高中数学必修三程序框图与算法的基本逻辑结构
高中数学必修三《程序框图与算法的基本逻辑结构》课件
第四步,输出S.
S
p
abc 2
p(p a)(p b)(p c)
上述算法的程序框图如何表示?
输出S 结束
教材5页练习
1、任意给定一个正实数,设计一个算法求以这个数为半
径的圆的面积.
开始
第一步: 给定一个正实数r; 第二步: 计算以r为半径的
输入r
圆的面积S=πr2;
S r2
第三步: 得到圆的面积S.
输入x0,y0,A,B,C
d | Ax0 By0 C | A2 B2
输出d
结束
算法的条件结构:
在某些问题的算法中,有些步骤只有在一定条件下才会被执 行,算法的流程因条件是否成立而变化.在算法的程序框图中,由 若干个在一定条件下才会被执行的步骤组成的逻辑结构,称为条 件结构,用程序框图可以表示为下面两种形式:
---用程序框、流程线及文 字说明来表示算法的图形.
在上述程序框图中, 有4种程序框,2种流程 线,它们分别有何特定的名 称和功能?
开始
输入n
i=2
求n除以i的余数r i的值增加1,仍用i表示
i>n-1或r=0?
是
r=0? 是
输出“n 不是质数”
否
否
输出“n 是质数”
结束
图形符号
名称
功能
终端框
表示一个算法的起始和结束
2a 2a 否则,输出“方程没有实数根”,结束算法。
第四步:判断 0是否成立。若是,则输出x1 x2 p; 否则,计算x1 p q, x2 p q,并输出x1, x2
输出p
开始
输入a,b,c
b2 4ac
0?
是 p b
2a
q 2a
人教版高中数学必修3 程序框图与算法的基本逻辑结构 (2)
1.下面的程序框图能判断任意输入的数x 的奇偶性,则判断框内的条件应是( )
A .m =0?
B .m =1?
C .x =0?
D .x =1?
解析:选B.由程序框图所体现的算法是要判断一个数是奇数还是偶数,看这个数除以2的余数是1还是0.由图可知应该填“m =1?”.
2.(2013·厦门质检)如图是判断“美数”的流程图,在[30,40]内的所有整数中,“美数”的个数是________.
解析:依题意可知,题中的“美数”包括12的倍数与能被3整除但不能被6整除的数.由此不难得知,在[30,40]内的“美数”有3×11、12×3、3×13这三个数.
答案:3 3.画出计算1+13+15+17+…+12 013
的值的一个程序框图. 解:相加各数的分子都是1,而分母是有规律递增的,每次增加2,引入变量S 表示和,
计数变量i ,i 的值每次增加2,则每次循环都有S =S +1i
,i =i +2,这样反复进行. 程序框图如图所示:。
高中数学人教必修3课件:程序框图与算法的基本逻辑结构
若是,则n不是质数,算法结束; 否则,将i的值增加1,仍用i表示.
• 第五步 : 判断“i>(n-1)”是否成立.
若是,则n是质数,算法结束; 否则,返回第三步。
直❖在观程的序表框示图算中法流,的程任流意线程两。个程序框连图接之程间都序存框在
流程线;
❖除起止框外,任意一个程序框都只有一条流程
线“流进” 连结点 连接程序框图的
❖输入输出框、处理框都只有一两条部流分程线“流出”
❖但是判断框一定是两条流程线“流出”
四、问题训练
1、下面四个程序框图中,从左到右 依次是()
4、下列说法错误的是() A、终端框是任何流程图都不可少的,它表明 程序的开始与结束 B、输入、输出框可用在算法中任何需要输入 和输出的位置 C、算法中要处理的数据或计算,可分别写在 不同的处理框内 D、有的算法可以不含顺序结构。
答案:D
例1、已知一个三角形的三条边长分别为 a,b,c,利用海伦公式——秦九韶公式设计一 个计算三角形面积的算法,并画出程序框 图表示.
