AP=3,求 PP′的长。
解:∵ △ABP绕点A逆时针旋转后, 能与△ACP′重合,
A P′
∴AP′=AP=3, ∠PAP′=∠BAC=900
P
B
C
∴ PP′2=AP2+AP′2=32+32=18
说一说 乙
B 乙
B
怎样将甲图案变成乙图案? 甲
可以先将甲还图可案以绕用图什上么的方A法点把旋甲转,使 得图案被“扶图直案”变,成然乙后图,案再?沿AB方向 将所得图案平移到B点位置,即可得到
乙图案 A
甲
A
课堂小结
1、“旋转对应点”的作法 : (1) 将关键点A与旋转中心O连接; (2) 以OA为始边在旋转方向作一个角等于旋转角; (3) 在角的终边上截取点A`,使OA`=OA; (4) 点A`就是点A的旋转对应点。
点的旋转作法
分析:
原图形是什么? 旋转中心是什么?
点A 点O
旋转方向是什么? 旋转角是多少?
顺 时 针 60°
B
作法:
1.连接OA.
2.以点O为顶点,OA为一边,用量角器或三角板(限特殊角)顺时针方 向作∠AOB=60°.
冀教版八年级上16.5 利用图形的平移、旋转和轴对称设计图案 能力培优训练(含答案)
16.5 利用图形的平移、旋转和轴对称设计图案
专题利用图形变换设计图案
1.如图所示,学校有一块正方形空地,要在上面修建一个花园,校方现征集花园设计方案,其要求
是:整个图形可以看做由一个基本图案经过轴对称、平移、旋转得到的,而且是对称图形,既美观,又简练大方.
2.元旦前,市园林部门准备在文化广场摆设直径均为4米的八个圆形花坛,在坛内放置面积相同的
两种颜色的盆栽花草,要求各个花坛内两种花草的摆设不能相同,如图所示的(1)(2),请你再设计出至少四种方案.
状元笔记
【知识要点】
1.设计图案所能应用的变换类型有
平移变换、旋转变换、轴对称变换以及它们的组合.
2.图案设计的过程
(1)首先确定图案要表达的意图;(2)分析进行图案设计的基本图形;(3)对基本图形综合运用平移、旋转和轴对称变换;(4)对图案进行适当修饰.
【温馨提示】
分析图案形成的过程要找准“基本图案”,用平移或旋转或轴对称,叙述要准确,不能遗漏基本要素.
参考答案
1.解:如图所示:(答案不唯一)
2.解:如图所示:(答案不唯一)。
初中数学人教版九年级上册第二十三章 旋转23.3 课题学习 图案设计-章节测试习题(2)
章节测试题1.【题文】如图所示,△ABC外侧有正方形ABDE与正方形ACFG,请你设计一个方案,将△ABC旋转一个角度,使得△AEG与由△ABC旋转得到的三角形的一边重合,另一边在同一条直线上.【答案】见解答【分析】根据正方形的性质,得出数量关系,再根据旋转的性质设计方案.【解答】由正方形的性质可得:AB=AE,AC=AG,∠BAC=∠BAE=∠EAG=∠GAC,可设计方案为:(1)将△ABC绕点A逆时针方向旋转90°,这时AC与AG重合,AB旋转到AC的原位,与AE在同一直线上;(2)将△ABC绕点A顺时针方向旋转90°,这时AB与AE重合,AC旋转到AB的原位,与AG在同一直线上.2.【答题】如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O经过4次旋转而得到,则每一次旋转的角度大小为______.【答案】72°【分析】本题考查了利用旋转设计图案.【解答】3.【答题】彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是().A. B.C. D.【答案】B【分析】本题考查了旋转的概念.【解答】是轴对称图案,故不符合题意;是旋转图案,符合题意;是其它几何构架图案,故不符合题意;是平移图案,故不符合题意;选B.4.【答题】如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A. 45°,90°B. 90°,45°C. 60°,30°D. 30°,60°【答案】A【分析】本题考查了旋转的性质.【解答】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.选A.5.【答题】风力发电机可以在风力作用下发电.如图的转子叶片图案绕图案中心旋转°后能与原来的图案重合,那么的值可能是()A. 45B. 60C. 90D. 120【答案】D【分析】本题考查了旋转的概念.【解答】该图形被平分成三部分,旋转120°的整数倍,就可以与自身重合,故n 的最小值为120.选D.6.【答题】在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()A. AB. BC. CD. D【答案】B【分析】本题考查了旋转的性质.【解答】A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.选B.7.【答题】下列各图中,图形甲变成图形乙,既能用平移,又能用旋转的是()A. AB. BC. CD. D【答案】C【分析】本题考查了旋转的概念.【解答】A只能通过旋转180°得到;B只能通过平移得到;D只能通过旋转得到;C能用平移,又能用旋转得到,选C.8.【答题】如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A. AB. BC. CD. D【答案】B【分析】本题考查了图形的旋转变化,认真观察旋转得到的图案,找到旋转中心,即可判断.【解答】A、顺时针,连续旋转60度,三次即可得到.B、不能作为“基本图案”.C、旋转180度,即可得到.D、旋转60度即可.选B.9.【答题】如下四个图案,它们绕中心旋转一定的度数后都能和原来的图形相互重合,其中有一个图案与其余图案旋转的度数不同的是()A. B. C. D.【答案】B【分析】本题考查了旋转角,解题的关键是根据图形特点,正确计算出各个图形的最小旋转度数.【解答】A、360÷6=60°;B、360°÷3=120°;C、360°÷6=60°;D、360°÷6=60°.B的旋转角度与其它三个不同,选B.10.【答题】下列图形均可由“基本图案”通过变换得到:(只填序号)(1)可以平移但不能旋转的是______;(2)可以旋转但不能平移的是______;(3)既可以平移,也可以旋转的是______.【答案】①④②⑤③【分析】本题考查了利用移、旋转、轴对称变换设计图案.【解答】①可以看作由左边图案向右平移得到的;②可以看作一个菱形绕一个顶点旋转得到的;③既可以看作一个圆向右平移得到的,也可以看作两个圆组成的图案旋转得到的;④可以看作上面基本图案向下平移得到的;⑤可以看作上面图案绕中心旋转得到的.故可以平移但不能旋转的是①④;可以旋转但不能平移的是②⑤;既可以平移,也可以旋转的是③.故答案为(1)①④,(2)②⑤,(3)③11.【答题】如图,正方形ABCD可以看作由什么“基本图形”经过怎样的变化形成的?______.【答案】把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD【分析】本题考查了利用旋转设计图案.【解答】观察图形可知把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD.故答案为:把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD.12.【答题】正六边形可以看成由基本图形______经过______次旋转而成.【答案】正三角形 5【分析】本题考查了旋转的性质.【解答】根据图形可得:正六边形可以看成由基本图形正三角形经过5次旋转而成.13.【答题】如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转______次,每次旋转______度形成的.【答案】7 45【分析】本题考查了利用旋转设计图案.【解答】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.故如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.14.【答题】如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是______.【答案】45°【分析】本题考查了旋转的性质.【解答】∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°,故答案为:45°.15.【题文】如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?【答案】见解答【分析】可选择不同的基本图形,一般选择基本图形是能使图形的形成过程好说明为原则.【解答】此图形可看作基本图形经过轴对称形成的.16.【题文】如图,网格中每个小正方形的边长为1,点C(0,1),点B(-1,3).(1)利用网格画出直角坐标系(要求标出x轴,y轴和原点),则点A的坐标为______;(2)以△ABC为基本图形,利用旋转设计一个图案,说明你的创意为______.【答案】A(-4,3)见解答.【分析】(1)根据点C的坐标确定原点,则可以画出直角坐标系,把点B向左平移3个单位长度得到点A;(2)把△ABC绕点C顺时针旋转3次,即可得到一个风车的图案.【解答】(1)直角坐标系如图所示,则A的坐标为(-4,3);(2)如图,把△ABC绕点C顺时针旋转3次90°,180°,270°,即可得到一个风车的图案.17.【题文】如图,在网格中有一个四边形图案.(1)请你画出此图案绕点O按顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.【答案】(1)画图见解答;(2)34;(3)AB2+BC2=AC2【分析】(1)将此图案的各顶点绕点O顺时针方向旋转90°,180°,270°后找到它们的对应点,顺次连接得到的图案,就是所要求画的图案.(2)观察画出的图形,可发现S四边形AA1A2A3=S四边形AB1B2B3-4S△BAA3依次代入求值.(3)这个图案就是我们几何中的著名的勾股定理.【解答】(1)如图.(2)-4=(3+5)2-4××3×5=34,故四边形AA1A2A3的面积是34.(3)由图可知:(a+c)2=4×ac+b2,整理得:c2+a2=b2,即:AB2+BC2=AC2.这就是著名的勾股定理.18.【题文】如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)【答案】作图见解答.【分析】如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D 点下面两格的小正方形放在右面,就组成了矩形.【解答】如图:19.【题文】如图,从正三角形出发,利用旋转,作一个飞鸟图.请你也利用正三角形用旋转设计一个图案.【答案】图案见解答.【分析】先以等边三角形的一边为基础画一个基本图形,再绕等边三角形的两个顶点分别旋转60°后删除原等边三角形即可.【解答】如图所示:20.【题文】某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图1所示的等腰直角三角形,王聪同学设计了如图2所示的四种图案.(1)你喜欢哪种图案?并简述该图案的形成过程.(2)请你利用所学过的知识再设计一幅与上述不同的图案.【答案】(1)见解答(2)见解答【分析】(1)答案不唯一,如:我喜欢图案(4).图案形成的过程也不唯一,如:图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)答案不唯一,利用旋转或对称的相关知识完成即可.图形见解答.【解答】(1)答案不唯一,如:我喜欢图案(4).图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)如图所示.。
【小学】人教版五年级数学下册《 图形的运动三 5.3 运用平移、对称和旋转设计图案》同步测试题含解析
