2020年山东省泰安市新泰市西部中考数学一模试卷 解析版

合集下载

2020年山东省泰安市中考数学全真模拟试卷1解析版

2020年山东省泰安市中考数学全真模拟试卷1解析版

2020年山东省泰安市中考数学全真模拟试卷1解析版一.选择题(共12小题,满分48分,每小题4分)1.计算(﹣1)0+|﹣2|的结果是()A.﹣3B.1C.﹣1D.32.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.84.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为4,则a的值为()A.﹣2B.4C.4或3D.﹣2或35.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16B.14C.12D.106.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π7.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为()A.B.C.D.8.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为()A.4km B.(+1)km C.2(+1)km D.(+2)km9.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点A(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上两点,则y1>y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④10.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.11.如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A.3πB.C.6πD.24π12.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°二.填空题(共6小题,满分22分)13.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,则△ABC的周长=.14.计算:(﹣)÷=.15.解关于x的方程+1=(其中m为常数)产生增根,则常数m的值等于.16.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为.17.如图,Rt△ABC和Rt△CDE中,∠A=30°,∠E=45°,AB=CE,∠BCD=30°,FG⊥AB,下列结论:①CH=FH;②BC=GC;③四边形BDEF为平行四边形;④FH=GF+BH.其中正确的结论是(填序号).18.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是.三.解答题(共7小题,满分80分)19.先化简,再求值:(x﹣2+)÷,其中x=﹣.20.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”某中学为了解学生对四大名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,求他们恰好选中同一名著的概率.21.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.22.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;(2)延长BD交CE于点F试求∠BFC的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.23.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?24.情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′=°.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP 与FQ之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.25.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+2=3.故选:D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选:C.【点评】本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.4.【分析】利用二次函数图象上点的坐标特征找出当y=4时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=4时,有x2﹣2x+1=4,解得:x1=﹣1,x2=3.∵当a≤x≤a+1时,函数有最小值4,∴a=3或a+1=﹣1,∴a=3或a=﹣2,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=4时x的值是解题的关键.5.【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC 的周长=2+2+5+5=14,【解答】解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.【点评】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.6.【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【解答】解:由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π.故选:B.【点评】此题主要考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.7.【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案【解答】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:=【点评】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8.【分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD,OD,再由△ABD是等腰直角三角形,得出BD=AD=2,于是得到结论.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2,OD=OA=2,在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴OB=OD+BD=2+2,即该船与观测站之间的距离(即OB的长)为(2+2)km.故选:C.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.9.【分析】根据开口方向确定a的符号,根据抛物线与y轴的交点确定c的符号,根据对称轴确定b的符号,判断①②;x=2时,y>0,判断③;根据函数增减性,判断④.【解答】解:①抛物线开口向上,a>0,物线与y轴交于负半轴,c<0,﹣=﹣1,b>0,∴abc<0,故①正确;②﹣=﹣1,2a﹣b=0,故②正确;③x=2时,y>0,4a+2b+c>0,故③不正确;④∵对称轴是直线x=﹣1,所以x=﹣2和x=0时,y值相等,∴若(﹣2,y1),(,y2)是抛物线上两点,y1<y2,故④不正确,∴①②正确,故选:A.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.10.【分析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y=×2×2﹣(2﹣x)×(2﹣x)=﹣x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2﹣(x﹣2)]×[2﹣(x﹣2)]=x2﹣4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.【点评】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.11.【分析】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积.即求阴影部分的面积就等于求扇形ABB′的面积.【解答】解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=π.故选:B.【点评】本题考查了扇形的面积的计算,正确理解阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积是解题的关键.12.【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故选:B.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.二.填空题(共6小题,满分22分)13.【分析】先由关于x的一元二次方程x2+(b+2)x+6﹣b=0有两个相等的实数根,得出根的判别式△=0,据此求出b的值;再由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:∵关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,∴△=(b+2)2﹣4(6﹣b)=0,即b2+8b﹣20=0;解得b=2,b=﹣10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5﹣2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12.故答案为12.【点评】此题考查了一元二次方程根的情况与根的判别式(△=b2﹣4ac)之间的关系、根与系数的关系、等腰三角形的性质及三角形三边关系定理,综合性较强,难度中等.注意在求三角形的周长时,不能盲目的将三边相加,而应在满足三角形三边关系定理的条件下分类讨论,以免造成多解、错解.14.【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(﹣)÷=•=,故答案为:.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.15.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x﹣6+x﹣5=m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入整式方程得:m=﹣1,故答案为:﹣1.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.【分析】作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.【解答】解:作AN⊥x轴于N,如图所示:∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,∴可设A(x,﹣x)(x<0),在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,解得:x=﹣2,∴A(﹣2,2),代入y=得:k=﹣2×2=﹣4;故答案为﹣4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.17.【分析】求出∠ABC=60°,又∠BCD=30°,得到∠AHC为直角,由Rt△CDE中,∠E=45°,得到∠ECD=45°,△FCH为等腰直角三角形,得到FH=CH,选项①正确;过G作GM于CD垂直,交CD于M,证出四边形GMHF为矩形,根据矩形的对边相等,得到GF=MH,GM=FH,得到GM=CH,由一对直角相等,再根据同角的余角相等得到一对角相等,利用ASA得到△CGM与△CBH全等,得到CG=CB,选项②正确;根据全等得到GM=CH,由FH=CH=CM+MH,得到选项④正确;要使四边形FBDE为平行四边形,由一对直角即同位角相等,得到BF与DE平行,还要使EC 与DB平行,故要使同旁内角互补,即要∠HBD为45°,而∠HBD不一定为45°,故选项③不一定成立;即可得出结论.【解答】解:∵Rt△ABC中,∠A=30°,∴∠ABC=60°,又∠BCD=30°,∴∠FHC=90°,又Rt△CDE中,∠E=45°,∴∠ECD=45°,∴△FCH为等腰直角三角形,∴FH=HC,故选项①正确;过G作GM⊥CD,交CD于M,如图所示:∴∠GMD=90°,∴∠GCM+∠CGM=90°,又∠ACB=90°∴∠GCM+∠BCH=90°,∴∠CGM=∠BCH,∵∠FHM=90°(已证),又GF⊥AB,∴∠GFH=90°,∴四边形GMHF为矩形,∴GM=FH,GF=MH,又FH=CH,∴GM=CH,在△GCM和△CBH中,,∴△GCM≌△CBH(AAS),∴CM=BH,BC=CG,故选项②正确;∴FH=CH=CM+MH=BH+GF,故选项④正确;∵∠AHC=∠EDC=90°,∴FB∥ED,要使四边形BDEF为平行四边形,还需BD∥EC,即要∠FCB+∠CBD=180°,而∠FCB=∠ECD+∠DCB=45°+30°=75°,故要∠CBD=∠CBA+∠ABD=105°,又∠CBA=60°,即要∠ABD=45°,而∠ABD不一定等于45°,故选项③不一定成立,则其中正确的结论有①②④.故答案为:①②④.【点评】此题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,以及平行四边形的判定等知识.本题综合性强,有一定难度,属于结论型开放题,作出辅助线GM构造全等三角形是本题的突破点.18.【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,﹣1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+1)2+3.【点评】抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.三.解答题(共7小题,满分80分)19.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(4)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)∵调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,故答案为:1、2;(2)扇形统计图中“4部”所在扇形的圆心角为:×360°=54°;故答案为:54;(3)条形统计图如图所示,(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P (两人选中同一名著)==.【点评】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.21.【分析】(1)直线l 1经过点A ,且A 点的纵坐标是2,可得A (﹣4,2),代入反比例函数解析式可得k 的值;(2)依据直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点,即可得到不等式﹣x>的解集为x <﹣4或0<x <4;(3)设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,依据CD ∥AB ,即可得出△ABC 的面积与△ABD 的面积相等,求得D (15,0),即可得出平移后的直线l 2的函数表达式.【解答】解:(1)∵直线l 1:y =﹣x 经过点A ,A 点的纵坐标是2,∴当y =2时,x =﹣4,∴A (﹣4,2),∵反比例函数y =的图象经过点A ,∴k =﹣4×2=﹣8,∴反比例函数的表达式为y =﹣;(2)∵直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点,∴B (4,﹣2),∴不等式﹣x >的解集为x <﹣4或0<x <4;(3)如图,设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,∵CD ∥AB ,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为30,∴S △AOD +S △BOD =30,即OD (|y A |+|y B |)=30,∴×OD ×4=30,∴OD =15,∴D (15,0),设平移后的直线l 2的函数表达式为y =﹣x +b ,把D (15,0)代入,可得0=﹣×15+b ,解得b =,∴平移后的直线l 2的函数表达式为y =﹣x +.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,一次函数图象与几何变换以及三角形的面积.解决问题的关键是依据△ABC 的面积与△ABD 的面积相等,得到D 点的坐标为(15,0).22.【分析】(1)根据SAS 证明△EAC 与△DAB 全等,再利用全等三角形的性质解答即可; (2)利用全等三角形的性质得出∠ECA =∠DBA ,进而解答即可;(3)根据(1)(2)中的证明步骤解答即可.【解答】解:(1)CE =BD ,理由如下:∵等腰Rt △ABC ,等腰Rt △ADE ,∴AE =AD ,AC =AB ,在△EAC 与△DAB 中,,∴△EAC ≌△DAB (SAS ),∴CE=BD;(2)∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°;(3)成立,∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°.【点评】本题主要考查了全等三角形的判定及其性质、等腰直角三角形的性质,解题的关键是牢固掌握全等三角形的判定及其性质知识点.23.【分析】(1)根据题意可以列出相应的方程组,从而可以求得需购买甲、乙两种树苗各多少棵;(2)根据题意可以列出相应的不等式,从而可以求得至少应购买甲种树苗多少棵.【解答】解:(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.【点评】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组与不等式.24.【分析】①观察图形即可发现△ABC≌△AC′D,即可解题;②易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;③过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题.【解答】解:①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,∴∠CAC′=180°﹣∠C′AD﹣∠CAB=90°;故答案为:AD,90.②FQ=EP,理由如下:∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,又∵AF=AC,∴△AFQ≌△CAG,∴FQ=AG,同理EP=AG,∴FQ=EP.③HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.∵四边形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°,又AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB:EA.同理△ACG∽△FAQ,∴AG:FQ=AC:FA.∵AB=k•AE,AC=k•AF,∴AB:EA=AC:FA=k,∴AG:EP=AG:FQ.∴EP=FQ.又∵∠EHP=∠FHQ,∠EPH=∠FQH,∴Rt△EPH≌Rt△FQH(AAS).∴HE=HF.【点评】本题考查了全等三角形的证明,考查了全等三角形对应边相等的性质,考查了三角形内角和为180°的性质,考查了等腰三角形腰长相等的性质,本题中求证△AFQ≌△CAG是解题的关键.25.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y =ax 2+ax +b =ax 2+ax ﹣2a =a (x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣); (2)∵直线y =2x +m 经过点M (1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+,有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。

2020届山东省泰安市中考数学模拟试卷有答案(Word版)(已审阅)

2020届山东省泰安市中考数学模拟试卷有答案(Word版)(已审阅)