从1.1.1节的算法可以看出,算法 步骤有明确的顺序性,而且有些步骤只 有在一定条件下才会被执行,有些步骤 在一定条件下会被重复执行。
开始
程序框图: 输入n
i =2
输入一个大于2的整 数判断是否为质数
求n除以i的余数r
i的值增加1 仍用i表示
i>n-1或r=0? 是
r=0? 是
输出 “n不是质数”
(2)条件结构的主要作用就是表示分类。有 判断框。
(3)循环结构中一定包含着条件结构,用以 控制循环的进程,避免出现“死循环”。 有判断框。
必修3课件1.1.2-3程序框图与算法的基本逻辑结构
f (a ) f ( m ) 0?
是
bm
am
ab 循环结构 2 [ 含零点的区间为[m, b]. 第四步:若 f (a ) f ( m ) 0, 则含零点的区间为 a , m];否则, 将新得到的含零点的区间仍记为[a , b]. 第五步:判断[a , b]的长度是否小于d或f(m)是否等于0. 若是,则m是方程的近似值;否则,返回第三步.
第三步:取区间中点 m
第三步 第四步
| a b | d或 f ( m ) 0?
是
输出 m
否
开始
f ( x) x2 2
否 输入精确度d 和初始值a , b
am
ab m 2
f (a ) f ( m ) 0?
是
bm
| a b | d或 f ( m ) 0?
是
否
第一步:用自然语言表述算法步骤.
第二步:确定每一个算法步骤所包含的逻辑结构,并用相 应的程序框图表示,得到该步骤的程序框图. 第三步:将所有步骤的程序框图用流程线连接起来,并 加上终端框,得到表示整个算法的程序框图.
【例2】 x2 写出用“二分法”求方程 2 0( x 0) 法. 第一步:令 f ( x ) x 2 2, 给定精确度d. 第二步:确定区间[a, b], 满足 f (a ) f (b) 0
是
步骤A 步骤B
是
步骤A
(1)
(2)
循环结构
循环体
循环体 满足条件?
否
满足条件?
是
是
否
直到型
当型
2.在学习上,我们要求对实际问题能用自然语言 设计一个算法,再根据算法的逻辑结构画出程序框 图,同时,还要能够正确阅读、理解程序框图所描 述的算法的含义,这需要我们对程序框图的画法有 进一步的理解和认识. 思考1:解关于x的方程ax+b=0的算法步骤如何设计? 第一步,输入实数a,b. 第二步,判断a是否为0.若是,执行第三步;否则, b x = 计算 ,并输出x,结束算法. a 第三步,判断b是否为0.若是,则输出“方程的解为 任意实数”;否则,输出“方程无实数解”.
高一数学必修三程序框图与算法的基本逻辑结构1
输出S
直到型结构
开始
i 1 S0
计数变量:用于记录循环次数,同时还用 于判断循环是否终止. 。 累加变量:用于输出结果,一般与计数变 量同步执行,累加一次,计数一次. 循环体
i i 1
循环终止条件
S Si
Y
i 100?
N
输出 S 结束
计数变量的取值一般都含在执行 或中止循环体的条件中。
(3)循环结构
Until(直到型)循环 While(当型)循环
循环体
满足条件?
循环体
否
满足条件?
是
是
否
执行一次循环体后,对条件 在每次执行循环体前,对 进行判断,如果条件不满足,就 条件进行判断,当条件满足, 继续执行循环体,直到条件满足 执行循环体,否则终止循环. 时终止循环. 反复执行循环体,直到条件满足 当条件满足时反复执行循环体
(1)确定循环结构的循环变量和初始条件; (2)确定算法中需要反复执行的部分,即循环体; (3)确定循环的终止条件.
例: 设计一个计算 1+2+3+…+100的值的算 法,并画出程序框图.
第1步,0+1=1. 第2步,1+2=3. 第3步,3+3=6. 第4步,6+4=10. …… 第100步,4950+100=5050.
用程序框图来表示算法,有 三种不同的基本逻辑结构: 顺序结构
求n除以i的余数r i=i+1
i≥n或r=0?
是 否 否
循环结构
r=0?