人教版五年级数学下册《第5章图形的运动(三)运用平移、对称和旋转设计图案》同步测试题一.选择题(共6小题)1.下列图案每一幅都是由一个基本图形变化得到的.其中没有运用旋转规律得到的图案是()A.B.C.2.小玲应用图形的运动设计了一副漂亮的图案(图案的变换过程如下图所示).上面图案经历的变换过程是()A.轴对称→旋转→放大B.旋转→放大→旋转C.旋转→放大→放大D.平移→旋转→放大3.把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是()A.A B.B C.C D.D4.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转5.如图的图案是运用()的变化形式设计出来的.A.平移B.旋转C.轴对称6.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠二.填空题(共6小题)7.图形的变换方式有平移、、.8.本学期我们学习了利用、和可以设计美丽的图案,像打开的电风扇属于现象.9.如图用了原理。
10.旋转左边的图可以得到,平移左边的图可以得到.(填序号)11.钟面上指针从“12”开始,顺时针旋转90°到“”;指针从“12”开始,顺时针旋转到“5”.12.如图中图形2先绕点O按方向旋转°,再向平移格,得到图形1.三.判断题(共3小题)13.如图的花边是用平移对称的方法设计的.(判断对错)14.要设计一个美丽的图案,可以用平移、旋转和作轴对称图形.(判断对错)15.图中是由经过旋转得到的..(判断对错)四.操作题(共1小题)16.请你在下面的方格图中设计一个具有对称美的图形.五.解答题(共7小题)17.利用旋转的知识,争当小小设计师.18.利用旋转画一朵小花.19.2021图的七巧板,通过平移,旋转或轴对称的方法设计你喜欢的图形.21.下面右边哪个图形能由左边图形平移和旋转得到?在序号上“√”.22.试一试.利用旋转画一朵小花.23.你能用这个图形,通过对称、平移或旋转设计出美丽的图案吗?请把你设计的美丽图案画出来.参考答案与试题解析一.选择题(共6小题)1.【分析】寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断.【解答】解:图形1可由一个基本“花瓣”绕其中心经过4次旋转,每次旋转90°得到;图形2可由一个基本“不规则5边形”绕其中心经过4次旋转,每次旋转90°得到;图形3可由一个基本图形三角形经过平移得到;其中没有运用旋转规律得到的图案是C;故选:C.【点评】本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.2.【分析】根据旋转的特征,图形1正方形绕两对角线的交点顺时针或逆时针方向旋转90°即可得到图形2;再用一边长等于图形1对角线长的两正方形,用同样的旋转方法得到一幅图,与图2叠放即可得到图形3;再用边长等于图3中最大正方形的对角线长的正方形,用同样的旋转方法得到一幅图,与图3叠放即可得到图形4.上述整个经过的过程实际上就是旋转、放大、再放大.【解答】解:如图,小玲应用图形的运动设计了一副漂亮的图案,这个图案经历的变换过程是简单地概括为:旋转→放大→放大.故选:C.【点评】此题主要是考查了旋转的特征.经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等.)3.【分析】观察图形,图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,据此即可选择.【解答】解:图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,故选:C。
中考数学专题 旋转练习题(8套)含答案
旋转基础练习一一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6个B.7个C.8个D.9个2.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70°B.80°C.60°D.50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形.三、解答题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF=21AB . (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 移到△ADF 的位置?(2)指出如图7所示中的线段BE 与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B 点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转 旋转中心 旋转角 2.A 45° 3.点A 60° 等边 三、1.(1)通过旋转,即以点A 为旋转中心,将△ABE 逆时针旋转90°.(2)BE=DF ,BE ⊥DF2.翻滚一次滚120° 翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.旋转基础练习二一、选择题1.△ABC 绕着A 点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于( ) A .50° B .210° C .50°或210° D .130° 2.在图形旋转中,下列说法错误的是( )A .在图形上的每一点到旋转中心的距离相等B .图形上每一点转动的角度相同C .图形上可能存在不动的点D .图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD CE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A3.D二、1.相等2.△ACE 图形全等= 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=21. 3.重合:证明:∵EG ⊥AF ∴∠2+∠3=90° ∵∠3+∠1+90°=180° ∵∠1+∠3=90° ∴∠1=∠2同理∠E=∠F ,∵四边形ABCD 是正方形,∴AB=BC ∴△ABF ≌△BCE ,∴BF=CE ,∴OE=OF ,∵OA=OB ∴△OBE 绕O 点旋转90°便可和△OAF 重合.旋转基础练习三一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( ) A .左上角的梅花只需沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°C .右下角的梅花需先沿对角线平移后,再顺时针旋转180D .左下角的梅花需先沿对角线平移后,再顺时针旋转90° 2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围 成的,如图是看到的万花筒的一个图案,图中所有三角形均 是等边三角形,其中的菱形AEFG 可以看成把菱形ABCD 以 A 为中心( )A .顺时针旋转60°得到的B .顺时针旋转120°得到的C .逆时针旋转60°得到的D .逆时针旋转120°得到的3.下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是 ( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、解答题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△AC P′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72°2.旋转3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个B.2个C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.A2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.答案:一、1.B 2.D 3.D二、1.这一点(对称中心)2.中心对称3.(1)(4)(5)三、1.略2.作法:(1)延长CB且BC′=BC;(2)延长DB且BD′=DB,延长AB且使BA′=BA;(3)连结A′D′、D′C′、C′B则四边形A′BC′D′即为所求作的中心对称图形,如图所示.3.略.旋转基础练习五一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角B.等边三角形C.直角梯形D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,它的对称中心是__________.三、解答题1.分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:21085(1)以顶点A 为对称中心,(2)以BC 边的中点K 为对称中心.2.如图,已知一个圆和点O ,画一个圆,使它与已知圆关于点O 成中心对称.3.如图,A 、B 、C 是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M ,现计划修建居民小区D ,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D 的位置.答案:一、1.D 2.C 3.A二、1.对称中心 平分 2.全等 3.线段中垂线,线段中点.三、1.略 2.作出已知圆圆心关于O 点的对称点O′,以O′为圆心,已知圆的半径为半径作圆.3.连结AB 、AC ,分别作AB 、AC 的中垂线PQ 、GH 相交于M ,学校M 所在位置,就是△ABC 外接圆的圆心,小区D 是在劣弧BC 的中点即满足题意.旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .等腰梯形 C .平行四边形 D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .正方形B .矩形C .菱形D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是( )A .21085B .28015C .58012D .51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________. 三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”) ①等腰梯形是旋转对称图形,它有一个旋转角为180°;( ) ②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.FG DECA B1A 1B 1C 1D3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形 2.答案不唯一 3.答案不唯一三、1.(1)①假 ②真 (2)①③(3)①例如正五边形 正十五边形 •②例如正十边 正二十边形2.(1)证明:∵A 1D 1∥B 1C 1,∴∠A 1BD=∠C 1FB 又∵四边形ABEF 是由四边形A 1B 1EF 翻折的,∴∠B 1FE=∠EFB ,同理可得:∠FBG=∠D 1BG , ∴∠EFB=90°-21∠C 1FB ,∠FBG=90°-21∠A 1BD , ∴∠EFB=∠FBG∴EF ∥BG ,∵EB ∥FG ∴四边形BEFG 是平行四边形. (2)直角三角形,理由:连结BB ,∵BD 1∥FC 1,∴∠BGF=∠D 1BG ,∴∠FGB=∠FBG 同理可得:∠B 1BF=∠FB 1B . ∴∠B 1BG=90°,∴△B 1BG 是直角三角形 3.解:(1)如右图所示(2)由题意知A 、A 1、B 1三点的坐标分别是(-1,0),(0,1),(2,0)∴⎩=++⎪⎨=⎪⎧=-+a b cc a b c 04210 解这个方程组得⎩⎪⎪=⎪⎨=⎪⎪⎪=-⎧c b a 12121∴所求五数解析式为y=-21x 2+21x+1.旋转基础练习七一、选择题1.下列函数中,图象一定关于原点对称的图象是( ) A .y=x1B .y=2x+1C .y=-2x+1D .