泰安市初中学业水平考试数学试题第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1.计算:0(2)(2)--+-的结果是( ) A .-3 B .0 C .-1 D .3 2.下列运算正确的是( )A .33623y y y += B .236y y y ⋅= C .236(3)9y y = D .325y y y -÷=3.如图是下列哪个几何体的主视图与俯视图( )A .B .C .D .4.如图,将一张含有30o 角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=o,则1∠的大小为( )A .14oB .16oC .90α-oD .44α-o5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A .42、42 B .43、42 C .43、43 D .44、436.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩7.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y ax b =+在同一坐标系内的大致图象是( )A .B .C .D .8.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-9.如图,BM 与O e 相切于点B ,若140MBA ∠=o,则ACB ∠的度数为( )A .40oB .50oC .60oD .70o10.一元二次方程(1)(3)25x x x +-=-根的情况是( )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于311.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180o ,对应点为2P ,则点2P 的坐标为( )A .(2.8,3.6)B .( 2.8, 3.6)--C .(3.8,2.6)D .( 3.8, 2.6)--12.如图,M e 的半径为2,圆心M 的坐标为(3,4),点P 是M e 上的任意一点,PA PB ⊥,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A .3B .4C .6D .8第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13.一个铁原子的质量是0.000000000000000000000000093kg ,将这个数据用科学记数法表示为kg .14.如图,O e 是ABC ∆的外接圆,45A ∠=o,4BC =,则O e 的直径..为.15.如图,在矩形ABCD 中,6AB =,10BC =,将矩形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则sin ABE ∠的值为.16.观察“田”字中各数之间的关系:,…,,则c 的值为.17.如图,在ABC ∆中,6AC =,10BC =,3tan 4C =,点D 是AC 边上的动点(不与点C 重合),过D 作DE BC ⊥,垂足为E ,点F 是BD 的中点,连接EF ,设CD x =,DEF ∆的面积为S ,则S 与x 之间的函数关系式为.18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为步.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值2443(1)11m m m m m -+÷----,其中2m =.20.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)21.为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为A ,B ,C ,D 四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A 的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.22.如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .(1)若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式; (2)若2AF AE -=,求反比例函数的表达式.23.如图,ABC ∆中,D 是AB 上一点,DE AC ⊥于点E ,F 是AD 的中点,FG BC ⊥于点G ,与DE 交于点H ,若FG AF =,AG 平分CAB ∠,连接GE ,GD .(1)求证:ECG GHD ∆≅∆;(2)小亮同学经过探究发现:AD AC EC =+.请你帮助小亮同学证明这一结论. (3)若30B ∠=o ,判定四边形AEGF 是否为菱形,并说明理由.24.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.25.如图,在菱形ABCD 中,AC 与BD 交于点O ,E 是BD 上一点,//EF AB ,EAB EBA ∠=∠,过点B 作DA 的垂线,交DA 的延长线于点G .(1)DEF ∠和AEF ∠是否相等?若相等,请证明;若不相等,请说明理由; (2)找出图中与AGB ∆相似的三角形,并证明;(3)BF 的延长线交CD 的延长线于点H ,交AC 于点M .求证:2BM MF MH =⋅.泰安市初中学业水平考试 数学试题(A )参考答案一、选择题1-5: DDCAB 6-10: CCBAD 11、12:AC二、填空题13. 269.310-⨯ 14. 16. 270(或8214+) 17. 233252y x x =-+ 18.20003三、解答题19.解:原式22(2)3111m m m m --+=÷--2(2)(2)(2)11m m m m m -+-=÷--2(2)11(2)(2)m m m m m --=⨯-+-22mm-=+.当2m =时,原式1===.20.解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元. 由题意得:14001600101.4x x-=, 解得:20x =.经检验,20x =是原方程的解.所以,甲种图书售价为每本1.42028⨯=元,答:甲种图书售价每本28元,乙种图书售价每本20元. (2)设甲种图书进货a 本,总利润w 元,则(28203)(20142)(1200)w a a =--+---4800a =+.又∵2014(1200)20000a a +⨯-≤,解得16003a ≤, ∵w 随a 的增大而增大, ∴当a 最大时w 最大, ∴当533a =本时w 最大,此时,乙种图书进货本数为1200533667-=(本). 答:甲种图书进货533本,乙种图书进货667本时利润最大. 21.解:(1)由题意得,所抽取班级的人数为:820%40÷=(人), 该班等级为A 的人数为:40258240355---=-=(人), 该校初三年级等级为A 的学生人数约为:5110001000125408⨯=⨯=(人). 答:估计该校初三等级为A 的学生人数约为125人.(2)设两位满分男生为1m ,2m ,三位满分女生为1g ,2g ,3g .从这5名同学中选3名同学的所有可能结果为:121(,,)m m g ,122(,,)m m g ,123(,,)m m g ,112(,,)m g g ,113(,,)m g g ,123(,,)m g g ,212(,,)m g g ,213(,,)m g g ,223(,,)m g g ,123(,,)g g g ,共10种情况. 其中,恰好有2名女生,1名男生的结果为:112(,,)m g g ,113(,,)m g g ,123(,,)m g g ,212(,,)m g g ,213(,,)m g g ,223(,,)m g g ,共6种情况.所以恰有2名女生,1名男生的概率为63105=. 22.解:(1)∵(6,0)B -,3AD =,8AB =,E 为CD 的中点, ∴(3,4)E -,(6,8)A -, ∵反比例函数图象过点(3,4)E -, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩,解得430k x b ⎧=-⎪⎨⎪=⎩,∴43y x =-. (2)∵3AD =,4DE =, ∴5AE =, ∵2AF AE -=, ∴7AF =,//∴1BF =.设E 点坐标为(,4)a ,则点F 坐标为(3,1)a -, ∵E ,F 两点在my x=图象上, ∴43a a =-, 解得1a =-, ∴(1,4)E -, ∴4m =-, ∴4y x=-.23.(1)证明:∵AF FG =, ∴FAG FGA ∠=∠, ∵AG 平分CAB ∠, ∴CAG FAG ∠=∠, ∴CAG FGA ∠=∠, ∴//AC FG . ∵DE AC ⊥, ∴FG DE ⊥, ∵FG BC ⊥, ∴//DE BC , ∴AC BC ⊥,∴90C DHG ∠=∠=o,CGE GED ∠=∠, ∵F 是AD 的中点,//FG AE , ∴H 是ED 的中点,∴FG 是线段ED 的垂直平分线, ∴GE GD =,GDE GED ∠=∠, ∴CGE GDE ∠=∠, ∴ECG GHD ∆≅∆.(2)证明:过点G 作GP AB ⊥于点P ,//∴GC GP =, ∴CAG PAG ∆≅∆, ∴AC AP =.由(1)得EG DG =, ∴Rt ECG Rt GPD ∆≅∆, ∴EC PD =,∴AD AP PD AC EC =+=+. (3)四边形AEGF 是菱形,理由如下: ∵30B ∠=o , ∴30ADE ∠=o , ∴12AE AD =, ∴AE AF FG ==. 由(1)得//AE FG , ∴四边形AEGF 是菱形.24.解:(1)由题意可得16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为233642y x x =--+. (2)由(4,0)A -,(0,2)E -,可求得AE 所在直线解析式为122y x =--.//过点D 作DN 与y 轴平行,交AE 于点F ,交x 轴于点G ,过点E 作EH DF ⊥,垂足为H , 设D 点坐标为200033(,6)42x x x --+,则F 点坐标为001(,2)2x x --, 则20033642DF x x =--+200013(2)824x x x ---=--+, 又ADE ADF EDF S S S ∆∆∆=+, ∴1122ADE S DF AG DF EH ∆=⋅⋅+⋅ 142DF =⨯⨯ 20032(8)4x x =⨯--+ 203250()233x =-++. ∴当023x =-时,ADE ∆的面积取得最大值503.(3)P 点的坐标为(1,1)-,(1,-,(1,2--±.25.解:(1)DEF AEF ∠=∠,理由如下:∵//EF AB ,∴DEF EBA ∠=∠,AEF EAB ∠=∠,又∵EAB EBA ∠=∠,∴DEF AEF ∠=∠.(2)EOA AGB ∆∆:,证明如下:∵四边形ABCD 是菱形,∴AB AD =,AC BD ⊥,∴2GAB ABE ADB ABE ∠=∠+∠=∠.又∵2AEO ABE BAE ABE ∠=∠+∠=∠,∴GAB AEO ∠=∠,//又90AGB AOE ∠=∠=o ,∴EOA AGB ∆∆:.(3)连接DM .∵四边形ABCD 是菱形,由对称性可知 BM DM =,ADM ABM ∠=∠, ∵//AB CH ,∴ABM H ∠=∠,∴ADM H ∠=∠,又∵DMH FMD ∠=∠,∴MFD MDH ∆∆:, ∴DM MFMH DM =,∴2DM MF MH =⋅,∴2BM MF MH =⋅.。

2020年泰安市中考数学第一次模拟试题及答案

2020年泰安市中考数学第一次模拟试题及答案

a3,
……
an
,其中
a1
1,
a2
1 1 a1
, a3
1 1 a2
,
, an
1 1 an1

则 a1 a2 a3
a2014 __________.
15.分解因式:x3﹣4xy2=_____.
16.若一个数的平方等于 5,则这个数等于_____.
17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆 AB
24.已知抛物线 y=ax2﹣ 1 x+c 经过 A(﹣2,0),B(0,2)两点,动点 P,Q 同时从原点出发 3
均以 1 个单位/秒的速度运动,动点 P 沿 x 轴正方向运动,动点 Q 沿 y 轴正方向运动,连接 PQ,设运动时间为 t 秒 (1)求抛物线的解析式;
(2)当 BQ= 1 AP 时,求 t 的值; 3
∴S 菱形 ABCO= 1 B×AC= 1 ×2×2 3 =2 3 ,
2
2
120
S 扇形 AOC=
22
4

360
3
则图中阴影部分面积为 S 菱形 ABCO﹣S 扇形 AOC= 4 2 3 , 3
故选 C.
点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积= 1 a•b 2
的影子一部分落在水平地面 L 的影长 BC 为 5 米,落在斜坡上的部分影长 CD 为 4 米.测得
斜 CD 的坡度 i=1: .太阳光线与斜坡的夹角∠ADC=80°,则旗杆 AB 的高度
_____.(精确到 0.1 米)(参考数据:sin50°=0.8,tan50°=1.2, =1.732)
18.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区 覆盖总人口约为 4400000000 人,将数据 4400000000 用科学记数法表示为______. 19.如图,矩形 ABCD 中,AB=3,BC=4,点 E 是 BC 边上一点,连接 AE,把∠B 沿 AE 折 叠,使点 B 落在点 处,当△ 为直角三角形时,BE 的长为 .