是
条件结构
n是质数
n不是质数
结束
循环结构分为当型循环结构和直到型循环结构
循环体 满足条件? 否 当型循环结构 是
循环体 否
人教A版高二数学必修三.2程序框图与算法的基本逻辑结构-【完整版】
解:程序框图如下:
开始 n=2005
a=200
当型循环 结构
a<=300? 否
输出n
n=n+1
a=a+t
t=0.05a 是
人教A版高二数学必修三.2 程序框图与算法的基本逻辑结构 教学课件-精品课件ppt(实用版)
结束
结束
人教A版高二数学必修三.2 程序框图与算法的基本逻辑结构 教学课件-精品课件ppt(实用版) 人教A版高二数学必修三.2 程序框图与算法的基本逻辑结构 教学课件-精品课件ppt(实用版)
开始
输入系数a,b,c 计算 b24ac 计算
输出X1、X2
结束
x1
b 2a
x2
b 2a
人教A版高二数学必修三.2 程序框图与算法的基本逻辑结构 教学课件-精品课件ppt(实用版)
算法初步
§1.1.2 .2 算法的基本逻辑结构
程序框图又称流程图,是一种用规定的图形,指向线及 文字说明来准确、直观地表示算法的图形。
程序框
名称
功能
终端框 表示一个算法的起始和结 (起止框) 束
输入、输 表示算法的输入和输出的
出框
信息
处理框 赋值、计算 (执行框)
判断框
判断一个条件是否成立, 用“是”、“否”或“Y”、
(3)循环结构
循环结构指的是按照一定的条件反复执行的某些算法步骤. 反复执行的步骤称为循环体.
直 到 循环体
型
否
满足条件?
是
执行一次循环体后,对条件进行 判断,如果条件不满足,就继续执行 循环体,直到条件满足时终止循环.
当 型
满足条件? 否
循环体 是
在每次执行循环体前,对条件进行 判断,当条件满足,执行循环体,否则 终止循环.
1.1.2 程序框图与算法的基本逻辑结构
输入n i=2
二、条件结构 是指在算法中通过对条件的判 断,根据条件是否成立而选择不同流向的算 法结构。
是 满足条件?
否
满足条件?
是
否
步骤1
步骤2
步骤1
步骤2
r=0?
是
否
输出“n不是质数” 输出“n是质数”
例4、已知一个三角形的三边分别为a、 b、c,请设计一个算法,求出它的面 积,并画出算法的程序框图。
1.1.2 程序框图与算法的基本逻 辑结构
程序构图
程序框图又称流程图,是一种用规定的图形、 指向线及文字说明来准确、直观地表示算法 的图形。
程序框 名称 起止框 功能 表示一个算法的起始和结束,是任何 流程图不可少的。
输入、输出框
表示一个算法输入和输出的信息,可 用在算法中任何需要输入、输出的位 置。
一类是多分支判断,有几种不同的结果. (5)在图形符号内描述的语言要非常简练清楚
算法的基本逻辑结构
任何算法的程序框图都可以用三种基本结构 的组合来实现,它们是顺序结构、条件结构、 循环结构 。 一、顺序结构 它是由若干个依次执行的处 理步骤组成的,它是任何一个算法都离不开 的一种基本算法结构。
如在下面图中,A框和B框是依次执行的, 只有在执行完A框指定的操作后,才能接 着执行B框所指定的操作。 A B
否
输出“n是质数” 输出“n不是质数”
开始
否 例1: 将“判断整数n (n>2)是否为质数” 的算法用程序框图表 示.
i的值增加1,仍用i表示
i>n-1或r=0?
是
画流程图的基本规则.
(1)使用标准的图形符号. (2)框图一般按从上到下、从左到右的方向画. (3)除判断框外,大多数流程图符号只有一个 流入点和一个流出点.判 断框具有超过一个流出 点的惟一符号. (4)判断框分两大类,一类判断框“是”与 “否”两分支的判断,而且有且仅有两个结果;另
必修3课件1.1.2-1程序框图与算法的基本逻辑结构
流程线 连接点
四种基本框图的用法
(1)起止框:框内填写开始、结束,任何程序框图 中,起止框是必不可少的;
(2)输入、输出框:框内填写输入、输出的字母、 符号等; (3)处理框(执行框):算法中需要的算式、 公式、 对变量进行赋值等要用执行框表示. (4)判断框:当算法要求在不同的情况下执行不同 的运算时,需要判断框.框内填写判断条件.