以上三种都不可能2.如图,已知矩形ABCD 周长为56cm ,O 是对称线交点,点O 到矩形两条邻边的距离之差等于8cm ,则矩形边长中较长的一边等于( )A .8cmB .22cmC .24cmD .11cm 二、填空题1.如果点P (-3,1),那么点P (-3,1)关于原点的对称点P′的坐标是P′_______. 2.写出函数y=-x 3与y=x3具有的一个共同性质________(用对称的观点写). DCAB O三、解答题1.如图,在平面直角坐标系中,A (-3,1),B (-2,3),C (0,2),画出△ABC 关于x 轴对称的△A′B′C′,再画出△A′B′C′关于y 轴对称的△A″B″C″,那么△A″B″C″与△ABC 有什么关系,请说明理由.2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A (0,3),B (3,0),现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1. (1)在图中画出直线A 1B 1;(2)求出过线段A 1B 1中点的反比例函数解析式; (3)是否存在另一条与直线A 1B 1平行的直线y=kx+b (我们发现互相平行的两条直线斜率k 相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.答案:一、1.A 2.B 二、1.(3,-1) 2.答案不唯一 参考答案:关于原点的中心对称图形. 三、1.画图略,△A″B″C″与△ABC 的关系是关于原点对称. 2.(1)如右图所示,连结A 1B 1; (2)A 1B 1中点P (1.5,-1.5),设反比例函数解析式为y=x k ,则y=-x2.25.(3)A 1B 1:设y=k 1x+b 1 ⎩=-⎨⎧=-k b 033311⎩=-⎨⎧=b k 3111∴y=x+3∵与A 1B 1直线平行且与y=x2.25相切的直线是A 1B 1•旋转而得到的. ∴所求的直线是y=x+3, 下面证明y=x+3与y=-x2.25相切, ⎩⎪=-⎨⎪⎧=+x y y x 2.253 ⇒x 2+3x+2.25=0,b 2-4ac=9-4×1×2.25=0,∴y=x+3与y=-x2.25相切.旋转基础练习八一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( )2.将三角形绕直线L 旋转一周,可以得到如图所示的立体图形的是( )二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、解答题 1.(1)图案设计人员在进行图设计时,常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,并说明你所表达的意义.2.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?答案:一、1.D 2.B二、1.形状大小2.旋转三、1.(1)用同一块模块设计出的两个图案之间可能是由平移、旋转、•轴对称变化得到的,或者是由这三种变化的组合而成的;(2)略2.略。
专题20图形的旋转(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题20图形的旋转(共38题)一.选择题(共21小题)1.(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为()A.﹣3B.﹣1C.1D.32.(2022•内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2022•哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2022•临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(2022•长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是()A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)6.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3B.2C.3D.27.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣128.(2022•永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有()A.①②③B.①②④C.①③④D.②③④9.(2022•宜昌)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.10.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC11.(2022•常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是()A.BE=BC B.BF∥DE,BF=DEC.∠DFC=90°D.DG=3GF12.(2022•内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位13.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是()A.M1B.M2C.M3D.M414.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°15.(2022•绥化)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为()A.(﹣5,2)B.(5,2)C.(2,﹣5)D.(5,﹣2)16.(2022•黑龙江)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.17.(2022•大庆)观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.18.(2022•齐齐哈尔)下面四个交通标志中,是中心对称图形的是()A.B.C.D.19.(2022•桂林)下列图形中,是中心对称图形的是()A.等边三角形B.圆C.正五边形D.扇形20.(2022•遂宁)下面图形中既是轴对称图形又是中心对称图形的是()A.科克曲线B.笛卡尔心形线C.阿基米德螺旋线D.赵爽弦图21.(2022•毕节市)下列垃圾分类标识的图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.二.填空题(共8小题)22.(2022•吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为度.(写出一个即可)23.(2022•贺州)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为.24.(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=.25.(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为.26.(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为.27.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE 交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.28.(2022•永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O 顺时针旋转90°后,端点A的坐标变为.29.(2022•丽水)一副三角板按图1放置,O是边BC(DF)的中点,BC=12cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是cm.三.解答题(共9小题)30.(2022•武汉)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.31.(2022•温州)如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.32.(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.33.(2022•黑龙江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.34.(2022•广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.35.(2022•连云港)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB =∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.36.(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF =AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.37.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE 的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).38.(2022•重庆)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP 的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.。
小学四年级旋转练习题
小学四年级旋转练习题在旋转练习题中,我们将通过一系列形状和图形的旋转操作,来提高小学四年级学生的几何认知和思维能力。
下面是一些旋转练习题,帮助学生更好地理解旋转的概念和应用。
旋转练习题一:旋转形状1. 将一个正方形顺时针旋转90°,得到的形状是什么?2. 将一个长方形逆时针旋转180°,得到的形状是什么?3. 将一个圆形逆时针旋转270°,得到的形状是什么?4. 将一个三角形顺时针旋转360°,得到的形状和原来相同吗?旋转练习题二:旋转图形请你观察下面的图形,按要求进行旋转操作。
1. 图形A按顺时针旋转90°。
2. 图形B按逆时针旋转180°。
3. 图形C按逆时针旋转270°。
(在这里插入图形A、B、C的图片,图片可以自行设计或者找现成的图片)旋转练习题三:图形图案现在,我们来尝试用旋转进行绘图。
请你根据以下步骤完成绘图过程。
步骤一:在一张纸上画一个等边三角形。
步骤二:将该三角形按顺时针旋转90°,并画出旋转后的形状。
步骤三:再将该三角形按顺时针旋转90°,并画出旋转后的形状。
步骤四:最后,将该三角形再次按顺时针旋转90°,并画出旋转后的形状。
(在这里插入每个步骤的图形,可以用简笔画或者其他图示方式)通过以上的练习题,小学四年级的学生可以更好地理解旋转的概念和应用。
旋转不仅是一种几何变换,也是我们生活中常见的物体运动方式。
对于学生来说,通过练习旋转,不仅可以加深对几何形状的认识,还能培养他们的观察能力和创造力。
在日常生活中,他们可以注意观察物体的旋转运动,并将所学到的知识应用到实际中去。
希望以上的旋转练习题能够帮助小学四年级的学生更好地学习和掌握旋转的概念。
通过不断的练习和实践,他们将能够在几何学习中取得更好的成绩,并且培养出对数学的兴趣和创造力。
祝愿他们在几何学习中取得更大的进步!。
合浦县第二中学九年级数学上册第二十三章旋转23.3课题学习图案设计练习新版新人教版7