2020年山东省泰安市新泰市西部中考数学一模试卷

2020年山东省泰安市新泰市西部中考数学一模试卷

2020年山东省泰安市新泰市西部中考数学一模试卷一、选择题(每小题4分,共48分)1.(4分)计算[()2]3×[()2]2之值为何?()A.1B.C.()2D.()42.(4分)下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣43.(4分)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×1044.(4分)已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm25.(4分)已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.6.(4分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.7.(4分)关于x的方程的解为非正数,且关于x的不等式组无解,那么满足条件的所有整数a的和是()A.﹣19B.﹣15C.﹣13D.﹣98.(4分)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是()A.1000(1+x)2=3990B.1000+1000(1+x)+1000(1+x)2=3990C.1000(1+2x)=3990D.1000+1000(1+x)+1000(1+2x)=39909.(4分)如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π10.(4分)下列命题错误的是()A.平分弦的直径垂直于弦B.三角形一定有外接圆和内切圆C.等弧对等弦D.经过切点且垂直于切线的直线必经过圆心11.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1B.2C.3D.412.(4分)如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A.1B.2C.3D.4二、填空题(每小题4分,共24分)13.(4分)计算:(π﹣3.14)0+2cos60°=.14.(4分)在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.15.(4分)一次函数y=kx﹣3k+1的图象必经过一个定点,该定点的坐标是16.(4分)如图,正方形ABCD的边长为2a,E为BC边的中点,、的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为.17.(4分)已知x,y为实数,y=,则x﹣6y的值18.(4分)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.三、解答题19.(8分)先化简,再求值:,其中a是方程﹣2x2﹣x+3=0的解.20.(10分)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,CE⊥x轴于点E,且tan∠ABO=,OB=4,OE=1.(1)求一次函数的解析式和反比例函数的解析式(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.21.(10分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.22.(12分)如图,已知A、B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG=3,求⊙O的半径.23.(10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?24.(14分)如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.25.(14分)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.2020年山东省泰安市新泰市西部中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:原式=()6×()4=()6×()﹣4,=()2故选:C.2.【解答】解:A、2x2•2xy=4x3y,错误;B、不是同类项不能合并,错误;C、x﹣1÷x﹣2=x,错误;D、(﹣3a﹣2)(﹣3a+2)=9a2﹣4,正确;故选:D.3.【解答】解:27 809=2.780 9×104.故选D.4.【解答】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长==13,所以这个圆锥的侧面积=•2π•5•13=65π(cm2).故选:B.5.【解答】解:∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选:B.6.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是=,故选:B.7.【解答】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到≤0,且≠﹣1,解得:a<1且a≠﹣2,不等式组整理得:,由不等式组无解,得到<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选:C.8.【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990.故选:B.9.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=6,∵∠B=60°,E为BC的中点,∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,∵∠B=60°,∴∠BCD=180°﹣∠B=120°,由勾股定理得:AE==3,∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,故选:A.10.【解答】解:A、平分弦(不是直径)的直径垂直于弦,是假命题;B、三角形一定有外接圆和内切圆,是真命题;C、等弧对等弦,是真命题;D、经过切点且垂直于切线的直线必经过圆心,是真命题;故选:A.11.【解答】解:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选:C.12.【解答】解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG•FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠BCD=90°,∴∠DCF=45°,∵∠CDF=45°,∴∠DFC=90°,显然不可能,故③错误,④∵∠BGF=180°﹣∠CGB,∠DAF=90°+∠EAF=90°+(90°﹣∠AGF)=180°﹣∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴==,∵EG∥CD,∴==,∴=,∵AD=AE,∴EG•AE=BG•AB,故④正确,故选:C.二、填空题(每小题4分,共24分)13.【解答】解:原式=1+2×=1+1=2,故答案为:214.【解答】解:∵sin A==,∴∠A=60°,∴sin=sin30°=.故答案为:.15.【解答】解:根据题意可把直线解析式化为:y=k(x﹣3)+1,故函数一定过点(3,1).故答案为:(3,1).16.【解答】解:如图,作EF的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a﹣x,CE=a,Rt△CEG中,(2a﹣x)2+a2=x2,解得x=,∴GE=FG=,同理可得,EH=FH=,∴四边形EGFH是菱形,四边形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE==a,∴EF=a,故答案为:a.17.【解答】解:由题意得,,解得x=﹣3,∴y=,∴x﹣6y=﹣3﹣6×=﹣3+1=﹣2.故答案为:﹣2.18.【解答】解:过点P作PG⊥FN,PH⊥BN,垂足为G、H,由折叠得:ABNM是正方形,AB=BN=NM=MA=5,CD=CF=5,∠D=∠CFE=90°,ED=EF,∴NC=MD=8﹣5=3,在Rt△FNC中,FN==4,∴MF=5﹣4=1,在Rt△MEF中,设EF=x,则ME=3﹣x,由勾股定理得,12+(3﹣x)2=x2,解得:x=,∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,∴△FNC∽△PGF,∴FG:PG:PF=NC:FN:FC=3:4:5,设FG=3m,则PG=4m,PF=5m,∴GN=PH=BH=4﹣3m,HN=5﹣(4﹣3m)=1+3m=PG=4m,解得:m=1,∴PF=5m=5,∴PE=PF+FE=5+=,故答案为:.三、解答题19.【解答】解:====,由﹣2x2﹣x+3=0,得x1=﹣,x2=1,当a=1时,原分式无意义,当a=﹣时,原式==.20.【解答】解:(1)∵OB=4,OE=1,∴BE=1+4=5.∵CE⊥x轴于点E,tan∠ABO===,∴OA=2,CE=2.5.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣1,2.5).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得.∴直线AB的解析式为y=﹣x+2.∵反比例函数y=的图象过C,∴2.5=,∴k=﹣2.5.∴该反比例函数的解析式为y=﹣;(2)联立反比例函数的解析式和直线AB的解析式可得,解得点D的坐标为(5,﹣),则△BOD的面积=4××=1,△BOC的面积=4××=5,∴△OCD的面积为1+5=6;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣1或0<x<5.21.【解答】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.22.【解答】(1)证明:连接OC,如图,∵BC平分∠OBD,∴∠OBC=∠CBD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠CBD,∴OC∥AD,而CD⊥AB,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE交AB于H,如图,∵E为的中点,∴OE⊥AB,∵∠ABE=∠AFE,∴tan∠ABE=tan∠AFE=,∴在Rt△BEH中,tan∠HBE==设EH=3x,BH=4x,∴BE=5x,∵BG=BE=5x,∴GH=x,在Rt△EHG中,x2+(3x)2=(3)2,解得x=3,∴EH=9,BH=12,设⊙O的半径为r,则OH=r﹣9,在Rt△OHB中,(r﹣9)2+122=r2,解得r=,即⊙O的半径为.23.【解答】解:(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据题意得解这个方程组得:答:甲、乙两种型号的机器人每台价格分别是6万元、4万元(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得解这个不等式组得∵a为正整数∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台设该公司的购买费用为w万元,则w=6a+4(8﹣a)=2a+32∵k=2>0∴w随a的增大而增大当a=2时,w最小,w最小=2×2+32=36(万元)∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.24.【解答】解:(1)∵抛物线的解析式为y=﹣[(x﹣2)2+n]=﹣(x﹣2)2﹣n,∴抛物线的对称轴为直线x=2,∵点A和点B为对称点,∴2﹣(m﹣2)=2m+3﹣2,解得m=1,∴A(﹣1,0),B(5,0),把A(﹣1,0)代入y=﹣[(x﹣2)2+n]得9+n=0,解得n=﹣9;(2)作ND∥y轴交BC于D,如图2,抛物线解析式为y=﹣[(x﹣2)2﹣9]=﹣x2+x+3,当x=0时,y=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(5,0),C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),∴ND=﹣x2+x+3﹣(﹣x+3)=﹣x2+3x,∴S△NBC=S△NDC+S△NDB=•5•ND=﹣x2+x=﹣(x﹣)2+,当x=时,△NBC面积最大,最大值为;(3)存在.∵B(5,0),C(0,3),∴BC==,当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,∵∠MBP=∠OBC,∴△BMP∽△BOC,∴==,即==,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此时P点坐标为(,0);当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,∵∠MBP=∠CBO,∴△BMP∽△BCO,∴==,即==,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此时P点坐标为(,0);综上所述,P点坐标为(,0)或(,0).25.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵AC,BD为对角线,∴OD=OC,∵OG=OE,∠DOG=∠COE=90°,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴=,∴HC2=EH•CD,∴x2=(1﹣x)•1,解得x=或(舍弃),∴HC=.。