结束
i=2
否
否
输出“n是质数”
开始 输入n i=2 求n除以i的余数 i的值增加1,仍用i表示 i>n-1或r=0? 是 r=0?
否 否
输出“n是质数”
在上述程序 框图中,有4种 程序框,2种流 程线,它们分别 有何特定的名称 和功能?
是
输出“n不是质数” 结束
1.程序框图
算法的表现形态不仅有自然语言,还有程序框图 与程序.用自然语言描述算法的优点是通俗易懂,当算 法中的操作步骤都是顺序执行时比较容易理解.缺点 是如果算法中包含判断和循环,并且操作步骤较多时, 就不那么直观清晰了.
程序框图
开始 输入n i=2 求n除以i的余数 i的值增加1,仍用i表示
用程序框、流 程线及文字说明来 表示算法的图形.
i>”
是
输出“n不是质数” 结束
开始 输入n
上述表示算 求n除以i的余数 法的图形称为算 法的程序框图又 i的值增加1,仍用i表示 称流程图,其中 的多边形叫做程 i>n-1或r=0? 序框,带方向箭 是 头的线叫做流程 r=0? 是 线,你能指出程 序框图的含义吗? 输出“n不是质数”
步骤n
步骤n+1
例1.“鸡兔同笼”是我国隋朝时期的数学著作《 孙子算经》中的一个题目:“今有鸡兔同笼,上有三十 五头,下有九十四足,问鸡兔各几何.” 请您设计一个 这类问题的通用算法.并画出算法的程序框图.
【同步练习】必修三 1.1.2 程序框图与算法的基本逻辑结构-高一数学人教版(解析版)
第一章算法初步1.1.2 程序框图与算法的基本逻辑结构一、选择题1.a表示“处理框”,b表示“输入、输出框”,c表示“起止框”,d表示“判断框”,以下四个图形依次为A.abcd B.dcab C.bacd D.cbad【答案】D【解析】根据程序框图中各图框的含义,易知第一个图形是“起止框”,第二个图形是“输入、输出框”,第三个图形是“处理框”,第四个图形是“判断框”,所以选D.2.程序框图中具有超过一个退出点的框图符号是A.起止框B.输入框C.处理框D.判断框【答案】D【解析】判断框是具有超出一个退出点的框图符号.3.程序框图中,具有赋值、计算功能的是A.处理框B.输入、输出框C.终端框D.判断框【答案】A【解析】在算法框图中处理框具有赋值和计算功能.4.下列关于程序框图的说法正确的是A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念【答案】A【解析】由于算法设计时要求有执行的结果,故必须要有输出框,对于变量的赋值,则可以通过处理框完成,故算法设计时不一定要用输入框,所以B选项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象、容易理解,在步骤上表达简单了许多,所以C选项是错误的;程序框图就是流程图,所以D选项也是错误的.故选A.5.关于程序框图的框图符号的理解,正确的是①任何一个程序框图都必须有起止框;②输入框、输出框可以在算法中任何需要输入、输出的位置出现;③判断框是唯一具有超过一个退出点的框图符号;④对于一个程序来说,判断框内的条件是唯一的.A.1个B.2个C.3个D.4个【答案】C【解析】任何一个程序都有开始和结束,从而必须有起止框;输入、输出框可以在算法中任何需要输入、输出的位置出现,判断框内的条件不是唯一的,如a>b?也可以写为a≤b?.但其后步骤需相应调整,故①②③正确,④错误.6.程序框图叙述正确的是A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是【答案】C【解析】由程序框的算法功能可知选项C正确.7.