23.3 课题学习图案设计基础题知识点1 分析图案形成过程1.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图的是( )A. B.C. D.2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )3.如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的是( )A. B. C. D.4.如图所示,这个图案可以看作是以“基本图案”——原图案的四分之一经过变换形成的,但一定不能通过________变换得到.( )A.旋转B.轴对称C.平移D.对称和旋转5.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为( )A.30° B.60° C.90° D.120°知识点2 设计图案6.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中设计符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形又是中心对称图形;(2)是轴对称图形但不是中心对称图形;(3)是中心对称图形但不是轴对称图形.(1)(2)(3)7.以给出的图形“○、○、△、△、=”(两个相同的圆、两个相同的三角形、两条平行线)为构件,各设计一个构思独特且有意义的轴对称图形和中心对称图形.举例:如图所示,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.中档题8.(长沙中考)下列四个图形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )9.观察如图所摆放的五朵梅花,变换中间的一朵梅花,得到四角的梅花,下列说法错误的是( )A.左上角梅花只需沿对角线平移即可B.右上角梅花沿对角线平移后,顺时针旋转90°C.右下角梅花沿对角线平移后,以下底边为对称轴对称得到的D.左下角梅花先沿对角线平移后,顺时针旋转90°10.正五角星绕着它的中心至少旋转________可以与原图形重合.11.如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转________度后,两张图案构成的图形是中心对称图形.12.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°,180°,270°,并画出它在各象限内的图形.13.如图1是由2个白色和2个黑色全等正方形组成的“L”型图案,请你分别在图2,图3上按下列要求画图:(1)在图2中,添1个白色或黑色正方形,使它成中心对称图案;(2)在图3中,先改变1个正方形的位置,再添1个白色或黑色正方形,使它既成中心对称图案,又成轴对称图案.14.如图是由14个全等的三角形组成的图案,是由阴影部分的三角形通过平移、轴对称或旋转而得到的,试分析这个图案形成的过程.综合题15.山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的一部分,虚线给出了作图提示.请用圆规和直尺画图.(1)根据图2将图3补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.参考答案基础题1.C2.C3.B4.C5.C6.答案不唯一,图略.7.答案不唯一,下面各举一例:(1)只是轴对称图形;(2)只是中心对称图形;(3)既是轴对称图形又是中心对称图形.中档题8.A 9.D 10.72°11.6012.图略.13.(1)图略.(2)图略.14.可以看成按如下步骤形成的:①以一个三角形的一条边为对称轴作与它轴对称的图形;②将所得的图形以一边的中点为旋转中心旋转180°;③以①,②所得的两组图形为基本图形作轴对称图形;④再以此为基本图形绕某一点为中心旋转180°.综合题15.图略.抛物线形问题学习目的【知识与技能】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.【过程与方法】经历运用二次函数解决实际问题的探究过程,进一步体验运用数学方法描述变量之间的依赖关系,体会二次函数是解决实际问题的重要模型,提高运用数学知识解决实际问题的能力.【情感态度】1.体验函数是有效的描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具.2.敢于面对在解决实际问题时碰到的困难,积累运用知识解决问题的成功经验.学习重点用抛物线的知识解决拱桥类问题.学习难点将实际问题转化为抛物线的知识来解决.自学过程一、情境导入,初步认识1、如图所示的抛物线的解析式可设为______,若AB∥x轴,且AB=4,OC=1,则点A的坐标为_____,点B的坐标为_________;代入解析式可得出此抛物线的解析式为 __________ .某涵洞是抛物线形,它的截面如图所示。
八年级数学图案设计——平移、轴对称、旋转(北师版)(基础)(含答案)
图案设计——平移、轴对称、旋转(北师版)(基础)一、单选题(共10道,每道10分)1.观察下面图案,在A,B,C,D四幅图案中,能通过如图的平移得到的是( )A. B.C. D.答案:B解题思路:解题要点:平移的性质:平移后的图形与原图形的形状和大小完全相同;平移后的图形中的每一点,都是由原图形中的某一点平移后得到的,这两个点是对应点.连接各组对应点的线段平行(或在同一条直线上)且相等.解题过程:A.对应点所连线段相交,不能通过平移得到,故A错误;B.对应点所连线段平行,能通过平移得到,故B正确;C.对应点所连线段相交,不能通过平移得到,故C错误;D.对应点所连线段相交,不能通过平移得到,故D错误.试题难度:三颗星知识点:略2.下列大学校徽中哪一个可以看成是由图案自身的一部分经平移后得到的( )A. B.C. D.答案:C解题思路:A.是一个轴对称图形,不能由平移得到,故A错误;B.是一个轴对称图形,不能由平移得到,故B错误;C.是由图案自身的一部分经平移后得到,故C正确;D.不能由图案自身的一部分经平移得到,故D错误.试题难度:三颗星知识点:略3.如图,图①,图②,图③,图④这四个图形中,可以由图A平移得到的是( )A.①B.②C.③D.④答案:C解题思路:解题要点:平移的定义:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.解题过程:根据平移的定义可知,图①,图②,图③,图④这四个图形中,可以由图A平移得到的是图③试题难度:三颗星知识点:略4.如图,在网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F组合成一个正方形,下面平移步骤正确的是( )A.先把图形E向右平移4个单位,再向上平移3个单位B.先把图形E向右平移5个单位,再向上平移2个单位C.先把图形E向右平移5个单位,再向上平移3个单位D.先把图形E向右平移6个单位,再向上平移2个单位答案:D解题思路:根据题意将图形E平移到另一个位置后能与图形F组合成一个正方形,则一组对应点为A,A',点A向右平移6个单位,再向上平移2个单位可到达点A',所以平移步骤正确的是先把图形E向右平移6个单位,再向上平移2个单位.试题难度:三颗星知识点:略5.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有( )个.A.2B.3C.4D.5答案:B解题思路:解题要点:轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.解题过程:根据轴对称图形的定义可知,在方格纸中,选择②④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形,即符合题意的小正方形有3个.试题难度:三颗星知识点:略6.如图,若将直角坐标系中“鱼”形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以-1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半答案:C解题思路:∵图案的每个“顶点”的纵坐标保持不变,横坐标都乘以-1∴对应点的纵坐标相同,横坐标互为相反数∴所得图案与原图案关于y轴对称试题难度:三颗星知识点:略7.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有( )种A.1B.2C.3D.4答案:C解题思路:如图所示,满足题意的涂色方式有3种试题难度:三颗星知识点:略8.下列四个图形中,若以其中一部分作为基本图案,无论用旋转还是平移都不能得到的图案是( )A. B.C. D.答案:C解题思路:A.可以通过平移得到,故A错误;B.可以通过旋转得到,故B错误;C.无论用旋转还是平移都不能得到,故C正确;D.可以通过平移得到,故D错误.试题难度:三颗星知识点:略9.下列3个图形中,能通过旋转得到如图所示图形的有( )A.①②B.①③C.②③D.①②③答案:D解题思路:如图1所示:①通过旋转可以得到如图所示的图形,故①正确;如图2所示:②绕最长边中点旋转180°得到①,然后再通过旋转得到如图所示的图形,故②正确;如图3所示:③通过旋转可以得到如图所示的图形,故③正确.试题难度:三颗星知识点:略10.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是( )A. B.C. D.答案:A解题思路:解题要点:轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.解题过程:风车应做成中心对称图形,并且不是轴对称图形A.是中心对称图形,并且不是轴对称图形,故A正确;B.不是中心对称图形,是轴对称图形,故B错误;C.是中心对称图形,也是轴对称图形,故C错误;D.不是中心对称图形,是轴对称图形,故D错误.试题难度:三颗星知识点:略。
图形的旋转九年级试卷【含答案】
图形的旋转九年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 图形绕某点旋转90°,相当于图形绕同一点旋转_________。
A. 45°B. 180°C. 270°D. 360°2. 一个正方形绕其中心旋转,每次旋转_________度,图形与原图形重合。
A. 30°B. 45°C. 60°D. 90°3. 下列哪个图形绕中心点旋转180°后,能与原图形重合?A. 等边三角形B. 等腰三角形C. 长方形D. 正五边形4. 一个点绕另一个点旋转,旋转角为_________时,两点位置不变。
A. 0°B. 90°C. 180°D. 270°5. 下列哪个图形绕中心旋转90°后,不能与原图形重合?A. 正方形B. 正五边形C. 正六边形D. 正八边形二、判断题(每题1分,共5分)1. 旋转前后图形的大小和形状都不会改变。
()2. 旋转角是指旋转中心与旋转后的图形的对应点之间的夹角。
()3. 任何图形绕中心旋转180°后,都能与原图形重合。
()4. 一个图形绕中心旋转360°后,一定回到原来的位置。
()5. 旋转前后图形的面积一定相等。
()三、填空题(每题1分,共5分)1. 图形绕某点旋转_________度,相当于图形绕同一点旋转270°。
2. 一个正方形绕其中心旋转,每次旋转_________度,图形与原图形重合。
3. 下列哪个图形绕中心点旋转180°后,能与原图形重合?_________4. 一个点绕另一个点旋转,旋转角为_________时,两点位置不变。
5. 下列哪个图形绕中心旋转90°后,不能与原图形重合?_________四、简答题(每题2分,共10分)1. 简述旋转的基本性质。
旋转图案设计
旋转
图案设计
知识回顾
问题1 平移、轴对称和旋转变换的基本特征是 什么?
知识回顾
问题2 三种图形变换的共同特征是什么? 变换前后图形的形状、大小不变.
图案辨析
问题3 观察组合图案,分析它是将哪种基 本图形经过了哪些变换后得到的?
经过旋转、轴对 称和平移得到的
图案辨析
图案辨析
问题4 观察下面的组合图案,分析它是将 哪种基本图形经过了哪些变换后得到的?
