陆佩文版无机材料科学基础习题及解答第五章扩散
无机材料科学基础(陆佩文)课后习题教材
材料科学基础习题晶体结构2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
解:(1)h:k:l=1/2:1/3:1/6=3:2:1,∴该晶面的米勒指数为(321);(2)(321)5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
解:MgO为NaCl型,O2-做密堆积,Mg2+填充空隙。
rO2-=0.140nm,rMg2+=0.072nm,z=4,晶胞中质点体积:(4/3×πrO2-3+4/3×πrMg2+3)×4,a=2(r++r-),晶胞体积=a3,堆积系数=晶胞中MgO体积/晶胞体积=68.5%,密度=晶胞中MgO质量/晶胞体积=3.49g/cm3。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
解:体心:原子数 2,配位数 8,堆积密度 55.5%;面心:原子数 4,配位数 6,堆积密度 74.04%;六方:原子数 6,配位数 6,堆积密度 74.04%。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
解:u=z1z2e2N0A/r0×(1-1/n)/4πε0,e=1.602×10-19,ε0=8.854×10-12,N0=6.022×1023,NaCl:z1=1,z2=1,A=1.748,n Na+=7,n Cl-=9,n=8,r0=2.819×10-10m,u NaCl=752KJ/mol;MgO:z1=2,z2=2,A=1.748,n O2-=7,n Mg2+=7,n=7,r0=2.10×10-10m,u MgO=392KJ/mol;∵u MgO> u NaCl,∴MgO的熔点高。
无机材料科学基础 陆佩文 课后答案
2-1 名词解释(a )弗伦克尔缺陷与肖特基缺陷;(b )刃型位错和螺型位错 (c )类质同象与同质多晶解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(b )滑移方向与位错线垂直的位错称为刃型位错。
位错线与滑移方向相互平行的位错称为螺型位错。
(c )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。
同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。
2-6(1)在CaF 2晶体中,弗仑克尔缺陷形成能为2.8eV ,肖特基缺陷的生成能为5.5eV ,计算在25℃和1600℃时热缺陷的浓度?(k =1.38×10-23J/K )(2)如果CaF 2晶体中,含有百万分之一的YF 3杂质,则在1600℃时,CaF 2晶体中时热缺陷占优势还是杂质缺陷占优势?说明原因。
解:(1)弗仑克尔缺陷形成能为2.8eV ,小于肖特基缺陷形成能5.5eV ,所以CaF 2晶体中主要是弗仑克尔缺陷,肖特基缺陷可忽略不计。
-----------1分当T =25℃=298K 时,热缺陷浓度为:2423192981006.2)2981038.1210602.18.2exp()2exp(---⨯=⨯⨯⨯⨯⨯-=∆-=⎪⎭⎫ ⎝⎛kT G N n f ----2分 当T =1600℃=1873K 时,热缺陷浓度为:423191873107.1)18731038.1210602.18.2exp()2exp(---⨯=⨯⨯⨯⨯⨯-=∆-=⎪⎭⎫ ⎝⎛kT G N n f -----2分 (2)CaF 2中含百万分之一(10-6)的YF 3时的杂质缺陷反应为:Ca F Ca CaF V F Y YF ''++−−→−•62223 由此可知:[YF3]=2[Ca V ''],所以当加入10-6YF3时,杂质缺陷的浓度为: 73105][21][-⨯==''YF V Ca 杂--------------------1分 此时,在1600℃下的热缺陷计算为:Cai Ca V Ca Ca ''+→•• x x +5×10-7 则:8241089.2)107.1()exp(][]][[--••⨯=⨯=∆-==''kTG k Ca V Ca f Ca Ca i 即:871089.21)105(--⨯=⨯+x x ,x ≈8.1×10-4 热缺陷浓度: 4101.8][-⨯=≈''x V Ca热------------------1分显然:][][热杂Ca CaV V ''>'',所以在1600℃时是弗仑克尔热缺陷占优势 2-10 ZnO 是六方晶系,a=0.3242nm ,c=0.5195nm ,每个晶胞中含2个ZnO 分子,测得晶体密度分别为5.74,5.606 g/cm 3,求这两种情况下各产生什么型式的固溶体?解:六方晶系的晶胞体积 V===4.73cm 3在两种密度下晶胞的重量分别为W 1=d 1v=5.74×4.73×10-23=2.72×10-22(g) W 2=d 2v=5.606×4.73×10-23=2.65×10-22(g)理论上单位晶胞重W= =2.69(g)∴密度是d1时为间隙型固溶体,是d2时为置换型固溶体。
