数列的概念练习题(有答案) 百度文库

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题

1.已知数列{}n a 的通项公式为2

n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实

数λ的取值范围是( ) A .(),3-∞

B .(),2-∞

C .(),1-∞

D .(),0-∞

2.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=

+ ⎪⎝⎭

,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S ++

+=( )

A .135

B .141

C .149

D .155

3.已知数列{}n a 前n 项和为n S ,且满足*

112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )

A .63243a a a ≤-

B .2736+a a a a ≤+

C .7662)4(a a a a ≥--

D .2367a a a a +≥+

4.

已知数列,21,

n -21是这个数列的( )

A .第10项

B .第11项

C .第12项

D .第21项

5.数列{}n a 满足11

1n n

a a +=-,12a =,则2a 的值为( ) A .1

B .-1

C .

13

D .13

-

6.在数列{}n a 中,已知11a =,25a =,()

*

21n n n a a a n N ++=-∈,则5a 等于( )

A .4-

B .5-

C .4

D .5

7.在数列{}n a 中,()11

11,1(2)n

n n a a n a --==+

≥,则5a 等于

A .

32

B .

53 C .8

5

D .

23

8.数列1,3,6,10,…的一个通项公式是( )

A .()2

1n a n n =-- B .2

1n a n =-

C .()

12

n n n a +=

D .()

12

n n n a -=

9.已知数列{}n a 满足12a =,11

1n n

a a +=-,则2018a =( ). A .2

B .

12 C .1-

D .12

-

10.数列{}n a 的前n 项和记为n S ,()

*

11N ,2n n n a a a n n ++=-∈≥,12018a =,

22017a =,则100S =( )

A .2016

B .2017

C .2018

D .2019

11.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2

B .1

C .0

D .1-

12.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,

1

1

12()n

n

n S S S S 恒成立,则15S 等于( )

A .210

B .211

C .224

D .225

13.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174

B .184

C .188

D .160

14.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184

B .174

C .188

D .160

15.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和

383969a a a ++⋅⋅⋅+=( )

A .180

B .160

C .150

D .140

16.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4

B .6

C .8

D .10

17.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤

C .数列{}n a 的最小项为3a 和4a

D .数列{}n a 的最大项为3a 和4a

18.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )

A .201920212S F =+

B .201920211S F =-

相关文档
最新文档