ห้องสมุดไป่ตู้
图案搜索
问题5 进行图案设计的步骤是什么? (1)先选取基本图形; (2)再利用平移、轴对称和旋转变换设计组 合图案.
图案设计
问题6 分组进行图案设计.选取基本图形,利 用平移、轴对称和旋转变换设计组合图案. 要求:(1)每个组员先独立思考,并将自己
教科书第72页复习题23第5,8题.
目标检测
请以顶角为 30º 的等腰三角形为基本 图形,利用平移、旋转和轴对称变换的组 合设计出美丽的图案.
的设计与组员分享,组内讨论,修改,确定
最后方案;
(2)每个组员用事先准备好的彩纸、剪刀和
胶棒完成自己的设计.
成果展示
问题7 展示确定的基本图形及组合图案, 并 简单说明你的图案设计中运用了哪些图形变 换?
小结归纳
问题8 通过这节课,你对图案设计有什么
新的认识?在你的设计中最得意的地方是 什么?
布置作业
旋转专题训练(中考数学)
旋转一.选择题(共10小题)1.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.42.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半3.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.4.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1B.2C.3D.45.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.6.下列图形中可由其中的部分图形经过平移得到的是()A.B.C.D.7.如图所示的各组图形中,表示平移关系的是()A.B.C.D.8.在下列四个图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.9.下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪10.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OF A 的度数是()A.20°B.25°C.30°D.35°二.填空题(共10小题)11.如图,在棋盘中建立直角坐标系xOy,三颗棋子A,O,B的位置分别是(0,1),(0,0)和(1,﹣1).如果在其它格点位置添加一颗棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请写出所有满足条件的棋子C的位置的坐标:.12.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有个.13.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.14.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.15.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.16.从3点整开始,分针至少顺时针旋转度才能与时针重合.17.如图,在矩形ABCD中,AB=8,BC=6,E为AD上一点,将△BAE绕点B顺时针旋转得到△BA′E′,当点A′,E′分别落在BD,CD上时,则DE的长为.18.把一个正五边形绕着它的中心旋转,至少旋转度,才能与原来的图形重合.19.在平面直角坐标系xOy中,若点B与点A(﹣2,3)关于点O中心对称,则点B的坐标为.20.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是.三.解答题(共10小题)21.有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)22.如图是由5个同样的小正方形所组成的,请再补上一个同样的小正方形,使6个小正方形组成的图形成为一个轴对称图形,请至少画出三种方法.23.在4×4的方格中有五个同样大小的正方形如图1摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,请在下面网格中(图2至图5)画出四种互不全等的新图形.24.图1,图2,图3是在4×4的网格中有七个小正方形被涂黑,请你用三种不同的方法,在图1,图2,图3中分别涂黑三个小正方形,使整个图形成为轴对称图形(涂黑后的三个阴影部分图形不全等)25.如图,经过平移,小船上的A点到了点B.(1)请画出平移后的小船.(2)该小船向平移了格,向平移了格.26.按要求画图:(1)如图(1)所示,网格内每个小正方形的边长都为1个单位长度,试画出小船向右平移4 个单位长度,向上平移4个单位长度后的图形.(2)如图(2)过点P分别画直线m、n的垂线.27.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.28.如图是由边长为1的小正方形构成的格点图形,A、B、C在格点上,将三角形ABC向右平移3个单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1;(2)求线段AB在变换到A1B1过程中扫过的区域面积(重叠部分不重复计算).29.如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC 与AC、AB′相交于点E、F.(1)当α=70时,∠ABC′=°,∠ACB′=°.(2)求证:BC′∥CB′.30.如图,正方形ABCD边长为2cm,以各边中心为圆心,1cm为半径依次作圆,将正方形分成四部分.(1)这个图形旋转对称图形(填“是”或“不是”);若是,则旋转中心是点,最小旋转角是度.(2)求图形OBC的周长和面积.旋转参考答案与试题解析一.选择题(共10小题)1.【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.2.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘﹣1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C.3.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.4.【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.5.【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,将题中所示的图案通过平移后可以得到的图案是D.【解答】解:可看作图案的某一部分经过平移所形成的是D选项所示图形,故选:D.6.【分析】根据平移的性质,平移不改变图形的形状和大小对各选项分析判断即可得解.【解答】解:A、可由其中的部分图形经过平移得到,故本选项正确;B、不可由其中的部分图形经过平移得到,故本选项错误;C、不可由其中的部分图形经过平移得到,故本选项错误;D、不可由其中的部分图形经过平移得到,故本选项错误.故选:A.7.【分析】根据平移、旋转、对称的定义即可判断【解答】解:A、表示对称关系.B、表示旋转关系.C、表示旋转关系.D、表示平移关系.故选:D.8.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.9.【分析】根据旋转的定义分别判断得出即可.【解答】解:A、在空中上升的氢气球是平移,故此选项错误;B、飞驰的火车投是平移,故此选项错误;C、时钟上钟摆的摆动,属于旋转,故此选项正确;D、运动员掷出的标枪传是平移,故此选项错误.故选:C.10.【分析】由旋转的性质和正方形的性质可得∠FOC=40°,AO=OD=OC=OF,∠AOC =90°,再根据等腰三角形的性质可求∠OF A的度数.【解答】解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OF A=25°故选:B.二.填空题(共10小题)11.【分析】根据轴对称的概念求解可得.【解答】解:如图所示,棋子C的位置为(﹣1,﹣1)或(2,﹣1)或(1,2)或(﹣1,0),故答案为:(﹣1,﹣1)或(2,﹣1)或(1,2)或(﹣1,0).12.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故答案为:513.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.14.【分析】根据轴对称图形的定义求解可得.【解答】解:如图所示,共有4种涂黑的方法,故答案为:4.15.【分析】直接利用轴对称图形的性质结合题意得出答案.【解答】解:如图所示:都是符合题意的图形.故答案为:4.16.【分析】设分针顺时针旋转xmin才能与时针重合,根据分针和时针间角度关系得出方程6x=90+0.5x,解之可得.【解答】解:设分针顺时针旋转xmin才能与时针重合,∵分针旋转速度为6°/min,时针旋转的速度为0.5°/min,∴6x=90+0.5x,解得:x=,则分针旋转的度数为6×=度,故答案为:.17.【分析】根据勾股定理可求BD=10,由旋转的性质可得AE=A'E,AB=A'B=8,∠BA'E'=90°,由△BCD∽△E'A'D,可得,可得A'E'=AE=,即可求DE的长.【解答】解:∵四边形ABCD是矩形∴∠DAB=∠C=90°,AD=BC=6,AB=CD=8,∴BD==10,∵将△BAE绕点B顺时针旋转得到△BA′E′,∴AE=A'E,AB=A'B=8,∠BA'E'=90°∴A'D=BD﹣BA'=2,∵∠BDC=∠BDC,∠DA'E'=∠C=90°,∴△BCD∽△E'A'D∴即∴A'E'==AE∴DE=AD﹣AE=故答案为18.【分析】根据旋转的性质,最小旋转角即为正五边形的中心角.【解答】解:∵正五边形被半径分为5个全等的三角形,且每个三角形的顶角为72°,正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是72°.故答案为:72.19.【分析】直接利用关于原点对称点的特点得出答案.【解答】解:∵点A(﹣2,3)与点A关于原点O中心对称,∴点B的坐标为:(2,﹣3).故答案为:(2,﹣3).20.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故答案为:③.三.解答题(共10小题)21.【分析】根据轴对称定义及特点拼图即可.【解答】解:如图所示.22.【分析】利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.23.【分析】根据轴对称的性质画出图形即可.【解答】解:如图所示:.24.【分析】根据轴对称的定义添加合适的小正方体即可得.【解答】解:如图所示.25.【分析】(1)将所给图形的各个顶点按平移条件找出它的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可数出.【解答】解:(1)如图所示,(2)由图形可知,该小船向下平移了4格、向左平移了3格,故答案为:下、4、左、3.26.