第5章习题及答案-无机材料科学基础教学教材
第5章习题及答案-无机材料科学基础教学教材第5章习题及答案-无机材料科学基础第五章固体表面与界面5-1 名词解释驰豫表面重构表面定向作用诱导作用色散作用范德华力润湿角临界表面张力粘附功阳离子交换容量聚沉值触变性滤水性可塑性5-2 何谓表面张力和表面能?在固态和液态这两者有何差别?5-3 在石英玻璃熔体下 20cm处形成半径5×10-8m的气泡,熔体密度为 2200kg/m3,表面张力为0.29N/m,大气压力为1.01×105Pa,求形成此气泡所需最低内压力是多少?5-4 (1)什么是弯曲表面的附加压力?其正负根据什么划分?(2)设表面张力为0.9J/m2,计算曲率半径为0.5μm、5μm的曲面附加压力?5-5什么是吸附和粘附?当用焊锡来焊接铜丝时,用挫刀除去表面层,可使焊接更加牢固,请解释这种现象?5-6在高温将某金属熔于Al2O3片上。
(1)若Al2O3的表面能估计为1J/m2,此熔融金属的表面能也与之相似,界面能估计约为0.3J/m2,问接触角是多少?(2)若液相表面能只有Al2O3表面能的一半,而界面能是Al2O3表面张力的2倍,试估计接触角的大小?5-7在20℃及常压下,将半径为10-3m的汞分散成半径为10-9m的小汞滴,求此过程所需作的功是多少?已知20℃时汞的表面张力0.470N/m。
5-8在2080℃的Al2O3(L)内有一半径为10-8m的小气泡,求该气泡所受的附加压力是多大?已知2080℃时Al2O3(L)的表面张力为0.700N/m。
5-9 20℃时苯的表面张力为0.0289N/m,其饱和蒸气压为10013Pa,若在20℃时将苯分散成半径为10-6m的小滴,计算:(1)苯滴上的附加压力;(2)苯滴上的蒸气压与平面上苯液饱和蒸气压之比。
5-10 20℃时,水的饱和蒸气压力为2338Pa,密度为998.3kg/m3,表面张力为0.07275N/m,求半径为10-9m的水滴在20℃时的饱和蒸气压为多少?5-11若在101325Pa,100℃的水中产生了一个半径为10-8m 的小气泡,问该小气泡能否存在并长大?此时水的密度为958kg/m3,表面张力为0.0589N/m。
武汉理工大学出版社无机材料科学基础教程陆佩文考试题库
最新-无机材料科学基础试卷7一、名词解释(20分)1、正尖晶石、反尖晶石;2、线缺陷、面缺陷;3、晶子学说、无规则网络学说;4、可塑性、晶胞参数;二、选择题(10分)1、下列性质中()不是晶体的基本性质。
A、自限性B、最小内能性C、有限性D、各向异性2、晶体在三结晶轴上的截距分别为2a、3b、6c。
该晶面的晶面指数为()。
A、(236)B、(326)C、(321)D、(123)3、依据等径球体的堆积原理得出,六方密堆积的堆积系数()立方密堆积的堆积系数。
A、大于B、小于C、等于D、不确定4、某晶体AB,A—的电荷数为1,A—B键的S=1/6,则A+的配位数为()。
A、4B、12C、8D、65、在单位晶胞的CaF2晶体中,其八面体空隙和四面体空隙的数量分别为()。
A、4,8B、8,4C、1,2D、2,46、在ABO3(钙钛矿)型结构中,B离子占有()。
A、四面体空隙B、八面体空隙C、立方体空隙D、三方柱空隙晶体7、在硅酸盐熔体中,当R=O/Si减小时,相应熔体组成和性质发生变化,熔体析晶能力(),熔体的黏度(),低聚物数量()。
A、增大B、减小C、不变D、不确定8、当固体表面能为1.2J/m2,液体表面能为0.9 J/m2,液固界面能为1.1 J/m2时,降低固体表面粗糙度,()润湿性能。
A、降低B、改善C、不影响9、一种玻璃的组成为32.8%CaO,6.0 Al2O3%,61.2 SiO2%,此玻璃中的Al3+可视为网络(),玻璃结构参数Y=()。
A、变性离子,3.26B、形成离子,3.26C、变性离子,2.34D、形成离子,2.3410、黏土泥浆胶溶必须使介质呈()。
A、酸性B、碱性C、中性11、可以根据3T曲线求出熔体的临界冷却速率。
熔体的临界冷却速率越小,就()形成玻璃。
A、越难B、越容易C、很快D、缓慢12、晶体结构中一切对称要素的集合称为()。
A、对称型B、点群C、微观对称的要素的集合D、空间群三、填空(15分)1、a=b≠c α=β= 900,γ=1200的晶体属()晶系。
(完整版)无机材料科学基础习题与解答完整版
(完整版)⽆机材料科学基础习题与解答完整版第⼀章晶体⼏何基础1-1 解释概念:等同点:晶体结构中,在同⼀取向上⼏何环境和物质环境皆相同的点。
空间点阵:概括地表⽰晶体结构中等同点排列规律的⼏何图形。
结点:空间点阵中的点称为结点。
晶体:内部质点在三维空间呈周期性重复排列的固体。