2020版山东省泰安中考数学模拟测试卷(一)含答案

2020版山东省泰安中考数学模拟测试卷(一)含答案

中考模拟测试卷一(120分钟,120分)一、选择题(每小题3分,共36分)1.计算|√2-1|+(√2)0的结果是( )A.1B.√2C.2-√2D.2√2-12.下列运算正确的是( )A.a3+a3=2a6B.a6÷a-3=a3C.a3·a2=a6D.(-2a2)3=-8a63.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,则m,n的值分别为( )A.m=5,n=13B.m=8,n=10C.m=10,n=13D.m=5,n=104.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=20°,则∠EFC'=()A.115°B.120°C.125°D.130°5.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为( ) A.7 B.5 C.4 D.36.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是( )A.{x -1=yx =2y B.{x =y x =2(y -1)C.{x -1=y x =2(y -1)D.{x +1=yx =2(y -1)7.如图,二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+c 和反比例函数y=bx 在同一平面直角坐标系中的图象大致是( )8.(2020辽宁沈阳)如图,正方形ABCD 内接于☉O,AB=2√2,则AB ⏜的长是( )A.πB.32π C.2π D.12π9.若关于x 的不等式组{x -a ≤0,5-2x <1的整数解只有1个,则a 的取值范围是( )A.2<a<3B.3≤a<4C.2<a≤3D.3<a≤410.如图,直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB=3,则光盘表示的圆的直径是( )A.3B.3√3C.6D.6√311.把一元二次方程x 2-6x+1=0配方成(x+m)2=n 的形式,正确的是( )A.(x+3)2=10B.(x-3)2=10C.(x+3)2=8D.(x-3)2=812.在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P 1,点P 1绕原点逆时针旋转90°得到点P 2,则点P 2的坐标是( ) A.(-2,3) B.(-3,2) C.(2,-3) D.(3,-2)二、填空题(每小题3分,共18分)13.H9N2型禽流感病毒的病毒粒子的直径在0.000 08毫米~0.000 12毫米之间,数据0.000 12用科学记数法表示为 . 14.已知△ABC 内接于半径为5厘米的☉O,若∠A=60°,则边BC 的长为 厘米.15.在某一时刻,一个身高1.6米的同学影长2米,同时学校旗杆的影子有一部分落在12米外的墙上,墙上影高1米,则旗杆高为 米.16.如图,在直角坐标系中放入一个矩形纸片ABCO,OC=9.将纸片翻折后,点B 恰好落在x 轴上,记为B',折痕为CE,已知tan∠OB'C=34.则点B'的坐标为 .17.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为 .18.如图,在△ABC 和△ACD中,∠B=∠D,tan∠B=12,BC=5,CD=3,∠BCA=90°-12∠BCD,则AD= .三、解答题(共7小题,共66分))÷(a2+1),其中a=√2-1.19.(7分)先化简,再求值:(a-1+2a+120.(8分)为响应市政府关于“垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有1 000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(8分)(2020内蒙古包头)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2 400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元;(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?22.(8分)如图,已知A(3,m),B(-2,-3)是直线AB和某反比例函数图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x在什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.23.(11分)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC、DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.x+m与x轴、24.(12分)如图1,在平面直角坐标系xOy中,直线l:y=34x2+bx+c经过点B,且与直y轴分别交于点A和点B(0,-1),抛物线y=12线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l 于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG 的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.25.(12分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路:过点C作CD⊥AB于点D,则CD将△ABC 分割成2个与△A BC相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一题作答:我选择题.A:①如图3-1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3-2,若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4-1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);②如图4-2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).中考模拟测试卷一一、选择题1.B2.D3.A4.C5.C6.C7.D8.A9.B 10.D 11.D 12.A 如图所示:由图可知P 1(3,2),P 2(-2,3),故选A. 二、填空题 13.答案 1.2×10-4 14.答案 5√3解析 连接OB,OC,过点O 作OD⊥BC 于点D,∴BD=CD=12BC,∵∠A=60°, ∴∠BOC=2∠A=120°, ∵OB=OC, ∴∠OBC=∠OCB=180°-∠BOC2=30°,∵OB=5厘米,∴BD=OB·cos 30°=5×√32=5√32(厘米),∴BC=2BD=5√3(厘米). 15.答案 10.6解析 相同时刻的物高与影长成比例,设墙上影高落在地上为y 米,则1.62=1y,解得y=1.25.则学校旗杆的影长为12+1.25=13.25米, 设该旗杆的高度为x 米,则1.62=x 13.25,解得x=10.6.即旗杆高10.6米. 16.答案 (12,0)解析 在Rt△OB'C 中,tan∠OB'C=34,∴OCOB '=34,即9OB '=34,解得OB'=12,则点B'的坐标为(12,0). 17.答案 75解析 观察每个图形最上边正方形中数字规律为1,3,5,7,9,11.左下角数字变化规律为2,22,23,24,25,26.所以,b=26.观察数字关系可以发现,右下角数字等于同图形中最上边数字与左下角数字之和,所以a=26+11=75. 18.答案 2√5解析 如图,延长DC 至Q,使CQ=BC=5,连接AQ,过A 作AH⊥DQ 于H,则DQ=DC+CQ=CD+BC=3+5=8,∵∠BCA+∠ACQ+∠BCD=180°,∠BCA=90°-12∠BCD,设∠BCD=x°,则∠BCA=90°-12x°,∴∠ACQ=180°-x°-(90°-12x °)=90°-12x°=∠BCA,又∵AC=AC,∴△BCA≌△QCA(SAS ), ∴∠B=∠Q=∠D,∴AD=AQ, ∵AH⊥DQ,∴DH=QH=12DQ=4,tan∠B=tan∠Q=AH QH=AH 4=12,∴AH=2,∴AQ=AD=2√5. 三、解答题 19.解析 原式=(a+1)(a -1)+2a+1·1a 2+1=a 2+1a+1·1a 2+1=1a+1,当a=√2-1时,原式=√22.20.解析 (1)∵被调查的学生人数为4÷8%=50,∴C 选项的人数为50×30%=15,D 选项的人数为50-(4+21+15)=10, 则B 选项所占百分比为2150×100%=42%,D 选项所占百分比为1050×100%=20%.补全统计图如下:(2)500.(3)画树状图如下:共有12种等可能结果,其中满足条件的结果有6种, ∴P(一男一女)=12.21.解析 (1)设该商店3月份这种商品的售价为x 元. 根据题意,得2 400x=2 400+8400.9x-30,解得x=40.经检验,x=40是所得方程的解,且符合题意. 答:该商店3月份这种商品的售价为40元. (2)设该商品的进价为a 元. 根据题意,得(40-a)×2 40040=900,解得a=25.4月份的售价:40×0.9=36(元), 4月份的销售数量:2 400+84036=90(件).4月份的利润:(36-25)×90=990(元).答:该商店4月份销售这种商品的利润是990元. 22.解析 (1)设反比例函数解析式为y=kx (k≠0),把B(-2,-3)代入,可得k=-2×(-3)=6, ∴反比例函数解析式为y=6x ;把A(3,m)代入y=6x,可得m=2,∴A(3,2),设直线AB 的解析式为y=ax+b(a≠0),把A(3,2),B(-2,-3)代入,可得{2=3a +b ,-3=-2a +b ,解得{a =1,b =-1,∴直线AB 的解析式为y=x-1.(2)当x<-2或0<x<3时,直线AB 在双曲线的下方.(3)存在点C,使得△OBC 的面积等于△OAB 的面积. ①延长AO 交双曲线于点C 1, ∵点A 与点C 1关于原点对称, ∴AO=C 1O,∴△OBC 1的面积等于△OAB 的面积, 此时,点C 1的坐标为(-3,-2);②过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积, 由B(-2,-3)可得OB 的解析式为y=32x,可设直线C 1C 2的解析式为y=32x+b',把C 1(-3,-2)代入,可得-2=32×(-3)+b',解得b'=52,∴直线C 1C 2的解析式为y=32x+52,解方程组{y =6x,y =32x +52,可得C 2(43,92); ③过A 作OB 的平行线,交反比例函数图象于点C 3,则△OBC 3的面积等于△OAB 的面积,设直线AC 3的解析式为y=32x+b″,把A(3,2)代入,可得2=32×3+b″,解得b″=-52,∴直线AC 3的解析式为y=32x-52,联立方程组{y =6x ,y =32x -52,可得C 3(-43,-92),综上所述,点C 的坐标为(-3,-2)或43,92或(-43,-92).23.解析 (1)证明:在△ABC 和△DCB 中, ∵{AB =DC ,AC =DB ,BC =CB ,∴△ABC≌△DCB(SSS). (2)四边形BNCM 为菱形. 证明如下: ∵△ABC≌△DCB, ∴∠DBC=∠ACB, 即MB=MC, ∵BN∥AC,CN∥BD,∴四边形BNCM 为平行四边形, 又∵MB=MC,∴平行四边形BNCM 为菱形.24.解析 (1)∵直线l:y=34x+m 经过点B(0,-1),∴m=-1,∴直线l 的解析式为y=34x-1.∵直线l:y=34x-1经过点C(4,n),∴n=34×4-1=2,∵抛物线y=12x 2+bx+c 经过点C(4,2)和点B(0,-1),∴{12×42+4b +c =2,c =-1,解得{b =-54,c =-1, ∴抛物线的解析式为y=12x 2-54x-1.(2)令y=0,则34x-1=0,解得x=43,∴点A 的坐标为(43,0),∴OA=43.在Rt△OAB 中,OB=1,OA=43,∴AB=√OA 2+OB 2=√(43)2+12=53,∵DE∥y 轴, ∴∠ABO=∠DEF, 在矩形DFEG 中,EF=DE·cos∠DEF=DE·OB AB =35DE,DF=DE·sin∠DEF=DE·OA AB =45DE, ∴p=2(DF+EF)=2×(45+35)DE=145DE,∵点D 的横坐标为t(0<t<4), ∴D (t ,12t 2-54t -1),E (t ,34t -1),∴DE=(34t -1)-(12t 2-54t -1)= -12t 2+2t,∴p=145×(-12t 2+2t)=-75t 2+285t,∵p=-75(t-2)2+285,且-75<0,∴当t=2时,p 有最大值285.(3)点A 1的横坐标为34或-712.∵△AOB 绕点M 沿逆时针方向旋转90°, ∴A 1O 1∥y 轴时,B 1O 1∥x 轴,设点A 1的横坐标为x,①如图1,点O 1、B 1在抛物线上时,点O 1的横坐标为x,点B 1的横坐标为x+1,∴12x 2-54x-1=12(x+1)2-54(x+1)-1,解得x=34;②如图2,点A 1、B 1在抛物线上时,点B 1的横坐标为x+1,点A 1的纵坐标比点B 1的纵坐标大43,∴12x 2-54x-1=12(x+1)2-54(x+1)-1+43,解得x=-712,综上所述,点A 1的横坐标为34或-712.25.解析 (1)12.∵点H 是AD 的中点,∴AH=12AD, ∵正方形AEOH∽正方形ABCD,∴相似比为AH AD =12AD AD =12.(2)45.在Rt△ABC 中,AC=4,BC=3, 根据勾股定理得,AB=5,∴△ACD 与△ABC 的相似比为AC AB =45.(3)A.①如图1,∵矩形ABEF∽矩形ADCB,∴AF AB=AB AD, 即12a b=b a,∴a=√2b.②每个小矩形都是全等的,则其边长为b 和1na,则b 1na=a b,∴a=√n b. B.①如图2,由题意可知纵向2个矩形全等,横向3个矩形也全等, ∴DN=13b,(ⅰ)当DF 是矩形DFMN 的长时, ∵矩形FMND∽矩形ABCD, ∴FD DN=AD CD,即FD 13b=a b,解得FD=13a,∴AF=a -13a=23a,∴AG=AF 2=23a 2=13a,∵矩形GABH∽矩形ABCD, ∴AG AB=AB BC, 即13a b=b a,得a=√3b;(ⅱ)当FM 是矩形DFMN 的长时, ∵矩形DFMN∽矩形ABCD,∴FD DN=AB AD,即FD 13b=b a,解得FD=b 23a , ∴AF=a -b 23a =3a 2-b 23a ,∴AG=AF 2=3a 2-b 26a ,∵矩形GABH∽矩形ABCD,∴AG AB=AB AD,即3a 2-b 26a b=b a,得a=√213b. ②如图3,由题意可知纵向m 个矩形全等,横向n 个矩形也全等,∴DN=1n b, (ⅰ)当DF 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD DN=AD CD,即FD 1n b=a b,解得FD=1n a, ∴AF=a -1n a=(n -1)a n ,∴AG=AF m =(n -1)a n m =n -1mna, ∵矩形GABH∽矩形ABCD,∴AG AB=AB BC,即n -1mn a b=b a,得a=√mnn -1b;(ⅱ)当FM 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD DN=AB AD,即FD 1nb=b a,解得FD=b 2na ,∴AF=a-b 2na ,∴AG=AFm =na2-b2mna,∵矩形GABH∽矩形ABCD, ∴AG AB=AB AD,即na 2-b2mna b=b a,得a=√mn+1nb.。

2020年山东省泰安中考数学试卷附答案解析版

2020年山东省泰安中考数学试卷附答案解析版

2020年ft东省泰安市初中学业水平考试
数学答案解析
第Ⅰ卷(选择题)
一、 1. 【答案】A 【解析】根据倒数的概念求解即可.根据乘积等于 1 的两数互为倒数,可直接得到 1 的倒数为2 .故选A.
2 2. 【答案】D 【解析】根据整式的加减乘除法则分开讨论即可得到结果. A. 3xy xy 2xy ,故 A 错误; B. x3 x4 x34 x7 ,故 B 错误; C. x10 x2 x102 x12 ,故 C 错误;
若 BC 恰好平分DBE .求直线 BE 的表达式; 3 如图(2),若点 P 在抛物线上(点 P 在 y 轴右侧),连接 AP 交 BC 于点 F ,连接
BP , S△BFP mS△BAF . ①当 m 1 时,求点 P 的坐标;
2
②求 m 的最大值.
数学试卷 第 7 页(共 8 页)
数学试卷 第 8 页(共 8 页)
问题解决: 3 若 AB 6 , CE 9 ,求 AD 的长.
25.若一次函数 y 3x 3 的图象与 x 轴,y 轴分别交于 A ,C两点,点 B 的坐标为3,0,
二次函数 y ax2 bx c 的图象过 A , B , C 三点,如图(1).
1 如图(1),点 B 是 DE 的中点,判定四边形 BEAC 的形状,并说明理由; 2 如图(2),若点G 是 EC 的中点,连接GB 并延长至点 F ,使 CF CD .
面积. 21.(11 分)
为迎接 2020 年第 35 届全国青少年科技创新大赛,某学校举办了 A :机器人;B :航 模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项), 将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:

山东省新泰市西部2019-2020学年九年级第一次联考数学试题(解析版)

山东省新泰市西部2019-2020学年九年级第一次联考数学试题(解析版)