【分析】(1)根据平移的性质作图;(2)利用尺规作图作出直线m、n的垂线.【解答】解:(1)如图(1):(2)如图(2):a⊥n,b⊥m.27.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用网格结合火炬形状进而得出答案.【解答】解:(1)如图所示:(2)一个火炬图案的面积为:9+×3+(4﹣1﹣×1×2﹣×1×2)=11.5.28.【分析】(1)将点A、B、C分别向右平移3个单位,再向上平移2个单位得到对应点,再顺次连接可得;(2)根据扫过的区域面积=+,据此列式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)线段AB在变换到A 1B1过程中扫过的区域面积=+=3×2+×1×2=7.29.【分析】(1)由旋转的性质可得AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC =30°,由等腰三角形的性质可求解;(2)由旋转的性质和等腰三角形的性质可得∠ABC'=,∠ACB'=,由三角形的外角性质可得∠AEF==∠ACB',即可得BC'∥CB'.【解答】解:(1)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC=30°,∴∠BAC'=100°,且AB=AC',∴∠ABC'=40°,∵∠CAB'=∠CAC'﹣∠B'AC'=40°,且AC=AB'∴∠ACB'=70°故答案为40,70(2)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=α,∠B'AC'=∠BAC=30°,∴∠BAC'=30°+α,∠CAB'=α﹣30°,且AB=AC=AB'=AC',∴∠ABC'=,∠ACB'=∵∠AEF=∠ABE+∠BAC∴∠AEF=∴∠AEF=∠ACB',∴BC'∥B'C30.【分析】(1)旋转对称图形的定义,结合图形即可作出判断;(2)图形OBC的周长为BC+圆的周长,面积=S正方形ABCD.【解答】解:(1)这个图形是旋转对称图形,旋转中心是点O,最小旋转角为90°.(2)图形OBC的周长=BC+圆的周长=2+π;面积=S正方形ABCD=×4=1cm2.。
运用平移、对称和旋转设计图案
运用平移、对称和旋转设计图案答案例1.艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.考点:运用平移、对称和旋转设计图案.分析:根据运用平移、对称和旋转设计图案专题的内容进行填空.解答:解:艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.故答案为:平移,对称,旋转.点评:此题考查了运用平移、对称和旋转设计图案.例2.如图的图形是如何得到的?考点:运用平移、对称和旋转设计图案.分析:第一个图形的脸是正立的,嘴巴在下,第二个图形是横向的,说明第二个图形是由第一个图形绕下巴顺时针旋转90°得到,第三个图形与第二个图形方向相同,说明第三个图形是由第二个图形向右平移得到的,第四个图形是倒立的,是由第三个图形顺时针旋转90°得到的.解答:解:第一个图形顺时针旋转90°得到第二个图形,第二个图形向右平移得到第三个图形,第三个图形顺时针旋转90°得到第四的图形;点评:本题是考查图形变换,由旋转、平移.旋转、平移后的图形与原图形大小,形状不变,只是位置变了.例3.(1)图中长方形四个顶点的位置是:A(6,8),B(8,8),C(6,5),D(8,5);(2)把长方形向右平移3格,画出平移后的图形,平移后的长方形四个顶点用数对表示分别是A1(9,8),B1(11,8),C1(9,5),D1(11,5)(3)把长方形绕D点顺时针旋转90度,画出旋转后的图形,旋转后的长方形四个顶点用数对表示分别是A2(11,7),B2(11,5),C2(8,7),D2(8,5).考点:运用平移、对称和旋转设计图案.分析:利用画图工具,复制,平移3个格,得到把长方形向右平移3格的长方形A1B1C1D1,把长方形绕D点顺时针旋转90度的图形A2B2C2D2,数一数,就可以填上各个位置的坐标.解答:解:A(6,8)B(8,8)C(6,5)D(8,5);A1(9,8)B1(11,8)C1(9,5)D1(11,5);A2(11,7)B2(11,5)C2(8,7)D2(8,5).点评:此题考查了运用平移、对称和旋转设计图案.例4.用多个三角形设计一个美丽的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:以三角形的一个顶点为中心,顺时针旋转90度、180度、270度即可.解答:解:作图如下:点评: 本题考查的是利用平移、对称及旋转设计图案.演练方阵A 档(巩固专练)一.选择题(共12小题)1.下列图形中( )是利用旋转设计而成的. A .B .C .考点: 运用平移、对称和旋转设计图案.分析: 利用旋转设计而成的图形应有一个旋转点,图形旋转后的形状和大小不变;因此得解. 解答: 解:A 、有一个旋转点,有一个形状和大小不变的图形菱形,因此A 是利用菱形向右绕右顶点旋转90°、180°、270°而形成的;B 、小图形有大小的变化,因此不是利用旋转设计而成的;C 、菱形图形的大小形状虽然不变,但没有一个旋转点,它是菱形平移3次而形成的. 故选:A . 点评: 图形旋转后的大小和形状不变是判断这个图形是否是通过旋转形成的基本方法.2.把正方形的右边剪去一块补到上面(如图),得到的图形是( )A .B .C .D .考点: 运用平移、对称和旋转设计图案. 专题: 图形与变换. 分析: 把正方形的右边剪去一块,正方形缺失是右边,据此排除答案A 和C .又因为剪去的部分是补到上面,答案D 补到了下面,排除D ,所以选B . 解答: 解:把正方形的右边剪去一块补到上面,只有C 符合题意.故选:B.点评:解答此题最好的办法是动手操作一下,即可以解决问题,又锻炼动手操作能力.3.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形的特点结合轴对称图形和中心对称图形的概念解答.解答:解:A、不是对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既有轴对称,又有旋转,符合题意.故选:D.点评:此题考查了旋转的概念以及轴对称图形的概念:直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.把一个图形绕某一点旋转一定角度后得到另一个图形,叫做旋转变换.4.如图的图形中,()是由旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:根据对称和旋转设计图案的方法可知,A、B是完全重合的,而C不能,只能用旋转得到,从而可以进行选择.解答:解:由对称和旋转设计图案的方法可知,A、B是对折后是完全重合的,而C不能,只能用旋转得到,故选:C.点评:此题考查了利用对称和旋转设计图案.5.如图是由☆经过()变换得到的.A.平移B.旋转C.对称考点:运用平移、对称和旋转设计图案.分析:平移就是水平移动,大小和形状不变;旋转除了大小和形状不变外,还要有一个绕点;对称形成的图形要能找到一条对称轴.据此得解.解答:解:图形中有5个五角星并排在一条直线上,因此是由☆经过平移变换得到的.故选:A.点评:此题考查了运用平移、对称和旋转设计图案,锻炼了学生的空间想象力和创新思维能力.6.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.7.(2012•河西区模拟)下面()图形旋转会形成圆柱.A.B.C.考点:运用平移、对称和旋转设计图案.分析:一个长方形沿一条直线旋转就会成为一个圆柱.解答:解:选项中只有A是长方形旋转;故选:A.点评:本题是判断平面图形经过旋转后大图形,长方形旋转后是圆柱,半圆旋转后是球体,三角形旋转后是圆椎.8.已知一个半圆,下面()这种方式不能将半圆变成圆.A.平移B.翻折C.旋转考点:运用平移、对称和旋转设计图案.分析:一个半圆,如果以它的直径为轴翻折,会得到一个新的半圆,这个半圆由于是已知半圆翻成的,它的直径与已知半圆相等,这两个半圆是以已知半圆的直径所在的直线为对称轴的轴对称图形,两个半圆正好组成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°,都会得到一个与原半圆直径相等的半圆,这个半圆与原半圆能组成一个圆;一个半圆,平移后得到的半圆虽然与原半圆的直径相等,但平移后的半圆与原半圆的半圆弧总是在一个方向,这两个半圆不能组成一个圆.解答:解:一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°后的图形与已知半圆能变成一个圆;一个已知半圆,平移后得到的半圆,已知半圆方向相同,与已知半圆不能变成一个圆;故选:A点评:本题主要是考查运用平移、轴对称设计图案.9.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移4次,复制下图案,即可得到左图.解答:解:采用平移的方法,平移4次,复制下图案,即可得到左图.故答案为:A.点评:此题考查了运用平移、对称和旋转设计图案.10.如图是由经过()变换得到了.A.旋转B.平移C.对称考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移5次,复制下图案,即可得到右图.解答:解:采用平移的方法,平移5次,复制下图案,即可得到左图.故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.11.将图形顺时针旋转90°,得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:利用画图工具,逐个分析由原图旋转多少度得到的,如下图所示,即可得解.解答: 解:4个选项各是由原图如何旋转得到的:通过画图分析,A 符合题意;故选:A . 点评: 此题考查了运用平移、对称和旋转设计图案. 12.下列图案每一幅都是由一个基本图形变化得到的.其中没有运用旋转规律得到的图案是( ) A . B .C .考点: 运用平移、对称和旋转设计图案. 专题:图形与变换. 分析: 寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断. 解答: 解:图形1可由一个基本“花瓣”绕其中心经过4次旋转,每次旋转90°得到;图形2可由一个基本“不规则5边形”绕其中心经过4次旋转,每次旋转90°得到; 图形3可由一个基本图形三角形经过平移得到; 其中没有运用旋转规律得到的图案是C ; 故选:C . 点评: 本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.二.填空题(共1小题)13.图B 是由图A 经过 旋转 变换得到的图案,图b 是由图a 经过 平移 变换得到的图案.考点: 运用平移、对称和旋转设计图案. 专题: 图形与变换. 分析: 根据题意,通过观察图形,(1)可知图形A 和图形B 中心对称,所以图形B 是由图形A 顺时针旋转180度得到的.