对称:物体相同部分作有规律的重复。
对称型:晶体结构中所有点对称要素(对称⾯、对称中⼼、对称轴和旋转反伸轴)的集合为对称型,也称点群。
晶类:将对称型相同的晶体归为⼀类,称为晶类。
晶体定向:为了⽤数字表⽰晶体中点、线、⾯的相对位置,在晶体中引⼊⼀个坐标系统的过程。
空间群:是指⼀个晶体结构中所有对称要素的集合。
布拉菲格⼦:是指法国学者 A.布拉菲根据晶体结构的最⾼点群和平移群对称及空间格⼦的平⾏六⾯体原则,将所有晶体结构的空间点阵划分成14种类型的空间格⼦。
晶胞:能够反应晶体结构特征的最⼩单位。
晶胞参数:表⽰晶胞的形状和⼤⼩的6个参数(a、b、c、α、β、γ).1-2 晶体结构的两个基本特征是什么?哪种⼏何图形可表⽰晶体的基本特征?解答:⑴晶体结构的基本特征:①晶体是内部质点在三维空间作周期性重复排列的固体。
②晶体的内部质点呈对称分布,即晶体具有对称性。
⑵14种布拉菲格⼦的平⾏六⾯体单位格⼦可以表⽰晶体的基本特征。
1-3 晶体中有哪些对称要素,⽤国际符号表⽰。
解答:对称⾯—m,对称中⼼—1,n次对称轴—n,n次旋转反伸轴—n螺旋轴—ns ,滑移⾯—a、b、c、d1-5 ⼀个四⽅晶系的晶⾯,其上的截距分别为3a、4a、6c,求该晶⾯的晶⾯指数。
解答:在X、Y、Z轴上的截距系数:3、4、6。
截距系数的倒数⽐为:1/3:1/4:1/6=4:3:2晶⾯指数为:(432)补充:晶体的基本性质是什么?与其内部结构有什么关系?解答:①⾃限性:晶体的多⾯体形态是其格⼦构造在外形上的反映。
②均⼀性和异向性:均⼀性是由于内部质点周期性重复排列,晶体中的任何⼀部分在结构上是相同的。
无机材料科学基础课后习题答案(5).
5.1试述影响置换型固溶体的固溶度的条件。
解:1. 离子尺寸因素从晶体稳定性考虑,相互替代的离子尺寸愈相近,则固溶体愈稳定。
若以r1和r2分别代表半径大和半径小的两种离子的半径。
当它们半径差< 15%时,形成连续置换型固溶体。
若此值在15~30%时,可以形成有限置换型固溶体。
而此值>30%时,不能形成固溶体。
2、晶体的结构类型形成连续固溶体的两个组分必须具有完全相同的晶体结构。
结构不同最多只能生成有限固溶体。
3、离子的电价因素只有离子价相同或复合替代离子价总和相同时,才可能形成连续置换型固溶体。
4、电负性因素电负性相近,有利于固溶体的生成。
5.2 从化学组成、相组成考虑,试比较固溶体与化合物、机械混合物的差别。
解:从化学组成、相组成考虑,固溶体、化合物和机械混合物的区别列下表5-1比较之。
表5-1 固溶体、化合物和机械混合物比较(以AO溶质溶解在B2O3溶剂中为例)比较项固溶体化合物机械混合物化学组成B2-x A x O(x =0~2)AB2O4AO+B2O3相组成均匀单相单相两相有界面5.3试阐明固溶体、晶格缺陷和非化学计量化合物三者之间的异同点。
列出简明表格比较。
解:固溶体、晶格缺陷和非化学计量化合物都属晶体结构缺陷,但它们又各有不同,现列表5-2比较之。
表5-2 固溶体、晶格缺陷和非化学计量化合物比较分类形成原因形成条件缺陷反应固溶式溶解度热缺陷肖特基缺陷晶格热振动0K以上0MX只受温度控制弗伦克尔缺陷M M =X X=MX固溶体无限置换型固溶体掺杂溶解<15% ,A2+电价=B2+电价,AO结构同BO,电负性相近AO B1-x A x O受温度控制x=0~1有限固间隙型间隙离子半径小,晶YF3掺杂量<固溶度,受温度控制溶体体结构开放,空隙大组分缺陷<30% ,Ca2+电价≠Zr4+电价2CaOCaO掺杂量<固溶度,受温度控制非化学计量化合物阳离子缺位环境中气氛性质和压变价元素氧化物在氧化气氛中O2(g)→2Fe+V+O O[h][P O]阴离子间隙O2(g)→+U(2h)[]阳离子间隙力变化变价元素氧化物在还原气氛中ZnO+2e′+O2(g)[]阴离子缺位O O→+2+O2(g)[ V]5.4试写出少量MgO掺杂到Al2O3中和少量YF3掺杂到CaF2中的缺陷方程。
材料科学基础A习题答案第5章[1]
材料科学基础A习题答案第5章[1]材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
无机材料物理化学习题及解答
第一章 晶体结构缺陷习题与解答1.1 名词解释(a )弗伦克尔缺陷与肖特基缺陷;(b )刃型位错和螺型位错解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(b )滑移方向与位错线垂直的位错称为刃型位错。
位错线与滑移方向相互平行的位错称为螺型位错。
1.2试述晶体结构中点缺陷的类型。
以通用的表示法写出晶体中各种点缺陷的表示符号。
试举例写出CaCl 2中Ca 2+置换KCl 中K +或进入到KCl 间隙中去的两种点缺陷反应表示式。
解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。
