【数学】数学 旋转的专项 培优练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、旋转真题与模拟题分类汇编(难题易错题)
1.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.
(1)如图1,当a=42时,求b的值;
(2)当a=4时,在图2中画出相应的图形并求出b的值;
(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.
【答案】(1)422)b=8;(3)ab=32.
【解析】
试题分析:(1)由正方形ABCD的边长为4,可得AC=2,∠ACB=45°.
再CE=a=2∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;
(2)通过证明△ACF∽△ECA,即可得;
(3)通过证明△ACF∽△ECA,即可得.
试题解析:(1)∵正方形ABCD的边长为4,∴AC=2,∠ACB=45°.
∵CE=a=2∴∠CAE=∠AEC=45
2︒
=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,
∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42
(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC.
又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CF
EC CA
=,∴
42
442
=∴CF=
8,即b=8.(3)ab=32.
提示:由(2)知可证△ACF∽△ECA,∴∴AC CF
EC CA
=,∴
42
42
a
=,∴ab=32.
2.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.
【答案】(1)BF=AC,理由见解析;(2)NE=1
2
AC,理由见解析.
【解析】
试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则
∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=1
2 AC.
试题解析:
(1)BF=AC,理由是:
如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵
DAC DBF
ADC BDF AD BD
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ADC≌△BDF(AAS),∴BF=AC;
(2)NE=1
2
AC,理由是:
如图2,由折叠得:MD=DC,∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=1
2 AC.
3.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x
=上时停止旋转,旋转过程中,AB边交直线y x
=于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设MBN
∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析
【解析】
试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;
(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;
(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.
试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,
∴OA旋转了45°.
∴OA在旋转过程中所扫过的面积为
2
452
3602ππ
⨯
=.
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.
∴∠AOM=∠CON=1
2(∠AOC-∠MON)=
1
2
(90°-45°)=22.5°.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.
(3)在旋转正方形OABC的过程中,p值无变化.
证明:延长BA交y轴于E点,
则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
∴△OAE≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME≌△OMN.∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC的过程中,p值无变化.
考点:旋转的性质.
4.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.
(1)如图①,若旋转角为60°时,求BB′的长;
(2)如图②,若AB′∥x轴,求点O′的坐标;
(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)
【答案】(1)252)点O′的坐标为(85
5
,
5
5
+4);(3)点P′的坐标为(﹣
83
,36
5
.
【解析】
分析:(1)由点A、B的坐标可得出AB的长度,连接BB′,由旋转可知:AB=AB′,