2020年九年级西部第一次联考数学试题一、选择题1.计算32222332⎡⎤⎡⎤⎛⎫⎛⎫⨯⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦的值等于()A. 1B. 23C.223⎛⎫⎪⎝⎭D.423⎛⎫⎪⎝⎭【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式=64 23 32⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭=42 232 323⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭=2 23⎛⎫ ⎪⎝⎭.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.2.下列计算正确的是()A. 2x2•2xy=4x3y4B. 3x2y﹣5xy2=﹣2x2yC. x﹣1÷x﹣2=x﹣1D. (﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.3.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A. 0.278 09×105B. 27.809×103C. 2.780 9×103D. 2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】27 809=2.780 9×410,故选D.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值4.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长225+12,所以这个圆锥的侧面积=12×2π×5×13=65π(cm2).故选B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.5.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=mx的大致图象是()A. B.C. D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=mx的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.6.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A. 38B.58C.14D.12【答案】B【解析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105 168=,故选B.考点:列表法与树状图法;绝对值.7.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩……无解,那么满足条件的所有整数a的和是()A. ﹣19B. ﹣15C. ﹣13D. ﹣9 【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.8.某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是()A. 1000(1+x)2=3990B. 1000+1000(1+x)+1000(1+x)2=3990C. 1000(1+2x)=3990D. 1000+1000(1+x)+1000(1+2x)=3990【答案】B【解析】 【分析】设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x 的一元二次方程,此题得解. 【详解】解:设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,依题意,得1000+1000(1+x )+1000(1+x )2=3990. 故选B .【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知增长率问题的求解.9.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=o ,则阴影部分的面积为( )A. 933π-B. 932π-C. 1839π-D. 1836π-【答案】A 【解析】 【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,∵四边形ABCD 是菱形, ∴6AB BC ==,∵60B ∠=o ,E 为BC 的中点,∴3CE BE CF ===,ABC ∆是等边三角形,//AB CD , ∵60B ∠=o ,∴180120BCD B ∠=-∠=o o ,由勾股定理得:AE ==∴11622AEB AEC AFC S S S ∆∆∆==⨯⨯==, ∴阴影部分的面积212033360AEC AFC CEF S S S S ππ∆∆⨯=+-==扇形,故选A .【点睛】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.10.下列命题错误的是( ) A .平分弦的直径垂直于弦 B. 三角形一定有外接圆和内切圆 C. 等弧对等弦D. 经过切点且垂直于切线的直线必经过圆心 【答案】C 【解析】 【分析】根据垂径定理、三角形外接圆、圆的有关概念判断即可. 【详解】A 、平分弦的直径一定垂直于弦,是真命题; B 、三角形一定有外接圆和内切圆,是真命题; C 、在同圆或等圆中,等弧对等弦,是假命题;D 、经过切点且垂直于切线的直线必经过圆心,是真命题; 故选C .【点睛】本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大.11.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系12.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G,有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】①只要证明△ADE为等腰直角三角形即可②只要证明△AEF≌△CBF(SAS)即可;③假设BF2=FG•FC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,④由△ADF∽△GBF,可得AD DF DFBG BF EF==,由EG∥CD,推出EF EG EGDF CD AB==,推出AD ABBG GE=,由AD=AE,得EG•AE=BG•AB,故④正确,【详解】①DE平分∠ADC,∠ADC为直角,∴∠ADE=12×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BEF=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF ≌△CBF (SAS ) ∴AF=CF③假设BF 2=FG•FC ,则△FBG ∽△FCB , ∴∠FBG=∠FCB=45°, ∵∠ACF=45°, ∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°-∠CGB ,∠DAF=90°+∠EAF=90°+(90°-∠AGF )=180°-∠AGF ,∠AGF=∠BGC , ∴∠DAF=∠BGF ,∵∠ADF=∠FBG=45°, ∴△ADF ∽△GBF , ∴AD DF DF BG BF EF==, ∵EG ∥CD ,∴EF EG EGDF CD AB ==, ∴AD ABBG GE=,∵AD=AE , ∴EG•AE=BG•AB ,故④正确, 故选C .【点睛】本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.二、填空题13.计算:(π﹣3.14)0+2cos60°= . 【答案】2 【解析】 【分析】原式利用零指数幂法则,特殊角的三角函数值计算即可求出值. 【详解】解:原式=1+2×12, =1+1, =2. 故答案为2.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A=_____.【答案】1 2【解析】【分析】根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.【详解】解:∵3 sin2BCAAB==,∴∠A=60°,∴1 sin sin3022A︒==.故答案为12.【点睛】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.15.一次函数y=kx﹣3k+1的图象必经过一个定点,该定点的坐标是_____【答案】(3,1)【解析】【分析】把一次函数解析式转化为y=k(x﹣3)+1,可知点(3,1)在直线上,且与系数无关.【详解】根据题意可把直线解析式化为:y=k(x﹣3)+1,故函数一定过点(3,1).故答案为(3,1).【点睛】本题考查了一次函数图象上点的坐标特征,解决问题的关键是把一次函数进行整理变形.16.如图,正方形ABCD的边长为2a,E为BC边的中点,»»AE DE、的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为.【答案】32 a.【解析】【分析】作DE的中垂线交CD于G,则G为»DE的圆心,H为»AE的圆心,连接EF,GH,交于点O,连接GF ,FH ,HE ,EG ,依据勾股定理可得GE=FG=54a ,根据四边形EGFH 是菱形,四边形BCGH 是矩形,即可得到Rt △OEG 中,OE=34a ,即可得到EF=32a .【详解】如图,作DE 的中垂线交CD 于G ,则G 为»DE 的圆心,同理可得,H 为»AE 的圆心,连接EF ,GH ,交于点O ,连接GF ,FH ,HE ,EG , 设GE=GD=x ,则CG=2a-x ,CE=a , Rt △CEG 中,(2a-x )2+a 2=x 2,解得x=54a , ∴GE=FG=54a ,同理可得,EH=FH=54a , ∴四边形EGFH 是菱形,四边形BCGH 是矩形, ∴GO=12BC=a , ∴Rt △OEG 中,2253()44a a a -=, ∴EF=32a , 故答案为32a .【点睛】本题主要考查了正方形的性质以及相交两圆的性质,相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系. 17.已知x ,y 为实数,229913x x y x --=-,则x ﹣6y 的值_____【答案】-2 【解析】 【分析】根据被开方数大于等于0,分母不等于0列不等式求出x 的值,再求出y 的值,然后代入代数式进行计算即可得解.【详解】由题意得,22909030x x x ⎧-⎪-⎨⎪-≠⎩……, 解得x =﹣3,∴11336y ==---, ∴x ﹣6y =﹣3﹣6×1()6-=﹣3+1=﹣2.故答案为﹣2.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义. 18.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若8AD =,5AB =,则线段PE 的长等于_____.【答案】203. 【解析】 【分析】根据折叠可得ABNM 是正方形,5CD CF ==,90D CFE ∠=∠=o ,ED EF =,可求出三角形FNC 三边为3,4,5,在Rt MEF ∆中,由勾股定理可以求出三边的长,通过作辅助线,可证FNC ∆∽PGF ∆,三边占比为3:4:5,设未知数,通过PG HN =,列方程求出待定系数,进而求出PF 的长,然后求PE 的长.【详解】过点P 作PG FN ⊥,PH BN ⊥,垂足为G 、H , 由折叠得:ABNM 是正方形,5AB BN NM MA ====,5CD CF ==,90D CFE ∠=∠=o ,ED EF =,∴853NC MD ==-=,在Rt FNC ∆中,23534FN =-=, ∴541MF =-=,在Rt MEF ∆中,设EF x =,则3ME x =-,由勾股定理得,2221(3)x x +-=,解得:53x =, ∵90CFN PFG ∠+∠=o ,90PFG FPG ∠+∠=o , ∴FNC ∆∽PGF ∆,∴::::3:4:5FG PG PF NC FN FC ==, 设3FG m =,则4PG m =,5PF m =,∴43GN PH BH m ===-,5(43)134HN m m PG m =--=+==, 解得:1m =, ∴55PF m ==, ∴520533PE PF FE =+=+=, 故答案为203.【点睛】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.三、解答题19.先化简,再求值:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭,其中a 是方程﹣2x 2﹣x +3=0的解. 【答案】2a a 1-,910-【解析】 【分析】分析式子,第一项的分子可以提取公因式,分母可用完全平方差公式化简;括号里面先通分,再把整个式子化简,最后把a的值求出来代回化简好的式子即可得到答案.【详解】解:2221211a aa a a a+⎛⎫÷-⎪-+-⎝⎭=2(1)2(1)(1)(1)a a a aa a a+--÷--=2(1)(1)(1)21a a a aa a a+-⋅--+=2(1)(1)(1)1a a a aa a+-⋅-+=2aa1-,由﹣2x2﹣x+3=0,得x1=﹣32,x2=1,当a=1时,原分式无意义(分母不能为零),当a=﹣32时,原式=232312⎛⎫- ⎪⎝⎭--=910-.【点睛】本题主要考查了分式的化简,掌握因式分解、完全平方差公式是解题的关键,在代入数值计算的时候,还应该考虑分式成立的条件.20.如图,一次函数y=ax+b的图象与反比例函数y=kx的图象交于C,D两点,与x,y轴交于B,A两点,CE⊥x轴于点E,且tan∠ABO=12,OB=4,OE=1.(1)求一次函数的解析式和反比例函数的解析式(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.【答案】(1) y=﹣12x+2,y=﹣52x;(2) 6;(3) x<﹣1或0<x<5【解析】分析】(1)根据tan∠ABO=12,OB=4,OE=1先把A、B、C点的坐标算出来,再用待定系数法即可把一次函数的解析式和反比例函数的解析式计算出来;(2) 联立反比例函数的解析式和直线AB 的解析式可得这两个函数图像的交点坐标,再根据面积公式即可求解;(3)根据函数图像可以直接写出结果. 【详解】(1)∵OB =4,OE =1, ∴BE =1+4=5.∵CE ⊥x 轴于点E ,tan ∠ABO =OA OB =CE BE =12, ∴OA =2,CE =2.5.∴点A 的坐标为(0,2)、点B 的坐标为C (4,0)、点C 的坐标为(﹣1,2.5). ∵一次函数y =ax +b 的图象与x ,y 轴交于B ,A 两点,∴402a b b +=⎧⎨=⎩,解得122a b ⎧=-⎪⎨⎪=⎩.∴直线AB 的解析式为y =﹣12x +2. ∵反比例函数y =kx的图象过C , ∴2.5=1k -, ∴k =﹣2.5,∴该反比例函数的解析式为y =﹣52x; (2)联立反比例函数的解析式和直线AB 的解析式可得12252y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,解得点D 的坐标为(5,﹣12), 则△BOD 的面积=4×12×12=1,△BOC 的面积=4×52×12=5, ∴△OCD 的面积为1+5=6;(3)由图象和点C 、D 的坐标得,一次函数的值大于反比例函数的值时x 的取值范围:x <﹣1或0<x <5.【点睛】本题主要考查了用待定系数法求一次函数和反比例函数的解析式、三角形的面积公式、根据函数图像写信息,掌握待定系数法求解是本题的关键.21.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.【答案】(1)40,补图详见解析;(2)108°;(3)16.【解析】【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【详解】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人), 补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×1240=108°; (3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是212=16. 【点睛】此题主要考查统计图的运用及概率的求解,解题的关键是根据题意列出树状图,再利用概率告诉求解.22.如图,已知A 、B 是⊙O 上两点,△OAB 外角的平分线交⊙O 于另一点C ,CD ⊥AB 交AB 的延长线于D . (1)求证:CD 是⊙O 的切线;(2)E 为»AB 的中点,F 为⊙O 上一点,EF 交AB 于G ,若tan ∠AFE=34,BE=BG ,EG=310,求⊙O 的半径.【答案】(1)证明见解析;(2)25 2.【解析】【分析】(1)连接OC,先证明∠OCB=∠CBD得到OC∥AD,再利用CD⊥AB得到OC⊥CD,然后根据切线的判定定理得到结论;(2)解:连接OE交AB于H,如图,利用垂径定理得到OE⊥AB,再利用圆周角定理得到∠ABE=∠AFE,在Rt△BEH中利用正切可设EH=3x,BH=4x,则BE=5x,所以BG=BE=5x,GH=x,接着在Rt△EHG中利用勾股定理得到x2+(3x)2=(310)2,解方程得x=3,接下来设⊙O的半径为r,然后在Rt△OHB中利用勾股定理得到方程(r-9)2+122=r2,最后解关于r的方程即可.【详解】(1)证明:连接OC,如图,∵BC平分∠OBD,∴∠OBD=∠CBD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠CBD,∴OC∥AD,而CD⊥AB,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE交AB于H,如图,∵E为»AB的中点,∴OE⊥AB,∵∠ABE=∠AFE,∴tan∠ABE=tan∠AFE=34,∴在Rt △BEH 中,tan ∠HBE=43EH BH = 设EH=3x ,BH=4x , ∴BE=5x , ∵BG=BE=5x , ∴GH=x ,在Rt △EHG 中,x 2+(3x )2=()2,解得x=3, ∴EH=9,BH=12,设⊙O 的半径为r ,则OH=r-9, 在Rt △OHB 中,(r-9)2+122=r 2,解得r=252, 即⊙O 的半径为252. 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理、垂径定理和解直角三角形.23.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元. (1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?【答案】(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元(2)该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元. 【解析】 【分析】(1)利用二元一次方程组解决问题;(2)用不等式组确定方案,利用一次函数找到费用最低值.【详解】解:(1)设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意得2142324x y x y ==+⎧⎨+⎩解这个方程组得:64x y ⎧⎨⎩== 答:甲、乙两种型号的机器人每台价格分别是6万元、4万元; (2)设该公可购买甲型机器人a 台,乙型机器人(8-a )台,根据题意得()()648411200100088300a a a a ⎧+-≤⎪⎨+-≥⎪⎩解这个不等式组得32≤a ≤92∵a 为正整数∴a 的取值为2,3,4,∴该公司有3种购买方案,分别是 购买甲型机器人2台,乙型机器人6台 购买甲型机器人3台,乙型机器人5台 购买甲型机器人4台,乙型机器人4台设该公司的购买费用为w 万元,则w=6a+4(8-a )=2a+32 ∵k=2>0∴w 随a 的增大而增大当a=2时,w 最小,w 最小=2×2+32=36(万元) ∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.【点睛】本题是一次函数综合题,考查列一次函数解析式、一次函数增减性、二元一次方程组和不等式组的应用.24.如图1,抛物线y=﹣35[(x ﹣2)2+n]与x 轴交于点A (m ﹣2,0)和B (2m+3,0)(点A 在点B 的左侧),与y 轴交于点C ,连结BC . (1)求m 、n 的值;(2)如图2,点N 为抛物线上的一动点,且位于直线BC 上方,连接CN 、BN .求△NBC 面积的最大值; (3)如图3,点M 、P 分别为线段BC 和线段OB 上的动点,连接PM 、PC ,是否存在这样的点P ,使△PCM 为等腰三角形,△PMB 为直角三角形同时成立?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)m=1,n=﹣9;(2)758;(3)存在,P3349,0)或(34,0).【解析】【分析】(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,从而得到A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣35[(x﹣2)2+n]可求出n的值;(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=﹣35x+3,设N(x,﹣35x2+125x+3),则D(x,﹣35x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣32x2+152x,然后利用二次函数的性质求解;(3)先利用勾股定理计算出34∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,34t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,34t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.【详解】解:(1)∵抛物线的解析式为y=﹣35[(x﹣2)2+n]=﹣35(x﹣2)2﹣35n,∴抛物线的对称轴为直线x=2,∵点A和点B为对称点,∴2﹣(m﹣2)=2m+3﹣2,解得m=1,∴A(﹣1,0),B(5,0),把A(﹣1,0)代入y=﹣35[(x﹣2)2+n]得9+n=0,解得n=﹣9;(2)作ND∥y轴交BC于D,如图2,抛物线解析式为y=﹣35[(x ﹣2)2﹣9]=﹣35x 2+125x+3, 当x=0时,y=3,则C (0,3),设直线BC 的解析式为y=kx+b ,把B (5,0),C (0,3)代入得503k b b +=⎧⎨=⎩,解得3k 5b 3⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为y=﹣35x+3, 设N (x ,﹣35x 2+125x+3),则D (x ,﹣35x+3), ∴ND=﹣35x 2+125x+3﹣(﹣35x+3)=﹣35x 2+3x , ∴S △NBC =S △NDC +S △NDB =12•5•ND=﹣32x 2+152x=﹣(x ﹣52)2+758, 当x=52时,△NBC 面积最大,最大值为758; (3)存在.∵B (5,0),C (0,3),∴由勾股定理得当∠PMB=90°,则∠PMC=90°,△PMC 为等腰直角三角形,MP=MC ,设PM=t ,则CM=t ,t ,∵∠MBP=∠OBC ,∴△BMP ∽△BOC , ∴PM BM BP OC OB BC ==,即3t ==,BP=174, ∴OP=OB ﹣BP=5﹣173=44, 此时P 点坐标为(34,0); 当∠MPB=90°,则MP=MC ,设PM=t ,则CM=t ,t ,∵∠MBP=∠CBO ,∴△BMP ∽△BCO , ∴PM BM BP OC BC OB ==,即343534t t BP -==,解得t=10293425-,BP=343345-, ∴OP=OB ﹣BP=5﹣343343=54-, 此时P 点坐标为(3349-,0); 综上所述,P 点坐标为(3349-,0)或(34,0).【点睛】本题考查二次函数综合题.25.已知正方形ABCD 的对角线AC ,BD 相交于点O .(1)如图1,E ,G 分别是OB ,OC 上的点,CE 与DG 的延长线相交于点F .若DF ⊥CE ,求证:OE =OG ; (2)如图2,H 是BC 上的点,过点H 作EH ⊥BC ,交线段OB 于点E ,连结DH 交CE 于点F ,交OC 于点G .若OE =OG ,①求证:∠ODG =∠OCE ;②当AB =1时,求HC 的长.【答案】(1)证明见解析;(2)①证明见解析;②HC =512. 【解析】【分析】(1)要证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①要证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得EHHC=HCCD,即HC2=EH•CD,由此构建方程即可解决问题;【详解】(1)证明:如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵AC,BD为对角线,∴OD=OC,∵OG=OE,∠DOG=∠COE=90°,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1-x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1-x,∵∠ODG=∠OCE,∴∠BDC-∠ODG=∠ACB-∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴EHHC=HCCD,∴HC2=EH•CD,∴x2=(1-x)•1,解得x(舍弃),∴HC.【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