在MX 晶体中,间隙原子的表示符号为M I 或X I ;空位缺陷的表示符号为:V M 或V X 。
如果进入MX 晶体的杂质原子是A ,则其表示符号可写成:A M 或A X (取代式)以及A i (间隙式)。
当CaCl 2中Ca 2+置换KCl 中K +而出现点缺陷,其缺陷反应式如下:CaCl 2−→−KCl •K Ca +'k V +2Cl ClCaCl 2中Ca 2+进入到KCl 间隙中而形成点缺陷的反应式为:CaCl 2−→−KCl••i Ca +2'k V +2Cl Cl1.3在缺陷反应方程式中,所谓位置平衡、电中性、质量平衡是指什么?解:位置平衡是指在化合物M a X b 中,M 格点数与X 格点数保持正确的比例关系,即M :X=a :b 。
电中性是指在方程式两边应具有相同的有效电荷。
质量平衡是指方程式两边应保持物质质量的守恒。
1.4(a )在MgO 晶体中,肖特基缺陷的生成能为6ev ,计算在25℃和1600℃时热缺陷的浓度。
(b )如果MgO 晶体中,含有百万分之一mol 的Al 2O 3杂质,则在1600℃时,MgO 晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。
无机非金属材料科学基础课后习题及答案
第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
武汉理工大学出版社无机材料科学基础教程陆佩文考试题库
最新-无机材料科学基础试卷7一、名词解释(20分)1、正尖晶石、反尖晶石;2、线缺陷、面缺陷;3、晶子学说、无规则网络学说;4、可塑性、晶胞参数;二、选择题(10分)1、下列性质中()不是晶体的基本性质。
A、自限性B、最小内能性C、有限性D、各向异性2、晶体在三结晶轴上的截距分别为2a、3b、6c。
该晶面的晶面指数为()。
A、(236)B、(326)C、(321)D、(123)3、依据等径球体的堆积原理得出,六方密堆积的堆积系数()立方密堆积的堆积系数。
A、大于B、小于C、等于D、不确定4、某晶体AB,A—的电荷数为1,A—B键的S=1/6,则A+的配位数为()。
A、4B、12C、8D、65、在单位晶胞的CaF2晶体中,其八面体空隙和四面体空隙的数量分别为()。
A、4,8B、8,4C、1,2D、2,46、在ABO3(钙钛矿)型结构中,B离子占有()。
A、四面体空隙B、八面体空隙C、立方体空隙D、三方柱空隙晶体7、在硅酸盐熔体中,当R=O/Si减小时,相应熔体组成和性质发生变化,熔体析晶能力(),熔体的黏度(),低聚物数量()。
A、增大B、减小C、不变D、不确定8、当固体表面能为1.2J/m2,液体表面能为0.9 J/m2,液固界面能为1.1 J/m2时,降低固体表面粗糙度,()润湿性能。
A、降低B、改善C、不影响9、一种玻璃的组成为32.8%CaO,6.0 Al2O3%,61.2 SiO2%,此玻璃中的Al3+可视为网络(),玻璃结构参数Y=()。
A、变性离子,3.26B、形成离子,3.26C、变性离子,2.34D、形成离子,2.3410、黏土泥浆胶溶必须使介质呈()。
A、酸性B、碱性C、中性11、可以根据3T曲线求出熔体的临界冷却速率。
熔体的临界冷却速率越小,就()形成玻璃。
A、越难B、越容易C、很快D、缓慢12、晶体结构中一切对称要素的集合称为()。
A、对称型B、点群C、微观对称的要素的集合D、空间群三、填空(15分)1、a=b≠c α=β= 900,γ=1200的晶体属()晶系。
无机材料物理化学习题及解答
晶体结构缺陷习题与解答1.1 名词解释(a )弗伦克尔缺陷与肖特基缺陷;(b )刃型位错和螺型位错解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(b )滑移方向与位错线垂直的位错称为刃型位错。
位错线与滑移方向相互平行的位错称为螺型位错。
1.2试述晶体结构中点缺陷的类型。
以通用的表示法写出晶体中各种点缺陷的表示符号。
试举例写出CaCl 2中Ca 2+置换KCl 中K +或进入到KCl 间隙中去的两种点缺陷反应表示式。
解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。
在MX 晶体中,间隙原子的表示符号为M I 或X I ;空位缺陷的表示符号为:V M 或V X 。
如果进入MX 晶体的杂质原子是A ,则其表示符号可写成:A M 或A X (取代式)以及A i (间隙式)。
当CaCl 2中Ca 2+置换KCl 中K +而出现点缺陷,其缺陷反应式如下:CaCl 2−→−KCl∙K Ca +'k V +2Cl ClCaCl 2中Ca 2+进入到KCl 间隙中而形成点缺陷的反应式为:CaCl 2−→−KCl∙∙i Ca +2'k V +2Cl Cl1.3在缺陷反应方程式中,所谓位置平衡、电中性、质量平衡是指什么?解:位置平衡是指在化合物M a X b 中,M 格点数与X 格点数保持正确的比例关系,即M :X=a :b 。