(2)图形a 经过平移变换得到图形b ,即图形b 是由图形a 平移得到的. 解答: 解:(1)图形B 是由图形A 顺时针旋转180度得到的.(2)图形b 是由图形a 平移得到的. 故答案为:旋转;平移. 点评: 本题主要考查几何图形的变换,关键在于认真分析图形,找到它们是怎么变换的.三.解答题(共1小题)14.下面图形是经过什么方式变换得来的?填一填.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移的意义,上图是由一个图形经过两次平移得到的;根据图形旋转的意义,左下图是由一个图形绕某点顺时针(或逆时针)旋转5个60°而成的;根据轴对称的意义,右下图是由一个图形经过轴对称得到的.解答:解:上图经过平移得到的;左下图是经过旋转得到的;右下图是经过轴对称得到的.故答案为:点评:本题是考查图形平移的意义、旋转的意义、轴对称的意义.小学阶段图形变包括图形的平移、旋转、轴对称.灵活去用可设计出很多精美的图案.B档(提升精练)一.选择题(共15小题)1.(2009•邗江区模拟)下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是.()A.平行四边形B.长方形C.圆考点:运用平移、对称和旋转设计图案.分析:把平行四边形转化成长方形的方法有三种:第一种是沿着平行四边形的顶点作的高剪开,通过平移拼出长方形;第二种是沿着平行四边形中间任意一高剪开;第三种是沿平行四边形两端的两个顶点作的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形;我们在硬纸板上画一个圆,把圆分成若干等分,剪开后用这些近似的等腰三角形的小纸片拼一拼,就可以拼成一个近似的平行四边形,如果分的分数越多,每一份会越细,拼成的图形就会越接近长方形;长方形的长等于圆周长的一半,即c/2,宽等于圆的半径r,因为长方形的面积=长×宽,所以圆的面积s=c×r÷2 又因为c=2πr 所以s=πr2.解答:解:通过以上分析,平行四边形和圆的面积计算公式都是平移或旋转得到的,只有长方形利用小正方形拼组得到的;故选:B.点评:此题考查了运用平移、对称和旋转设计图案.2.下列图片中,哪些是由图片①分别经过平移和旋转得到的()A.③和④B.③和②C.②和④D.④和③考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:解答此题的关键是:由平移的定义和旋转的性质进行判断.解答:解:图(1)沿一直线平移可得到(3),顺时针旋转可得到(4).故选A.点评:解答此题要明确平移和旋转的性质:(1)①经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;②平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.3.图是由经过()变换得到的.A.平移B.对称C.平移或对称考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:如图,是经过一个图形平移得到的.解答:解:图是由经过平移变换得到的.故选:A.点评:此题是考查运用平移设计图案.平移就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.平移不改变图形的形状和大小,只改变位置.4.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N ,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.5.由图形A到图形C是怎样的旋转过程.()A.A顺时针旋转90°得到图CB.A逆时针旋转180°得到图CC.A逆时针旋转90°得到图B,再逆时针旋转90°得到图C考点:运用平移、对称和旋转设计图案.专题:平面图形的认识与计算.分析:把一个图形绕着某一点转动一个角度的图形变换叫做旋转,旋转的要素是旋转方向,旋转中心,旋转角度.据此可对每个选项进行分析.解答:解:A.图A绕点“O”顺时针旋转90°得到图B,得不到图C,故错误.B.图A绕点“O”逆时针旋转180°得到图C.正确.C.图A绕点“O”逆时针旋转90°得到图D,得不到图B,所以错误.故选:B.点评:本题主要考查了学生对旋转知识的掌握情况.6.把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是()A.A、B.B、C.C、D.D、考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察图形,图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,据此即可选择.解答:解::图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,故选:C.点评:本题重点是考查的平移、旋转.关键弄清旋转一定度数时笑脸的特征及平移的格数.7.如图,甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,则丙的转向为()A.顺时针B.逆时针C.先顺后逆D.不能确定考点:运用平移、对称和旋转设计图案.分析:通过画图,皮带的转向的一致性,可以判断出每个轮子的转向,由此得解.解答:解:甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,丁是逆时针,则丙的转向为顺时针,乙是顺时针.故选:A.点评:此题考查了运用平移、对称和旋转设计图案.8.钟面上,时针从“8”起逆时针旋转90°后,时针应该指着()A.3B.12 C.5考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:钟面上有12个数字,这12个数字把一个周角平均分成了12份,一个周角是360°,每份是360°÷12=30°,即两个相邻数字间的度数是30°,时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”,解答:解:如图,表盘上时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”;故选:C.点评:解答本题主要掌握钟面上的12个数字把一个周角平均分成了12份,每份是360°÷12=30°,即个相邻数字间的度数是30°.9.下列图案中,()是由图案的一部分经过旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据平移,旋转,轴对称的定义即可作出判断.解答:解:图形A是平移得到的,图形C是平移得到的,只有图形B是旋转得到的;故选:B.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.10.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC 绕O点每次旋转120˚,旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:根据旋转的概念以及图甲、图乙演示所体现的规律来判断.解答:解:根据旋转的概念和上述规律知:A、旋转120°得到;B、旋转180°得到;C、是轴对称图形,也是中心对称图形,旋转180°得到;D、不能通过旋转得到.故选:D.点评:此题不仅考查了旋转的概念,更考查了同学们的规律探索能力.11.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察国旗上的小五角星可知:国旗上的小五角星绕中心点进行旋转一定的角度,可以互相得到,据此即可解答.解答:解:四个小五角星通过旋转可以得到.故选:C.点评:本题考查旋转与平移的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;关键是要找到旋转中心.12.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:平移前后图形的大小、形状都不改变,由此可以判断由△OBC平移得到的三角形.解答:解:A、△COD方向发生了变化,不属于平移得到;故本选项错误;B、△OAB方向发生了变化,不属于平移得到,故本选项错误;C、△OAF属于平移得到;故本选项正确;D、△OEF方向发生了变化,不属于平移得到;故本选项错误;故选:C.点评:平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.13.如图是按照一定的规律排列起来的,请按这一规律在“?”处画出适当的图形.()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,由此得解.解答:解:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,所以第3面旗帜上应是3颗星星,所以“?”处图形应为C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.14.根据下图的变化规律,在空白处填上适当的图形()A.B.C.考点:运用平移、对称和旋转设计图案.分析:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.因此得解.解答:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.所以,“?”处应填C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.认真观察找出规律,是解决此题的关键.15.(2014•顺德区模拟)如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.考点:运用平移、对称和旋转设计图案.分析:找一张纸,裁一个正方形,上折,右折,沿虚线剪开,然后把余下的部分展开,即可得解.解答:解:经过实践,两次折叠后沿虚线剪开,图形展开,即可得解,图形是B的图形;故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.二.填空题(共12小题)16.一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.√.(判断对错)考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移、旋转、轴对称的特征,可以将一个简单的图案,通过这些变化,形成一个较复杂的图形.如,可以将一个图案通过平移形成壁报的花边、将一个梅花瓣通过四次旋转形成一朵梅花、把纸折叠,通过轴对称剪出一个图形的一半,展开后就是一个完整的图案.解答:解:一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.故答案为:√.点评:本题主要是考查平移、旋转、轴对称的意义及特征.利用这些变化可以将一个简的图案变成一个较复杂的图形.17.