执行下面的程序框图,如果输入t∈[-1,3],则输出的s属于A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]【答案】A【解析】因为t∈[-1,3],当t∈[-1,1)时,s=3t∈[-3,3);当t∈[1,3]时,s=4t-t2=-(t2-4t)=-(t-2)2+4∈[3,4]所以s∈[-3,4].二、填空题8.如图所示的程序框图,输出的结果是S=7,则输入的A值为____________.【答案】3【解析】该程序框图的功能是输入A,计算2A+1的值.由2A+1=7,解得A=3.9.在程序框图中,表示输入、输出框的是____________.【答案】平行四边形框【解析】平行四边形框表示数据的输入或者结果的输出.10.如图所示的程序框图中,当输入的数为3时,输出的结果为____________.【答案】8【解析】∵3<5,∴y=32-1=8.11.以下给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②输入框只能紧接开始框,输出框只能紧接结束框;③判断框是唯一具有超出一个退出点的符号.其中正确说法的个数是____________.【答案】2【解析】①③正确.因为任何一个程序框图都有起止框;输入、输出框可以在程序框图中的任何需要位置;判断框有一个入口、两个出口.12.阅读如图的框图,运行相应的程序,输出S的值为____________.【答案】-4【易错易混】在设计具体的程序框图时,循环结构的判断框中的条件可能根据选择模型的不同而不同,也可能由于具体算法的特点而不同,但不同的条件应该有相同的确定的结果.三、解答题13.用程序框图描述算法:已知梯形的两底边长分别为a,b,高为h,求梯形面积.【答案】答案详见解析.【解析】梯形面积S=12(上底+下底)×高又∵梯形的两底边长分别为a,b,高为h,故程序算法如下:第一步:输入a,b,h的值,第二步:计算S=()2a b h+,第三步:输出S,程序框图如下:14.已知函数y=2x+3,设计一个算法,若给出函数图象上任一点的横坐标x(由键盘输入),求该点到坐标原点的距离,并画出程序框图.【解析】算法如下:第一步,输入横坐标的值x.第二步,计算y=2x+3.第三步,计算d=x2+y2.第四步,输出D.程序框图如图:。
人教版高中数学必修三第一章第1节 《1-1-2 程序框图与算法的基本逻辑结构》课件(共22张PPT)
第三步:计算Z2=A2+B2; 第四步:计算 d | Z1 | ;
Z2
第五步:输出d.
程序框图
开始 输入x0,y0,A,B,C
Z1=Ax0+By0+C Z2=A2+B2
d | z1 | z2
输出d 结束
1.算法的描述
课堂小结
(1)文字描述
(2)程序框图:由于图形的描述方法既形象,又直 观,设计者的思路表达得清楚易懂,便于检查修 改,所以得到广泛的应用.
1.顺序结构:按照步骤依次执行的一个算法,称 为具有“顺序结构”的算法,或者称为算法的 顺序结构.
2.顺序结构的流程图
语句A 语句B
顺序结构是最简单的算 法结构,语句与语句之间,框 与框之间是按从上到下的 顺序进行的.它是由若干个 处理步骤组成的,这是任何 一个算法都离不开的基本 结构.
3.画顺序结构程序框图时注意事项
判断框
功能 表示一个算法的 起始和结束 表示一个算法输 入和输出的信息
赋值、计算
判断某一条件是否成 立,成立时在出口处标 明 “ 是 ” 或 “ Y”, 不 成立时标明“否”或 “N”.
开始 输入n
i=2
求的n余除数以ri i=i+1
否
i≥n或r=0?
是 1
1
r=0? 是
n不是质数
否
n是质数
结束
二、顺序结构及框图表示
练习
任意给定一个正实数a,试设计一个算法求 以a为直径的圆的面积。 解 第一步:输入a的值.
第二步:________________________. 第三步:________________________. 第四步:输出圆的面积的值.