电中性是指在方程式两边应具有相同的有效电荷。
质量平衡是指方程式两边应保持物质质量的守恒。
1.4(a )在MgO 晶体中,肖特基缺陷的生成能为6ev ,计算在25℃和1600℃时热缺陷的浓度。
(b )如果MgO 晶体中,含有百万分之一mol 的Al 2O 3杂质,则在1600℃时,MgO 晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。
无机材料科学基础 陆佩文 课后答案
2-1名词解释(a )弗伦克尔缺陷与肖特基缺陷;(b )刃型位错和螺型位错(c )类质同象与同质多晶解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(b )滑移方向与位错线垂直的位错称为刃型位错。
位错线与滑移方向相互平行的位错称为螺型位错。
(c )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。
同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。
2-6(1)在CaF 2晶体中,弗仑克尔缺陷形成能为2.8eV,肖特基缺陷的生成能为5.5eV,计算在25°C 和1600°C 时热2缺陷的浓度?(k=1.38X10-23j/K )(2)如果CaF 2晶体中,含有百万分之一的YF 3杂质,则在1600C 时,。
&耳晶体中时热缺陷占优势还是杂质缺陷232占优势?说明原因。
解:(1)弗仑克尔缺陷形成能为2.8eV ,小于肖特基缺陷形成能5.5eV ,所以CaF 2晶体中主要是弗仑克尔缺陷,肖特基缺陷可忽略不计。
1分当T =25°C=298K 时,热缺陷浓度为:当T =1600C=1873K 时,热缺陷浓度为:(2)CaF 2中含百万分之一(10-6)的YF 3时的杂质缺陷反应为:2YF caF 2>2Y ・+6F +V"3CaFCa由此可知:[YF3]=2[V ;],所以当加入10-6YF3时,杂质缺陷的浓度为:ca[V"]=^[YF ]=5x10-71分Ca 杂23此时,在1600C 下的热缺陷计算为:Ca T Ca ••+V"CaiCaxx +5X 10-7I N 丿298-AG=exp(匚)=exp(2kT—2.8x1.602x10-19 2x1.38x10-23x298)二2.06x10-242分<N 丿1873二exp(-AG 寸)二exp( —2.8x1.602x10-192x1.38x10-23x1873 1.7x10-42分则: [Ca]Ca 即:x (x+5x 10-7)1 =2.89x 10-8, x ^8.1X 10-4-AG二k二沁(寸)=d.7x10-4)2二2.89x10-8显然:[V\]>[V〃],所以在1600°C时是弗仑克尔热缺陷占优势Ca杂Ca热2-10ZnO是六方晶系,a=0・3242nm,c=0・5195nm,每个晶胞中含2个ZnO分子,测得晶体密度分别为5.74,5・606gcm3,求这两种情况下各产生什么型式的固溶体?解:六方晶系的晶胞体积—a2c—>;3.2422x5.19510-24V===4.73cm3在两种密度下晶胞的重量分别为W]=d]V=5.74X4.73X10-23=2.72X10-22(g)W2=d2v=5.606X4.73X10-23=2.65X10-22(g)理论上单位晶胞重W=—瓦—=2.69山旷^@)・•・密度是d1时为间隙型固溶体,是d2时为置换型固溶体。
无机材料科学基础(陆佩文)课后习题
无机材料科学基础(陆佩文)课后习题2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
解:(1)h:k:l=1/2:1/3:1/6=3:2:1,∴该晶面的米勒指数为(321);(2)(321)5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
解:MgO为NaCl型,O2-做密堆积,Mg2+填充空隙。
rO2- =0.140nm,rMg2+=0.072nm,z=4,晶胞中质点体积:(4/33πr O2-3+4/33πrMg2+ 3)34,a=2(r++r-),3晶胞体积=a,堆积系数=晶胞中MgO体积/晶胞体积=68.5%,密度=晶胞中MgO 质量/晶胞体积=3.49g/cm3。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
解:体心:原子数2,配位数8,堆积密度55.5%;面心:原子数4,配位数6,堆积密度74.04%;六方:原子数6,配位数6,堆积密度74.04%。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