图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90゜、180゜、270゜,你会得到一个什么样的立体图形?考点:运用平移、对称和旋转设计图案.专题:作图题;图形与变换.分析:根据旋转图形的特征,这个图形绕点O顺时针旋转90°、180°,270°,点0的位置不动,其余各部分均绕点O顺时针旋转90゜、180゜、270゜,得到的是一个星星图案.解答:解:根据分析画图如下:故答案为:点评:本题是考查运用图形旋转设计图案.关键是旋转的角度要准确.18.我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案.考点:运用平移、对称和旋转设计图案.分析:我们学过的图形变换由平移、旋转、轴对称,利用这此基本方法,可以将一个图图形通过这些方法来设计精美的图案.解答:解:我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案;故答案为:平移,旋转,轴对称.点评:本题是回顾小学阶段学习的图形变换方法.19.利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案.…√.(判断对错)考点:运用平移、对称和旋转设计图案.分析:规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列.一般来说,构成一个镶嵌图形的基本单元是多边形或类似的常规形状,例如经常在地板上使用的方瓦.利用平移、对称、旋转变换可以设计许多美丽的镶嵌图案.解答:解:例如蜜蜂的蜂窝就是正六边形的平移、旋转、对称的典型图案;如下图所示,利用平移、对称和旋转变换设计的许多美丽的镶嵌图案:故答案为:√.点评:此题考查了运用平移、对称和旋转设计图案.20.在方格图中设计一个你喜欢的图案,并写出你设计的图案占整幅图的多少?考点:运用平移、对称和旋转设计图案.专题:作图题.分析:根据旋转图形的特征,在图中画一等腰三角形,绕一底角(点O)顺(或逆)时针旋转90°,再旋转90°,再旋转90°即可得到一个美丽的图案;每个三角形占1格,四个三角形占1×4=4格,图中共有10×5=50格,据此可求出图案占整幅图的多少.解答:解:由分析画图如下:(1×4)÷(10×5)=4÷50=;。
《图形的旋转》练习题
《图形的旋转》练习题一、判断题1、图形的旋转是图形沿着某个点旋转一定的角度。
()2、图形的旋转是由旋转中心、旋转方向和旋转角度所决定的。
()3、图形的旋转改变了图形的形状和大小。
()4、图形的旋转不改变图形的形状和大小。
()5、一个图形围绕某一点旋转一定角度后,只要与原来的图形重合,那么这个图形就被旋转对称了。
()6、一个图形围绕某一点旋转一定角度后,只要与原来的图形不重合,那么这个图形就不是旋转对称的。
()7、旋转对称图形是旋转对称的。
()8、旋转对称的图形是旋转对称的。
()9、一个图形如果和另一个图形是旋转对称的,那么这两个图形一定也是轴对称的。
()10、一个图形如果和另一个图形是轴对称的,那么这两个图形一定是旋转对称的。
()二、填空题1、在平面内,将一个图形绕某点转动一个角度,这样的图形运动称为__________。
2、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
3、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
4、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
5、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
6、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
7、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
8、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
9、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
10、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
《图形的平移与旋转》复习全攻略【介绍】《图形的平移与旋转》是初中数学中的重要一课,它涉及到平面几何的基本概念和变换方法。
在这篇复习全攻略中,我们将一起回顾图形的平移和旋转的基本概念、考点、解题技巧以及难点解析,帮助大家充分掌握这一课的内容。
二年级数学旋转试卷
二年级数学旋转试卷专业课原理概述部分二年级数学旋转试卷一、选择题(每题1分,共5分)1. 下列哪种图形旋转360度后与原图形重合?A. 正方形B. 长方形C. 直角三角形D. 梯形2. 一个图形绕点O逆时针旋转90度,如果它的对应点分别是A'和B',那么∠A'OB'等于多少度?A. 45度B. 90度C. 180度D. 360度3. 下列哪个数字不是旋转对称的?A. 0B. 1C. 6D. 84. 一个正方形绕着它的中心旋转,至少需要旋转多少度才能与原图形重合?A. 45度B. 90度C. 180度D. 360度5. 下列哪个图形不是中心对称的?A. 正方形B. 长方形C. 圆形D. 三角形二、判断题(每题1分,共5分)1. 旋转不改变图形的大小和形状。
()2. 所有的图形旋转360度后都会与原图形重合。
()3. 旋转对称图形一定是中心对称图形。
()4. 一个图形绕着它的中心旋转180度后,会与原图形重合。
()5. 旋转对称图形的对应点到旋转中心的距离相等。
()三、填空题(每题1分,共5分)1. 一个图形绕点O顺时针旋转90度,如果它的对应点分别是A'和B',那么∠A'OB'等于____度。
2. 旋转对称图形的旋转中心是____。
3. 一个正方形绕着它的中心旋转180度后,会与原图形____。
4. 旋转对称图形的对应点关于旋转中心____。
5. 旋转对称图形的旋转角度可以是____度。
四、简答题(每题2分,共10分)1. 请简述旋转对称图形的定义。
2. 请说明旋转对称图形的旋转中心和旋转角度。
3. 请举例说明旋转对称图形在生活中的应用。
4. 请解释为什么旋转对称图形的对应点到旋转中心的距离相等。
5. 请说明旋转对称图形与中心对称图形的区别和联系。
五、应用题(每题2分,共10分)1. 一个正方形绕着它的中心旋转,至少需要旋转多少度才能与原图形重合?2. 一个长方形绕着它的中心旋转,至少需要旋转多少度才能与原图形重合?3. 一个圆形绕着它的中心旋转,至少需要旋转多少度才能与原图形重合?4. 一个三角形绕着它的中心旋转,至少需要旋转多少度才能与原图形重合?5. 一个梯形绕着它的中心旋转,至少需要旋转多少度才能与原图形重合?六、分析题(每题5分,共10分)1. 请分析旋转对称图形的性质和特点。
运用平移、对称、旋转设计图案 小学数学 测试卷
一、选择题
1. 下面图形中,________是由基本图形平移得到的,________是由基本图形旋转得到的。
()
①②③
A.①②B.③①C.②①
2. 下面图形是由()旋转变换得到的。
A.B.C.
3. 美丽的图案都用到了()。
A.平移B.旋转C.平移、旋转和对称
4. 能通过平移得到的图案是()
C.
A.B.
5. 下面的图案中利用旋转设计的是()。
A.B.C.D.
二、填空题
6. 广告人员在进行图案设计时,经常将一个基本图案进行轴对称、平移和( )等。
7. 本学期我们学习了利用_____、_____和_____可以设计美丽的图案,像打开的电风扇
属于_____现象。
8. 利用图形的轴对称、( )和( )变换可以设计出美丽的图案。
9. 我们学过的变换图形的方法有__、__、__。
10. 是用( )个通过( )运动拼成的一组漂亮的图案。
三、解答题
11. 张小明同学为班级“学习专栏”设计了报头图案,并用文字说明图案的含义,如
图①请你用基本的几何图形(如直线、射线、线段、角、三角形、平行四边形、
长方形、正方形等)中若干个为“环保专栏”在下图框中设计一个报头图案,并简要
说明图案的含义。
12. 这些美丽的图案是由什么图形组成的?
13. 在下面的方格纸上设计图案,图案占这张方格纸的。
14. 如图的七巧板,通过平移、旋转或轴对称的方法在方格纸上设计你喜欢的图形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章旋转
§23.3图案设计
一、知识要点
1.图案的设计是利用基本图形的轴对称、平移、旋转、组合这四种基本关系。
2.设计图案时要注意弄清设计要求和设计目的
二、基础过关
1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如图,是由________关系得到的图形.
3.如果在正八边形硬纸板上剪下一个三角形(如图①中的阴影部分),那么图②,图③,图
④中的阴影部分,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,
图③,图④中的阴影部分,依次进行的变换不可行
...的是()
A.平移、对称、旋转
B.平移、旋转、对称
C.平移、旋转、旋转
D.旋转、对称、旋转
4.下图的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程。
这样的图案有()个。
A、1个
B、2个
C、3个
D、4个
5.在图所示的4个图案中既包含图形的旋转,还有图形轴对称的是()
6. 在右图的方框中做出以O为旋转中心旋转后的图形.
7.欣赏下图中图(1)的图案,并分析这个图案形成的过程。
三、探究创新
8.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()
9、现有如图所示的6种瓷砖,请用4块瓷砖(允许有相同的),设计出美丽的图案.
10.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?
11.用四块如图(1)所示的瓷砖拼铺一个成正方形的地板,使拼铺的图案成中心对称图形,
请你在图(2)、图(3)中各画出一种拼法。
(要求:两种拼法各不相同,所画图案阴影
部分用斜线表示)
12.(1)图案设计人员在进行图设计时,•常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?
(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,•并说明你所表达的意义.
13.本题是一道和平移、旋转及轴对称相关的图案设计问题,可通过丰富的想象,选择四块相同或不同的瓷砖,通过平移、旋转及轴对称变换,设计出美丽的图案.本题开放性较强,可以设计出很多种图案.下面给出三种,供参考.
(1)用图2所示的瓷砖通过旋转设计成图案3-1,再把图案3-1经过平移设计成图案3-2;
(2)利用图4所示的两种瓷砖设计图案,如图5-1和图5-2;
(3)用图6的两种瓷砖设计图案如图7-1、图7-2.
请同学们仿照1小题自己分析2、3小题的图案是如何形成的.。