程序框图与算法的基本逻辑结构
图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯ 的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2c b a ++.这个公式被称为海伦—秦九韶公式)算法步骤如下:第一步,输入三角形三条边的边长a,b,c.第二步,计算p=2c b a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S.程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构.顺序结构可以用程序框图表示为语句n语句n+1件是______________. 答案:i>10.构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:随堂练习1、设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图. 相应的程序框图如右:2、(1)设计算法,求ax+b=0的解,并画出流程图.程序框图如下:第3课时循环结构当型循环结构直到型循环结构直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.应用示例例1设计一个计算1+2+……+100的值的算法,并画出程序框图.第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.当型循环直到型循环变式训练例1 设计框图实现1+3+5+7+…+131的算法.第一步,赋初值i=1,sum=0.第二步,sum=sum+i,i=i+2.第三步,如果i≤131,则反复执第二步;否则,执行下一步.第四步,输出sum.第五步,结束.程序框图如右图知能训练设计一个算法,求1+2+4+…+249的值,并画出程序框图.(2)算法步骤中的“第四步”可以用条件结构来表示(如下图).在这个条件结构中,“否”分支用“a=m”表示含零点的区间为[m,b],并把这个区间仍记成[a,b];“是”分支用“b=m ”表示含零点的区间为[a,m],同样把这个区间仍记成[a,b].(3)算法步骤中的“第五步”包含一个条件结构,这个条件结构与“第三步”“第四步”构成一个循环结构,循环体由“第三步”和“第四步”组成,终止循环的条件是“|a-b|<d或f(m)=0”.在“第五步”中,还包含由循环结构与“输出m”组成的顺序结构(如下图).(4)将各步骤的程序框图连接起来,并画出“开始”与“结束”两个终端框,就得到了表示整个算法的程序框图(如下图).解:将实际问题转化为数学模型,该问题就是要求1+2+4+……+263的和.程序框图如下:点评:对于开放式探究问题,我们可以建立数学模型(上面的题目可以与等比数列的定义、性质和公式联系起来)和过程模型来分析算法,通过设计算法以及语言的描述选择一些成熟的办法进行处理.例3 乘坐火车时,可以托运货物.从甲地到乙地,规定每张火车客票托运费计算方法是:行李质量不超过50 kg 时按0.25元/kg ;超过50 kg 而不超过100 kg 时,其超过部分按0.35元/kg ;超过100 kg 时,其超过部分按0.45元/kg .编写程序,输入行李质量,计算出托运的费用.分析:本题主要考查条件语句及其应用.先解决数学问题,列出托运的费用关于行李质量的函数关系式.设行李质量为x kg ,应付运费为y 元,则运费公式为:y=⎪⎩⎪⎨⎧>-+⨯+⨯≤<-+⨯≤<,100),100(45.05035.05025.0,10050),50(35.05025.0,500,25.0x x x x x x整理得y=⎪⎩⎪⎨⎧>-≤<-≤<.100,1545.0,10050,535.0,500,25.0x x x x x x要计算托运的费用必须对行李质量分类讨论,因此要用条件语句来实现.解:算法分析:第一步,输入行李质量x.第二步,当x≤50时,计算y=0.25x,否则,执行下一步.第三步,当x≤100,计算y=0.35x-5,否则,计算y=0.45x-15.第四步,输出y.程序框图如下:课堂小节(1)进一步熟悉三种逻辑结构的应用,理解算法与程序框图的关系.(2)根据算法步骤画出程序框图.作业习题1.1B组1、2.设计感想本节是前面内容的概括和总结,在回忆前面内容的基础上,选择经典的例题,进行了详尽的剖析,这样降低了学生学习的难度.另外,本节的练习难度适中,并且多为学生感兴趣的问题,这样为学生学好本节内容作好充分准备,希望大家喜欢这一节课.。
人教版高中数学必修三第一章程序框图与算法的基本逻辑结构ppt
开始 输入n
i=2
求的n余除数以r i i=i+1
否
i≥n或r=0?
是 1
1
r=0? 是
n不是质数
否
n是质数
结束
从上面的程序框图中,不难看出以下三种不同的逻 辑结构.
输入n
求n除以i 的余数r
i=i+1
否
r=0?
是
i=2
否
n不是质数
n是质数
i≥n或r=0?
是
尽管不同的算法千差万别,但它们都是由三种基 本的逻辑结构构成的,这三种逻辑结构就是顺序结构、 循环结构、选择结构.下面分别介绍这三种结构.
4.画流程图的规则
为了使大家彼此之间能够读懂各自画出的框图, 必须遵守一些共同的规则,下面对一些常用的规则 作一简单的介绍.