解:u=z1z2e2N0A/r0×(1-1/n)/4πε0,e=1.602×10-19,ε0=8.854×10-12,N0=6.022×1023,NaCl:z1=1,z2=1,A=1.748,nNa+=7,nCl-=9,n=8,r0=2.*****-10m,u NaCl=752KJ/mol;MgO:z1=2,z2=2,A=1.748,nO2-=7,nMg2+=,n=7,r0=2.1010m,uMgO=392KJ/mol;∵uMgO uNaCl,∴MgO的熔点高。
9、证明等径圆球面心立方最密堆积的空隙率为25.9%;解:设球半径为a,则球的体积为4/3πa3,求的z=4,则球的总体积(晶胞)434/3πa3,立方体晶胞体积:(2a)3=16a3,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%。
陆佩文材料科学基础名词解释-课后
第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。
晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。
基元只有一个原子的晶格称为布拉菲格子。
范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。
2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。
2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。
无机陆佩文课后答案无机材料科学基础课后答案
无机陆佩文课后答案无机材料科学基础课后答案导读:就爱阅读网友为您分享以下“无机材料科学基础课后答案”的资讯,希望对您有所帮助,感谢您对的支持!4-19试简述哪些物质可以形成非晶态固体(NCS)?形成(NCS)的手段有哪些?可以用什么实验方法研究NCS结构?解:熔体和玻璃体可以形成非晶态固体。
将熔体和玻璃体过冷可以得到非晶态固体。
4-20试简述淬火玻璃与退火玻璃在结构与性能上有何差异?解:消除和均衡由温度梯度产生的内应力的玻璃为退火玻璃,这类玻璃不易碎裂且切割方便。
淬火处理是将制品加热至接近其软化温度,使玻璃完全退火,然后进行迅速冷却(淬火处理)。
因此产生均匀的内应力,从而使玻璃表面产生预加压应力,增加了抗弯、抗冲击的抗扭曲变形的能力。
4-21以下三种物质,哪个最容易形成玻璃?哪个最不容易形成玻璃,为什么?(1)Na2O·2SiO2;(2)Na2O·SiO2;(3)NaCl解:(1)最容易形成玻璃,(3)最不容易形成玻璃。
经计算可知R1=2.5,R2=3,Y1=3,Y2=2Y1>Y2,高温下(1)粘度大,容易形成玻璃,NaCl不具备网络结构,为典型的离子晶体很难形成玻璃。
4-22查阅下列系统的粘度和Tg/TM等有关数据,试判断下列系统形成玻璃可能性的顺序。
(1)GeO2·SiO2,以100℃/s冷却;(2)GeO2·SiO2气相沉积在0℃SiO2基板上;(3)金属金气相沉积在0℃铜基板上;(4)A12O3气相沉积在0℃A12O3基板上;(5)液态硫以1℃/s冷却;6(6)液态金以10℃/s冷却;(7)气态NaCl在0℃A12O3基板上冷却;(8)液态ZnCl2以100℃/s冷却。
解:略。
4-23若将10mol%Na2O加入到SiO2中去,计算O∶Si比例是多少?这样一种配比有形成玻璃趋向吗?为什么?解:,这种配比有形成玻璃的趋向,因为此时结构维持三维架状结构,玻璃的粘度还较大,容易形成玻璃。
无机材料科学基础习题与解答完整版
第一章晶体几何基础1-1 解释概念:等同点:晶体结构中,在同一取向上几何环境和物质环境皆相同的点。
空间点阵:概括地表示晶体结构中等同点排列规律的几何图形。
结点:空间点阵中的点称为结点。
晶体:内部质点在三维空间呈周期性重复排列的固体。
对称:物体相同部分作有规律的重复。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合为对称型,也称点群。
晶类:将对称型相同的晶体归为一类,称为晶类。
晶体定向:为了用数字表示晶体中点、线、面的相对位置,在晶体中引入一个坐标系统的过程。
空间群:是指一个晶体结构中所有对称要素的集合。
布拉菲格子:是指法国学者 A.布拉菲根据晶体结构的最高点群和平移群对称及空间格子的平行六面体原则,将所有晶体结构的空间点阵划分成14种类型的空间格子。
晶胞:能够反应晶体结构特征的最小单位。
晶胞参数:表示晶胞的形状和大小的6个参数(a、b、c、α、β、γ).1-2 晶体结构的两个基本特征是什么?哪种几何图形可表示晶体的基本特征?解答:⑴晶体结构的基本特征:①晶体是内部质点在三维空间作周期性重复排列的固体。
②晶体的内部质点呈对称分布,即晶体具有对称性。
⑵14种布拉菲格子的平行六面体单位格子可以表示晶体的基本特征。
1-3 晶体中有哪些对称要素,用国际符号表示。