山东省新泰市2020年中考数学评价检测试卷(一)(含解析)

山东省新泰市2020年中考数学评价检测试卷(一)(含解析)

山东省新泰市2020年中考数学评价检测试卷(一)一.选择题(每题4分,满分48分)1.求值:的结果是()A.1 B.2 C.﹣1 D.﹣22.下列运算中,正确的是()A.2a2﹣a2=2 B.(a3)2=a5C.a2•a4=a6D.a﹣3÷a﹣2=a 3.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.2.135×1011 B.2.135×107C.2.135×1012 D.2.135×1034.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.5.如图,AB∥CD,点E在CD上,点F在AB上,如果∠CEF:∠BEF=6:7,∠ABE=50°,那么∠AFE的度数为()A.110°B.120°C.130°D.140°6.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如表所示:则该班学生一周读书时间的中位数和众数分别是()读书时间(小时)7 8 9 10 11 学生人数 6 10 9 8 7 A.9,8 B.9,9 C.9.5,9 D.9.5,87.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.68.关于x的不等式组恰好只有4个整数解,则a的取值范围为()A.﹣2≤a<﹣1 B.﹣2<a≤﹣1 C.﹣3≤a<﹣2 D.﹣3<a≤﹣2 9.如图,基灯塔AB建在陡峭的山坡上,该山坡的坡度i=1:0.75.小明为了测得灯塔的高度,他首先测得BC=20m,然后在C处水平向前走了34m到达一建筑物底部E处,他在该建筑物顶端F处测得灯塔顶端A的仰角为43°.若该建筑物EF=20m,则灯塔AB的高度约为(精确到0.1m,参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)()A.46.7m B.46.8m C.53.5m D.67.8m10.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.11.如图,将边长为cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长是()cm.A.8B.8 C.3πD.4π12.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD 边于点F,则=()A.B.C.D.二.填空题(满分18分,每小题3分)13.已知关于x的一元二次方程x2﹣2x+k=0没有实数根,则k的取值范围是.14.小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm的小正方形,则这个小长方形的面积为cm2.15.如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,则图中阴影部分的面积为.16.已知一个矩形纸片ABCD,AB=12,BC=6,点E在BC边上,将△CDE沿DE折叠,点C落在C'处;DC',EC'分别交AB于F,G,若GE=GF,则sin∠CDE的值为.17.观察下列各式,你有什么发现?32=4+5;52=12+13;72=24+25;92=40+41这到底是巧合,还是有什么规律蕴含其中呢?请写出你发现的规律,设n为大于1的奇数,则n2=18.如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为.三.解答题19.(8分)先化简再求值:,其中.20.(8分)某校调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,根据图中提供的信息,完成以下问题:(1)本次共调查了名家长;扇形统计图中“很赞同”所对应的圆心角是度.已知该校共有1600名家长,则“不赞同”的家长约有名;请补全条形统计图;(2)从“不赞同”的五位家长中(两女三男),随机选取两位家长对全校家长进行“学生使用手机危害性”的专题讲座,请用树状图或列表法求出选中“1男1女”的概率.21.(11分)2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.(1)求甲、乙两种货车每辆车可装多少箱生姜?(2)如果这批生姜有1520箱,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了40箱,其它装满,求甲、乙两种货车各有多少辆?22.(12分)如图,点A、C、D、B在同一条直线上,且AC=BD,∠A=∠B,∠E=∠F.(1)求证:△ADE≌△BCF;(2)若∠BCF=65°,求∠DMF的度数.23.(12分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.24.四边形的一条对角线将这个四边形分成两个三角形,如果这两个三角形相似(不全等),那么我们将这条对角线叫做这个四边形的相似对角线.(1)如图1,四边形ABCD中,∠DAB=100°,∠DCB=130°,对角线AC平分∠DAB,求证:AC是四边形ABCD的相似对角线;(2)如图2,直线y=﹣x+分别与x,y轴相交于A,B两点,P为反比例函数y =(k<0)上的点,若AO是四边形ABOP的相似对角线,求反比例函数的解析式;(3)如图3,AC是四边形ABCD的相似对角线,点C的坐标为(3,1),AC∥x轴,∠BCA=∠DCA=30°,连接BD,△BCD的面积为.过A,C两点的抛物线y=ax2+bx+c (a<0)与x轴交于E,F两点,记|m|=AC+1,若直线y=mx与抛物线恰好有3个交点,求实数a的值.25.在四边形ABCD中,E为BC边中点.(Ⅰ)已知:如图1,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;(Ⅱ)已知:如图2,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,点F,G均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF为等边三角形;(2)AD=AB+BC+CD.参考答案一.选择1.解:原式=3+1﹣6=﹣2,故选:D.2.解:A、2a2﹣a2=a2,此选项错误;B、(a3)2=a6,此选项错误;C、a2•a4=a6,此选项正确;D、a﹣3÷a﹣2=a﹣3﹣(﹣2)=a﹣1,此选项错误;故选:C.3.解:2135亿=213500000000=2.135×1011,故选:A.4.解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”不是轴对称图形,故本选项符合题意.故选:D.5.解:设∠CEF=6x,如图所示:∵∠CEF:∠BEF=6:7,∴∠BEF=7x,又∵AB∥CD,∴∠ABE+∠BEC=180°,又∵∠ABE=50°,∴∠BEC=130°,又∵∠BEC=∠CEF+∠BEF,∴7x+6x=130°,解得:x=10°,∴∠CEF=60°,又∵AB∥CD,∴∠AFE+∠CEF=180°,∴∠AFE=120°,故选:B.6.解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.7.解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是=0.6,故选:D.8.解:不等式组整理得:,解得:a+1<x<,由解集中恰好只有4个整数解,得到整数解为0,1,2,3,∴﹣1≤a+1<0,解得:﹣2≤a<﹣1,故选:A.9.解:如图,延长AB交EC延长线于点D,则∠ADC=90°,∵i=1:0.75,即=,∴设BD=4x、CD=3x,则BC==5x=20m,解得:x=4,∴BD=4x=16m,CD=3x=12m,作FG⊥AB于点G,则EF=DG=20m,FG=DE=DC+CE=12+34=46(m),∴BG=DG﹣DB=4m,在Rt△AFG中,AG=FG tan∠AFG=46tan43°≈46×0.93=42.78(m),∴AB=AG+BG=42.78+4≈46.8(m),故选:B.10.解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选:C.11.解:∵正方形ABCD的边长为cm,∴对角线的一半=1cm,则连续翻动8次后,正方形的中心O经过的路线长=8×=4π.故选:D.12.解:连接OE、OF、OC.∵AD、CF、CB都与⊙O相切,∴CE=CB;OE⊥CF;OF平分∠AFC,OC平分∠BCF.∵AF∥BC,∴∠AFC+∠BCF=180°,∴∠OFC+∠OCF=90°,∴∠COF=90°.∴△EOF∽△EOC,得OE2=EF•EC.设正方形边长为a,则OE=a,CE=a.∴EF=a.∴=.故选:C.二.填空13.解:根据题意得△=(﹣2)2﹣4k<0,解得k>3.故答案为k>3.14.解:设每个长方形的宽为xcn,长为ycm,那么可得出方程组为:,解得:,因此每个长方形的面积应该是xy=60cm2.故答案为:60.15.解:连接OD、OF、BF,作DE⊥OA于点E,∵ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,∴OA=OD=AD=OF=OB=2,DC∥AB,∴△DOA是等边三角形,∠AOD=∠FDO,∴∠AOD=∠FDO=60°,同理可得,∠FOB=60°,△BCD是等边三角形,∵弓形DF的面积=弓形FB的面积,DE=OD•sin60°=,∴图中阴影部分的面积为:=,故答案为:.16.解:设CE=x,则BE=6﹣x.根据折叠的对称性可知DC′=DC=12,C′E=CE=x.在△FC′G和△EBG中,∴△FC′G≌△EBG(AAS).∴FC′=BE=6﹣x.∴DF=12﹣(6﹣x)=6+x.在Rt△FC′E和Rt△EBF中,,∴Rt△FC′E≌Rt△EBF(HL).∴FB=EC′=x.∴AF=12﹣x.在Rt△ADF中,AD2+AF2=DF2,即36+(12﹣x)2=(6+x)2,解得x=4.∴CE=4.在Rt△CDE中,DE2=DC2+CE2,则DE=4.∴sin∠CDE=.故答案为.17.解:∵32=4+5=+,52=12+13=+,…,∴n2=;故答案为:.18.解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,故答案为.三.解答19.解:原式===,∵,∴原式=.20.解:(1)总人数:50÷25%=200名,无所谓人数:200×20%=40名,很赞同人数:200﹣90﹣50﹣40=20名,很赞同对应圆心角:360°×=36°,1600×=720名,故答案为:200,36,720,补全条形统计图如图所示:(2)用列表法表示所有可能出现的情况如下:共有20种可能出现的情况,正确“1男1女”的有12种,==,∴P(1男1女)答:选中“1男1女”的概率为.21.解:(1)设乙种货车每辆车可装x箱生姜,则甲种货车每辆车可装(x+20)箱生姜,依题意,得:=,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+20=100.答:甲种货车每辆车可装100箱生姜,乙种货车每辆车可装80箱生姜.(2)设甲种货车有m辆,则乙种货车有(16﹣m)辆,依题意,得:100m+80(16﹣m﹣1)+40=1520,解得:m=14,∴16﹣m=2.答:甲种货车有14辆,乙种货车有2辆.22.证明:如图所示:(1)∵AD=AC+CD,BC=BD+CD,AC=BD,∴AD=BC,在△AED和△BFC中,,∴△AED ≌△BFC (ASA ),(2)∵△AED ≌△BFC ,∴∠ADE =∠BCF ,又∵∠BCF =65°,∴∠ADE =65°,又∵∠ADE +∠BCF =∠DMF∴∠DMF =65°×2=130°.23.解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b ,得k =1×4,1+b =4, 解得k =4,b =3, ∵点B (﹣4,n )也在反比例函数y =的图象上,∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.24.解:(1)如图1,设∠ACD =α,则∠ACB =130°﹣α,∴∠B =180°﹣∠BAC ﹣∠ACB =180°﹣50°﹣(130°﹣α)=α,在△ABC 和△ACD 中,∠B =∠ACD ,∠BAC =∠CAD ,∴△ABC ∽△ACD ,∴AC是四边形ABCD的相似对角线;(2)①当∠APO为直角时,当∠OAP=30°时,过点P作PH⊥x轴于点H,设OH=x,则HP=x,HA=3x,则x+3x=4,解得:x=1,故点P(1,﹣),故k=﹣;当∠AOP=30°时,同理可得:k=﹣3;②当∠OAP为直角时,当∠OPA=30°时,点P(4,﹣4),k=﹣16;当∠AOP=30°时,同理可得:k=﹣(舍去);综上,反比例函数的表达式为:y=﹣或y=﹣或y=﹣;(3)如图3,过点B作BH⊥CD于点H,则∠CBH=60°﹣∠BCD=30°,故CH=BC,则BH=BC,△BCD的面积=CD•BH=CD×HB=,故CD•BC=4而△BAC∽△ACD,故CA2=BC•CD=4,故CA=2,则点A(1,1),而点C(3,1),将点A、C的坐标代入抛物线表达式并解得:抛物线的表达式为:y=ax2﹣4ax+3a+1,AC=2,则m=±3,故直线的表达式为:y=±3x,直线y=﹣3x与抛物线有两个交点,而直线y=mx与抛物线恰好有3个交点,则直线y=3x与抛物线有一个交点,联立直线y=3x于抛物线的表达式并整理得:ax2﹣(4a+3)x+3a+1=0,△=(4a+3)2﹣4a(3a+1)=0,解得:a=﹣或﹣.25.(Ⅰ)证明:(1)如图1中,∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS),(2)∵△ABE≌△AFE,∴∠AEB=∠AEF,BE=BF,∵AE平分BC,∴BE=CE,∴FE=CE,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC,在△DEF和△DEC中,,∴△DEF≌△DEC(SAS),∴DF=DC,∵AD=AF+DF,∴AD=AB+CD;(Ⅱ)证明:(1)如图2中,∵E是BC的中点,∴BE=CE=BC,同(1)得:△ABE≌△AFE(SAS),△DEG≌△DEC(SAS),∴BE=FE,∠AEB=∠AEF,CE=EG,∠CED=∠GED,∵BE=CE,∴EF=EG,∵∠AED=120°,∠AEB+∠CED=180°﹣120°=60°,∴∠AEF+∠GED=60°,∴∠FEG=60°,∴△FEG是等边三角形.(2)由(1)可知FG=GE=EF=BC,∵AD=AG+GH+HD,∴AD=AB+CD+BC.。