(1)使用标准的框图符号. (2)框图一般按从上到下、从左到右的方向画. (3)除判断框外,大多数程序框图符号只有一个进入 点和一个退出点,判断框是具有超过一个退出点的 唯一符号. (4)一类判断框是“是”与“否”两分支的判断,而 且有且仅有两个结果;另一类是多分支判断,有几种 不同的结果.
1.1.2程序框图与算法的基本逻辑结构
新课引入
算法可以用自然语言来描述,但为了使算法的程 序或步骤表达得更为直观,我们更经常地用图形方式 来表达它.
例如上一节“例1.任意给定一个大于1的整数n, 试设计一个程序或步骤对n是否为质数做出判定”的
算法可以用以下形式来表达.
任意给定一个大于1的整数n,试设计一个程序 或步骤对n是否为质数作出判断。
i>n-1或r=0? 是
r=0? 否
是
n不是质数
n是质数
结束
《程序框图与算法的基本逻辑结构》 讲义
《程序框图与算法的基本逻辑结构》讲义一、引言在当今数字化的时代,计算机程序已经深入到我们生活的方方面面。
从智能手机中的各种应用,到工业生产中的自动化控制,无一不是通过程序来实现的。
而程序的核心就是算法,算法的设计和表达则离不开程序框图。
程序框图是一种直观、清晰地展示算法流程的工具,它能够帮助我们更好地理解和设计算法。
在这篇讲义中,我们将深入探讨程序框图与算法的基本逻辑结构。
二、程序框图的基本概念程序框图,又称为流程图,是用一些规定的图形、流程线及文字说明来准确、直观地表示算法的图形。
它由一些图形符号和连接这些符号的流程线组成。
常见的图形符号包括:1、起止框:表示算法的开始和结束,通常是一个圆角矩形。
2、输入输出框:用于表示数据的输入或输出,一般是一个平行四边形。
3、处理框:用于表示对数据的处理操作,如计算、赋值等,是一个矩形。
4、判断框:用于根据条件决定程序的流向,是一个菱形。
5、流程线:用于连接各个图形符号,表示算法的执行顺序。
通过这些图形符号的组合和连接,我们可以清晰地展示算法的步骤和逻辑。
三、算法的基本逻辑结构算法的基本逻辑结构主要有三种:顺序结构、选择结构和循环结构。
1、顺序结构顺序结构是最简单的算法结构,也是最基本的结构。
在顺序结构中,算法的执行按照从上到下的顺序依次进行,每一个步骤都必须在前一个步骤完成后才能执行。
例如,要计算两个数的和,首先输入两个数 a 和 b,然后进行相加运算 c = a + b,最后输出结果 c。
这个过程就是按照顺序结构进行的。
2、选择结构选择结构也称为条件结构,是根据给定的条件进行判断,然后根据判断的结果决定执行不同的分支。
例如,判断一个数是否为正数,如果是正数则输出“该数为正数”,否则输出“该数为非正数”。
这里就用到了选择结构,通过判断条件来决定输出不同的结果。
3、循环结构循环结构是指在一定条件下,重复执行一段算法。
循环结构分为当型循环和直到型循环。
当型循环是在满足条件时执行循环体,直到条件不满足时退出循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y x=(c2b1 -c1b2)/(a1b2 -a2b1)
y=(c2b1 -c1b2)/(a1b2 -a2b1)
输出“x= ”; ,“y= ”; 输出“输入数据不合题意
结束
否
是
是
r=0?
否
N不是质数
结束
N是质数
构成程序框的图形符号及其作用
图形符号
名称
功能
终端框(起止框) 一个算法的起始和结束
输入、输出框 一个算法输入和输出的信息
处理框(执行框) 赋值、计算
判断框
判断某一条件是否成立,出 口成立标“是”不成立标 “否”
或
流程线
连接程序框
连接点
连接程序框图的两部分
开始 输入n
满足条件? 是
步骤A
否
步骤B
否 满足条件?
是
步骤A
例4 任意给定3个正
实数,设计一个算法,判 断分别以这3个数为三 边边长的三角形是否存 在.画出这个算法的程 序框图.