解答:对称面—m,对称中心—1,n次对称轴—n,n次旋转反伸轴—n螺旋轴—ns ,滑移面—a、b、c、d1-5 一个四方晶系的晶面,其上的截距分别为3a、4a、6c,求该晶面的晶面指数。
解答:在X、Y、Z轴上的截距系数:3、4、6。
截距系数的倒数比为:1/3:1/4:1/6=4:3:2晶面指数为:(432)补充:晶体的基本性质是什么?与其内部结构有什么关系?解答:①自限性:晶体的多面体形态是其格子构造在外形上的反映。
②均一性和异向性:均一性是由于内部质点周期性重复排列,晶体中的任何一部分在结构上是相同的。
异向性是由于同一晶体中的不同方向上,质点排列一般是不同的,因而表现出不同的性质。
《材料科学基础》真题强化教程(第5讲扩散)
考点1:菲克第一定律例1(名词解释):稳态扩散。
例2:写出菲克第一定律的数学表达式,并注明表达式中各参量的含义及单位。
例3:扩散第一定律的应用条件是什么?对于浓度梯度随时间变化的情况,能否应用用扩散第一定律?答:扩散第一定律应用条件为稳态扩散,即质量浓度不随时间而变化。
非稳态扩散情况下通常也可应用扩散第一定律,但必须进行修正使之大致符合直线的情况下才可使用。
考点2:菲克第二定律例1:考虑扩散系数为常量的半无限的一维扩散,保持扩散源的浓度为2C 不变;保持扩散介质中扩散物质的初始浓度为1C ,且均匀分布。
这时扩散介质中扩散物质的浓度随扩散时间和扩散距离的变化可用下式来表示( )。
A .()2,1exp2C C x t ⎡⎤=-⎢⎥⎣⎦B .()112,()1exp C x t C C C ⎡⎤=+--⎢⎥⎣⎦ C .()1212,1exp22C C C C C x t ⎡⎤--=+-⎢⎥⎣⎦例2:已知碳在γ-Fe 中的扩散常数50 2.010D -=⨯ 2m /s ,扩散激活能314010J/mol Q =⨯,要想得到与在927℃时渗碳10h 的相同厚度,则在870℃渗碳需要多长时间?(忽略不同温度下碳在γ-Fe 中溶解度的不同)例3:生产中,在930℃对20号钢零件进行气体渗碳,渗碳碳势为1.2%,零件的技术要求是渗碳层含碳量不低于0.6%。
(1)渗碳2h 后,估算渗碳层的深度?(2)若要求渗碳层的深度达到0.5mm ,渗碳时间应为多少小时?(930℃时碳在γ-Fe 中的扩散系数为1221610m /s -⨯)C C 1.0%w =,并将工件中碳浓度为C 0.4%w =处至表面的距离x 定义为渗碳层深度。
已知渗碳1h 后,渗碳层深度为0.12mm ,若要求渗碳层深度达到0.48mm ,计算共需渗碳多长时间。
例5:为改善钛合金的切削加工性能,研制了一种新加工工艺:渗氢处理+机械加工+脱氢处理。
已知某钛合金构件在800℃真空脱氢1小时其距表面0.05mm 处的性能符合规定要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章扩散
7-1解释并区分下列概念:
(1)稳定扩散与不稳定扩散;(2)本征扩散与非本征扩散;(3)自扩散与互扩散;(4)扩散系数与扩散通量。
解:略
7-2 浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?
解:扩散是由于梯度差所引起的,而浓度差只是梯度差的一种。
当另外一种梯度差,比如应力差的影响大于浓度差,扩散则会从低浓度向高浓度进行。
7-3 欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,要求三价离子有什么样的浓度?试对你在计算中所做的各种特性值的估计作充分说明。
已知CaO肖特基缺陷形成能为6eV。
解:掺杂M3+引起V’’Ca的缺陷反应如下:
当CaO在熔点时,肖特基缺陷的浓度为:
所以欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,M3+的浓度为
,即
7-4 试根据图7-32查取:(1)CaO在1145℃和1650℃的扩散系数值;(2)Al2O3在1393℃和1716℃的扩散系数值;并计算CaO和Al2O3中Ca2+和Al3+的扩散活化能和D0值。
解:由图可知CaO在1145℃和1650℃的扩散系数值分别为,Al2O3在1393℃和1716℃的扩散系数值分别为
根据可得到CaO在1145℃和1650℃的扩散系数的比值为:
,将值代入后可得,Al2O3的计算类推。
7-5已知氢和镍在面心立方铁中的扩散数据为
cm2/s和cm2/s,试计算1000℃的扩散系数,并对其差别进行解释。
解:将T=1000℃代入上述方程中可得,同理可知。
原因:与镍原子相比氢原子小得多,更容易在面心立方的铁中通过空隙扩散。
7-6 在制造硅半导体器体中,常使硼扩散到硅单晶中,若在1600K温度下,保持硼在硅单晶表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm深度处硼的浓度是表面浓度的一半,问需要多长时间(已
知D1600℃=8×10-12cm2/s;当时,)?