山东泰安2020年中考数学模拟试卷 一(含答案)

山东泰安2020年中考数学模拟试卷 一(含答案)
21.如图,Rt△ABO的顶点A是双曲线y=kx-1 与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于 B,且S△ABO=1.5. (1)求这两个函数的解析式; (2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.
第 4 页 共 10 页
22.某服装店购进一批甲、乙两种款型时尚的 T 恤衫,其中甲种款型共用 7800 元,乙种款型共用 6400 元,甲种款型的件数是乙种款型件数的 1.5 倍,甲种款型每件的进价比乙种款型每件的进价 少 30 元 (1)甲、乙两种款型的 T 恤衫各购进多少件? (2)若甲种款型 T 恤衫每件售价比乙种款型 T 恤衫的售价少 40 元,且这批 T 恤衫全部售出后, 商店获利不少于 7400 元,则甲种 T 恤衫每件售价至少多少元?
15.如图,在 Rt△ABC 中,∠ACB=90°,AC=BC=2,以点 A 为圆心,AC 的长为半径作 交 AB 于 点 E,以点 B 为圆心,BC 的长为半径作 交 AB 于点 D,则阴影部分的面积为 .
第 2 页 共 10 页
16.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为 .
Hale Waihona Puke B.10C.36D.72
12.如图,以矩形 ABOD 的两边 OD、OB 为坐标轴建立直角坐标系,若 E 是 AD 的中点,将△ABE 沿 BE 折叠后得到△GBE,延长 BG 交 OD 于 F 点.若 OF=I,FD=2,则 G 点的坐标为( )
A.( , )B.( , )C.( , )D.( , ) 二、填空题 13.关于 x 的一元二次方程 x2﹣2x﹣m=0 有两个不相等的实数根,则 m 的最小整数值是 . 14.由 10 块相同的小长方形地砖拼成面积为 1.6m2 的长方形 ABCD(如图),则长方形 ABCD 的周 长为____________.

山东省泰安市2019-2020学年中考一诊数学试题含解析

山东省泰安市2019-2020学年中考一诊数学试题含解析

山东省泰安市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若分式14a -有意义,则a 的取值范围为( ) A .a≠4B .a >4C .a <4D .a =42.下列计算结果等于0的是( ) A .11-+B .11--C .11-⨯D .11-÷3.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元B .720元C .1080元D .2160元4.计算327-的值为( ) A .26-B .-4C .23-D .-25.多项式4a ﹣a 3分解因式的结果是( )A .a (4﹣a 2)B .a (2﹣a )(2+a )C .a (a ﹣2)(a+2)D .a (2﹣a )26.二元一次方程组632x y x y +=⎧⎨-=-⎩的解是( )A .51x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .51x y =-⎧⎨=-⎩D .42x y =-⎧⎨=-⎩7.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论: ①甲步行的速度为60米/分; ②乙走完全程用了32分钟; ③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个C .3个D .4个8.下列命题是真命题的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形9.如图图形中,是中心对称图形的是()A.B.C.D.10.下列实数中,有理数是()A.2B.2.1&C.πD.5311.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断12.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数6yx=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.25-B.121-C.15-D.124-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数y=13x-+1x-的自变量x的取值范围是_____.14.不等式1253x->的解集是________________15.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)16.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ 绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.17.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心,AC为半径的弧交AB 于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)18.已知实数a、b、c满足2++-+|10﹣2c|=0,则代数式ab+bc的值为__.a+b+c(2005)(6)a b三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD;20.(6分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.21.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.22.(8分)阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.年度2013 2014 2015 2016 2017参观人数(人次)7450 0007630 0007290 0007550 0008060 000年增长率(%)38.7 2.4 -4.5 3.6 6.8他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.23.(8分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.24.(10分)阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=12(9+1)×2﹣12(9+4)×1﹣12(4+1)×1,即△P1P2P3的面积为1.”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形P n﹣1P n P n+1P n+2的面积,并说明理由(利用图2);(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形P n﹣1P n P n+1P n+2的面积(直接写出答案).25.(10分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)26.(12分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售. (1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.27.(12分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】分式有意义时,分母a-4≠0【详解】依题意得:a−4≠0,解得a≠4.故选:A【点睛】此题考查分式有意义的条件,难度不大2.A【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=0,符合题意;B、原式=-1+(-1)=-2,不符合题意;C、原式=-1,不符合题意;D、原式=-1,不符合题意,故选:A.【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.3.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.4.C【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】原式故选C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.5.B【解析】【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故选:B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.6.B【解析】【分析】利用加减消元法解二元一次方程组即可得出答案【详解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴42 xy=⎧⎨=⎩,故选:B.【点睛】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.8.C【解析】【分析】根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【点睛】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.9.D【解析】【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.10.B【解析】【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、π为无理数,故本选项错误;D、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有π、根式下开不尽的从而得到了答案.11.B【解析】【分析】比较OP与半径的大小即可判断.【详解】r5Q=,d OP6==,d r∴>,∴点P在Oe外,故选B.【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设Oe的半径为r,点P到圆心的距离OP d=,则有:①点P在圆外d r⇔>;②点P在圆上d r⇔=;①点P在圆内d r⇔<.12.B【解析】【分析】根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.【详解】解:∵矩形OABC,∴CB ∥x 轴,AB ∥y 轴.∵点B 坐标为(6,1),∴D 的横坐标为6,E 的纵坐标为1.∵D ,E 在反比例函数6y x =的图象上, ∴D (6,1),E (32,1), ∴BE=6﹣32=92,BD=1﹣1=3, ∴22BE BD +3132.连接BB′,交ED 于F ,过B′作B′G ⊥BC 于G . ∵B ,B′关于ED 对称,∴BF=B′F ,BB′⊥ED ,∴BF•ED=BE•BD 3132BF=3×92, ∴13∴13. 设EG=x ,则BG=92﹣x . ∵BB′2﹣BG 2=B′G 2=EB′2﹣GE 2, ∴222299()()()2213x x --=-, ∴x=4526, ∴EG=4526, ∴CG=4213, ∴B′G=5413,∴B′(4213,﹣213), ∴k=121-. 故选B .【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≥1且x≠3【解析】【分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.14.7<-x【解析】【分析】首先去分母进而解出不等式即可.【详解】去分母得,1-2x>15移项得,-2x>15-1合并同类项得,-2x>14系数化为1,得x<-7.故答案为x<-7.【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π. 故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.16.1【解析】【分析】连接AD ,根据PQ ∥AB 可知∠ADQ=∠DAB ,再由点D 在∠BAC 的平分线上,得出∠DAQ=∠DAB ,故∠ADQ=∠DAQ ,AQ=DQ .在Rt △CPQ 中根据勾股定理可知,AQ=11-4x ,故可得出x 的值,进而得出结论.【详解】连接AD ,∵PQ ∥AB ,∴∠ADQ=∠DAB ,∵点D 在∠BAC 的平分线上,∴∠DAQ=∠DAB ,∴∠ADQ=∠DAQ ,∴AQ=DQ ,在Rt △ABC 中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.17.【解析】【分析】根据扇形的面积公式:S=2360n Rπ分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.【详解】S阴影部分=S扇形ACE+S扇形BCD-S△ABC,∵S扇形ACE=60362360π⨯⨯=12π,S扇形BCD=3036360π⨯=3π,S△ABC=12×6×∴S阴影部分.故答案为.【点睛】本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式. 18.-1【解析】试题分析:根据非负数的性质可得:()()202005b 601020a b c a c ++=⎧⎪+-=⎨⎪-=⎩,解得:1165a b c =-⎧⎪=⎨⎪=⎩,则ab+bc=(-11)×6+6×5=-66+30=-1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.见解析【解析】【分析】依据条件得出∠C=∠DHG=90°,∠CGE=∠GED ,依据F 是AD 的中点,FG ∥AE ,即可得到FG 是线段ED 的垂直平分线,进而得到GE=GD ,∠CGE=∠GDE ,利用AAS 即可判定△ECG ≌△GHD .【详解】证明:∵AF=FG ,∴∠FAG=∠FGA ,∵AG 平分∠CAB ,∴∠CAG=∠FAG ,∴∠CAG=∠FGA ,∴AC ∥FG .∵DE ⊥AC ,∴FG ⊥DE ,∵FG ⊥BC ,∴DE ∥BC ,∴AC ⊥BC ,∵F 是 AD 的中点,FG ∥AE ,∴H 是 ED 的中点∴FG 是线段 ED 的垂直平分线,∴GE=GD ,∠GDE=∠GED ,∴∠CGE=∠GDE ,∴△ECG ≌△GHD .(AAS ).【点睛】本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键.20.(1)50,108°,补图见解析;(2)9.6;(3)13. 【解析】【分析】(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:650×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 .【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21.1【解析】解:取时,原式.22.(1)见解析;(2)答案不唯一,预估理由合理,支撑预估数据即可【解析】【分析】【详解】分析:(1)根据2015年网络售票占17.33%,2017年8月实现网络售票占比77%,2017年10月2日,首次实现全部网络售票,即可补全图1,根据2016年度中国国家博物馆参观人数及年增长率,即可补全图2;(2)根据近两年平均每年增长385000人次,即可预估2018年中国国家博物馆的参观人数.详解:(1)补全统计图如(2)近两年平均每年增长385000人次,预估2018年中国国家博物馆的参观人数为8445000人次.(答案不唯一,预估理由合理,支撑预估数据即可.)点睛:本题考查了统计表、折线统计图的应用,关键是正确从统计表中得到正确的信息,折线统计图表示的是事物的变化情况.23.(1)m≤1;(2)3≤m≤1.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.试题解析:(1)根据题意得△=(-6)2-1(2m+1)≥0,解得m≤1;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤1,所以m的范围为3≤m≤1.24.(1)2,2;(2)2,理由见解析;(3)2.【解析】【分析】(1)作P 5H 5垂直于x 轴,垂足为H 5,把四边形P 1P 2P 3P 2和四边形P 2P 3P 2P 5的转化为S P1P2P3P2=S △OP1H1﹣S △OP3H3﹣S 梯形P2H2H3P3﹣S 梯形P1H1H2P2和S P2P3P2P5=S 梯形P5H5H2P2﹣S △P5H5O ﹣S △OH3P3﹣S 梯形P2H2H3P3来求解;(2)(3)由图可知,P n ﹣1、P n 、P n+1、P n+2的横坐标为n ﹣5,n ﹣2,n ﹣3,n ﹣2,代入二次函数解析式,可得P n ﹣1、P n 、P n+1、P n+2的纵坐标为(n ﹣5)2,(n ﹣2)2,(n ﹣3)2,(n ﹣2)2,将四边形面积转化为S 四边形Pn ﹣1PnPn+1Pn+2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn ﹣2Pn ﹣2来解答.【详解】(1)作P 5H 5垂直于x 轴,垂足为H 5,由图可知S P1P2P3P2=S △OP1H1﹣S △OP3H3﹣S 梯形P2H2H3P3﹣S 梯形P1H1H2P2=931114492222⨯⨯++---=2, S P2P3P2P5=S 梯形P5H5H2P2﹣S △P5H5O ﹣S △OH3P3﹣S 梯形P2H2H3P3=3(14)1111142222+⨯⨯+---=2; (2)作P n ﹣1H n ﹣1、P n H n 、P n+1H n+1、P n+2H n+2垂直于x 轴,垂足为H n ﹣1、H n 、H n+1、H n+2,由图可知P n ﹣1、P n 、P n+1、P n+2的横坐标为n ﹣5,n ﹣2,n ﹣3,n ﹣2,代入二次函数解析式,可得P n ﹣1、P n 、P n+1、P n+2的纵坐标为(n ﹣5)2,(n ﹣2)2,(n ﹣3)2,(n ﹣2)2, 四边形P n ﹣1P n P n+1P n+2的面积为S 四边形Pn ﹣1PnPn+1Pn+2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn ﹣2Pn ﹣2 =222222223(5)(2)(5)(4)(4)(3)(3)(2)2222n n n n n n n n ⎡⎤-+--+--+--+-⎣⎦---=2; (3)S 四边形Pn ﹣1PnPn+1Pn+2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn ﹣2Pn ﹣2 =22223(5)(5)(2)(2)(5)(5)(4)(4)-22n b n c n b n c n b n c n b n c ⎡⎤-+-++-+-+-+-++-+-+⎣⎦-2222(4)(4)(3)(3)(3)(3)(2)(2)22n b n c n b n c n b n c n b n c -+-++-+-+-+-++-+-+-=2. 【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,25.1.8米【解析】【分析】设PA=PN=x ,Rt △APM 中求得MP =1.6x, 在Rt △BPM 中tan MP MBP BP∠=,解得x=3,MN=MP-NP=0.6x=1.8.【详解】在Rt △APN 中,∠NAP=45°,∴PA=PN,在Rt △APM 中,tan MP MAP AP ∠=, 设PA=PN=x ,∵∠MAP=58°,∴tan MP AP MAP =⋅∠=1.6x,在Rt △BPM 中,tan MP MBP BP ∠=, ∵∠MBP=31°,AB=5, ∴ 1.60.65x x=+, ∴ x=3,∴MN=MP-NP=0.6x=1.8(米),答:广告牌的宽MN 的长为1.8米.【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.26.(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【解析】【分析】(1)设3、4两月平均每月下调的百分率为x ,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【详解】(1)设3、4两月平均每月下调的百分率为x ,由题意得:7500(1﹣x )2=6075,解得:x 1=0.1=10%,x 2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.【点睛】此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.27.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.。