条件结构
算法步骤如下: 第一步,输入3个正实数a,b,c. 第二步,判断a+b>c,a+c>b, b+c>a是否同时成立. 若是,则存在这样的三角形; 否则,不存这样的三角形.
• P.20 习题A组第3题 P.20 习题1.1B组第1题
P.20 习题A组第3题
算法步骤: 第一步,输入人数x,设收取的卫生费 为y元.
第二步,判断x与3的大小,若x>3,则 费用为m= 5+(x-3)×1.2=1.2x+1.4; 若x≤3,则费用为m=5.
第三步,输出m.
开始 输入x
x>3? Y
y=1.2x+1.4
N y=5
输出y
结束
P.20 习题1.1B组第1题
算法步骤: 第一步,输入a1,b1,c1,
a2,b2,c2. 第二步,计算 x=(c2b1 -c1b2)/(a1b2 -a2b1) y=(c2b1 -c1b2)/(a1b2 -a2b1) 第三步,输出x,y
开始
输入a1,b1,c1, a2 。b2, c2
条件结构
例5 设计一个求解一元二次方程
a2xbx c0
的算法,并画出程序框图表示.
例5程序框图也可设计为
是
x b 2a
输出x
开始
输入a,b,c
Δ= b 2 -4ac
否 Δ≥0?
是
Δ=0? 否
x1
b 2a
x2
b 2a
输出x 1 , x 2
方程无实数根
结束
0(x 0)
例6、设计一个算法计算分段函数 y 1(0 x 1)
• 算法步骤有明确的顺序性,可以用 自然语言来描述,但通常缺乏简便 性。
• 为了使算法的程序或步骤表达得更 为直观、准确,我们更经常地用图 形方式来表示它。
开始
判断整数n(n>2)是否为质数
输入n
i=2
1.程序框图
求n除以i的余数r
一般用i=i+1表示--- i的值增加1,仍用i表示
i>n-1或r=0?
i=2
顺序结构
求n除以i的余数r i的值增加1,仍用i表示
i>n-1或r=0?
否
是
是
r=0?
否
N不是质数
结束
N是质数
循环结构 条件结构
2.程序框图的基本逻辑结构
求n除以i的余数r
输入n i=2
顺序结构
是
r=0?
i的值增加1,仍用i表示 否
i>n-1或r=0? 是
循环结构
否
N不是质数
N是质数
条件结构
你能说出这三种基本逻辑结构的特点吗?
(1)顺序结构 ——顺序进行
流程线将程序框自上而下地连接,按顺序执行算法 步骤。
步骤n
步骤n+1
例3、已知一个三角形的三边分别为a、b、c,利用海伦公式设 计一个算法,求出它的面积,并画出算法的程序框图。
开始
输入a,b,c
a+b+c
p=
2
S= p(p-a)(p-b)(p-c) .
序框图。
x( x 1)
, 的函数值,并画出程
第一步、输入x
第二步、判断“x<0”是否成立, 若
是,则输出y=0,否则执行第三步;
第三步、判断“x<1”是否成立, 若
是,则输出y=1,否则输出y=x。
小结
• 除起止框外,任意一个程序都只有一条流 程线“流进”。
• 输入输出框,处理框只一条线“流出”; 判断框必有两条线“流出”。
输出S 结束
练习
1、已知摄氏温度C与华氏温度F之间的关系为
F=1.8C+32。设计一个由摄氏温度求华氏温度
的算法,并画出相应的程序框图。
算法步骤:
第一步:输入摄氏温度;
第二步:计算1.8C+32,
并
将这个值记为华
氏温度F;
第三步:输出华氏温度F。
(2)条件结构 ——表示分类
判断条件是否成立,以此决定算法的流向
练习
1、下列关于程序框图的说法正确的是 ( )
A、程序框图是描述算法的语言
B、程序框图可以没有输出框,但必须要有输入框给变量赋值
C、程序框图可以描述算法,但不如自然语言描述算法直观
D、程序框图和流程图不是一个概念
2、下列功能“
”没有功能的是 ( )
A、赋值 B、计算 C、判断 D、 以上都不对
3、已知函数 y x -3 ,设计一个算法求相应 的函数值,并画出程序框图。