解:此模型可以看作是半无限棒的一维扩散问题,可用高斯误差函数求解。
其中=0,,所以有0.5=,即=0.5,把=10-3cm,D1600℃=8×10-12cm2/s 代入得t=s。
7-7 Zn2+在ZnS中扩散时,563℃时的扩散系数为3×10-4cm2/s;450℃时的扩散系数为 1.0×10-4cm2/s,求:(1)扩散活化能和D0;(2)750℃时的扩散系数;(3)根据你对结构的了解,请从运动的观点和缺陷的产生来推断活化能的含义;(4)根据ZnS和ZnO相互类似,预测D随硫的分压而变化的关系。
解:(1)参考7-4得=48856J/mol,D0=3×10-15cm2/s;
(2)把T=1023K代入中可得=cm2/s;
7-8 实验测得不同温度下碳在钛中的扩散系数分别为2×10-9cm2/s(736℃)、5×10-9cm2/s(782℃)、1.3×10-8cm2/s(838℃)。
(1)请判断该实验结果是否符合;(2)请计算扩散活化能,并求出在500℃时碳的扩散系数。
解:(1)设=2×10-9cm2/s,=5×10-9cm2/s,=1.3×10-8cm2/s,=1009K,=1055K,
=1111K。
将,和,代入并按照7-4所用方法得=2342787 J/mol,
同理代入,和,得=2342132 J/mol。
,可以认为该实验符合;(2)由上步可知=2342787 J/mol;(3)将T=773K代入得
=cm2/s。
7-9 在某种材料中,某种粒子的晶界扩散系数与体积扩散系数分别为D gb=2.00×10-10exp (-
19100/RT)cm2/s和D v=1.00×10-4exp(-38200/RT)cm2/s,试求晶界扩散系数和体积扩散系数分别在什么温度范围内占优势?
解:当晶界扩散系数占优势时有D gb>D v,即
>,所以有T<1455.6K;当T>1455.6K时体积扩散系数占优势。
7-10 假定碳在α-Fe(体心立方)和;γ-Fe(面心立方)中的扩散系数分别为:
Dα=0.0079exp[-83600/RT]cm2/s;Dγ=0.21exp[-141284/RT]cm2/s,计算800℃时各自的扩散系数,并解释其差别。
解:将T=1073K代入题中两式分别得Dα1073= cm2/s Dγ1073= cm2/s。
原因:扩散介质结构对扩散有很大影响。
α-Fe 为体心立方,而γ-Fe 为面心立方,体心立方较面心立方疏松。
结构疏松,扩散阻力小而扩散系数大。
7-11 碳、氮、氢在体心立方铁中的扩散活化能分别为84kJ/mol、75kJ/mol和13kJ/mol,试对此差异进行分析和解释。
解:碳、氮、氢的原子半径依次减小,原子半径越小就越更容易在体心立方的铁中通过空隙扩散,扩散活化能相应也就越低。
7-12 MgO、CaO、FeO均具NaCl结构,在各晶体中它们的阳离子扩散活化能分别为:Na+在NaCl中为41kcal/mol,Mg2+在MgO中为83kcal/mol,Ca2+在CaO中为77kcal/mol,Fe3+在FeO中为23kcal/mol,试解释这种差异的原因。
解:略
7-13 试分析离子晶体中,阴离子扩散系数-般都小于阳离子扩散系数的原因。
解:离子晶体一般为阴离子作密堆积,阳离子填充在四面体或八面体空隙中。
所以阳离子较易扩散。
如果阴离子进行扩散,则要改变晶体堆积方式,拆散离子晶体的结构骨架,阻力就会较大。
故离子晶体中,阴离子扩散系数-般都小于阳离子扩散系数。
7-14试从结构和能量的观点解释为什么D表面>D晶面>D晶内。
解:固体表面质点在表面力作用下,导致表面质点的极化、变形、重排并引起原来的晶格畸变,表面结构不同于内部,并使表面处于较高的能量状态。
晶体的内部质点排列有周期性,每个质点力场是对称的,质点在表面迁移所需活化能较晶体内部小,则相应的扩散系数大。
同理,晶界上质点排列方式不同于内部,排列混乱,存在着空位、位错等缺陷,使之处于应力畸变状态,具有较高能量,质点在晶界迁移所需的活化能较晶内小,扩散系数大。
但晶界上质点与晶体内部相比,由于晶界上质点受两个晶粒作用达到平衡态,处于某种过渡的排列方式,其能量较晶体表面质点低,质点迁移阻力较大因而D晶界<D表面。
7-15 试讨论从室温到熔融温度范围内,氯化锌添加剂对NaCl单晶中所有离子(Zn、Na、Cl)的扩散能力的影响。
解:略
7-16 试推测在贫铁的Fe3O4中氧分压和铁离子扩散的关系;试推测在铁过剩的Fe3O4中氧分压和氧扩散的关系。
解:略。