2020年泰安市新泰实验中学中考数学一模试卷 (含答案解析)

2020年泰安市新泰实验中学中考数学一模试卷 (含答案解析)

2020年泰安市新泰实验中学中考数学一模试卷一、选择题(本大题共12小题,共48.0分)1.四个数√2,0,1,9−1中最大的是()A. √2B. 0C. 1D. 9−12.下列计算正确的是()A. a+a=a2B. (2a)3=6a3C. a3×a3=2a3D. a3÷a=a23.铁路总公司发布数据称,2019年春运期间,全国铁路累计发送旅客达到3.1亿人次,数据3.1亿用科学记数法表示为()A. 31×107B. 3.1×105C. 3.1×108D. 3.1×1064.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.5.如图,∠1+∠2=180°,∠3=104°,则∠4的度数是()A. 74°B. 76°C. 84°D. 86°6.有一组数据:7,7,7,8,11,11,12,下列说法错误的是()A. 众数是7B. 极差是5C. 中位数是7D. 平均数是97.不等式组{3x+10>0,的整数解的个数是().x−4≤8−2xA. 9B. 8C. 7D. 68.如图,梯形ABCD中,AB//DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD−DC−CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A. B.C. D.9.如图,PA,PB分别切⊙O于点A,B,∠P=70°,∠C=()A. 70°B. 55°C. 110°D. 140°10.在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是()A. mnB. 12mn C. 2mn D. 13mn11.如图,将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B,C的对应点分别为点D,E,则阴影部分的面积为()A. √3+π3B. √3−π3C. π3D. π−√312.已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0,②2a+b=0,③b2−4ac<0,④4a+2b+c>0其中正确的是()A. ①③B. 只有②C. ②④D. ③④二、填空题(本大题共6小题,共24.0分)13.已知关于x的一元二次方程m2x2+(2m−1)x+1=0有两个不相等的实数根,则m的取值范围是______.14.若(−3,−1)在反比例函数y=k图象上,则k=______.x15.已知公交车的发车时间是固定的,一天,小王沿着18路公交车的线路匀速行走,发现每隔6分钟从背后驶过一辆18路车,每隔3分钟迎面驶来一辆18路公交车.假定18路公交车的行驶速度是相同的,则:固定的发车时间______ 分钟/辆.16.用半径为6cm,圆心角为120°的扇形围成的圆锥的底面圆半径为______cm.17.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时B处与灯塔P的距离约为______海里.(结果取整数,参考数据:√3≈1.7,√2≈1.4)18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,x上,则B2016的坐标是______ .点B1,B2,B3,…都在直线y=√33三、解答题(本大题共7小题,共78.0分)19.先化简,再求值:(xx2+x −1)÷x2−1x2+2x+1,其中x的值从不等式组{−x≤1,2x−1<4的整数解中选取.20.某市从参加九年级数学学业水平考试的8000名学生中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一;随后汇总整个样本数据,得到表二.表一:人数平均分甲组10094乙组8090表二:分数段频数等级0≤x<603C60≤x<72672≤x<8436B84≤x<9696≤x<10850A108≤x<12013请根据表一、表二所示信息,回答下列问题:(1)样本中,数学成绩在84≤x<96分数段的频数为______,等级为A的人数占抽样学生总人数的百分比为______,中位数所在的分数段为______(2)估计这8000名学生的数学成绩的平均分约为多少分(结果精确到0.1)21.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=(x<0)交于点A,交BO,直线y=−3x−4与反比例函数y=kxy轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①③③三块矩形区域,而且这三块矩形区域的面积相等,设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围.(2)当x为何值时,y有最大值?最大值是多少?23.今年6月初某水果批发商用4.5万元购得A种水果300箱,B种水果200箱,预计6月可全部销售完这些水果.(1)若两种水果每箱的售价一样,该批发商想通过本次销售至少盈利10000元,则每箱水果菜至少卖多少元?(总利润=总销售额–总成本)(2)实际销售的时候,受天气的影响,6月份两种水果的销售量比预计均有所下降,其中A种水果的销售量下降a%,B种水果的销售量下降1.5a%,另外B种水果保持(1)中最低售价不变,而A种水果比(1)中的最低售价下降了2.5a%,结果6月份A种水果的销售额比B种水果的销售额多4928元,求a的值.24.如图,抛物线y=−x2+bx+c经过A(−1,0),C(0,3)两点,点B是抛物线与x轴的另一个交点.点M是抛物线上一动点,过点M作MD⊥x轴,垂足为点D,交直线BC于点N,连结CM.设点M 的横坐标为m,MN的长度为d.(1)求抛物线的解析式;(2)当0<m<3时,求d关于m的函数关系式,并求出d的最大值.25.如图,△ABC是等边三角形,AD为中线,AD=AE,E在AC上,求∠EDC的度数.【答案与解析】1.答案:A,解析:解:∵9−1=19∴根据实数比较大小的方法,可得0<9−1<1<√2,∴各数中,最大的数是√2.故选:A.正实数都大于0,负实数都小于0,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.答案:D解析:解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.答案:C解析:解:数据3.1亿用科学记数法表示为3.1×108.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:C解析:解:从上面看,是一行三个小正方形.故选:C.根据俯视图是从上面看到的图形结合几何体判定则可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.答案:B解析:本题考查了平行线的性质和判定,能正确利用定理进行推理是解此题的关键.求出∠5=∠2,根据平行线的判定得出a//b,根据平行线的性质得出即可.解:∵∠1+∠2=180°,∠1+∠5=180°,∴∠2=∠5,∴a//b,∴∠4=∠6,∵∠3=104°,∴∠6=180°−∠3=76°,∴∠4=76°,故选B.6.答案:C解析:解:这组数据按照从小到大的顺序排列为:7,7,7,8,11,11,12,则中位数为:8,(7+7+7+8+11+11+12)=9,平均数为:17众数为:7,极差为:12−7=5.故选:C.根据众数、极差、中位数、平均数的概念求解.本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.7.答案:B解析:本题考查了解一元一次不等式组和一元一次不等式组的整数解.分别解出两个不等式,根据:同大取大,同小取小,大小小大中间找,大大小小无处找的原则得到不等式组的解集,再找出整数解即可.解:{3x+10>0①x−4≤8−2x②,解不等式①得:x>−103,解不等式②得:x≤4,∴不等式组的解集为−103<x≤4,∴不等式组的整数解有:−3,−2,−1,0,1,2,3,4,故选B.8.答案:A解析:本题分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y 与t的函数表达式,继而可得出函数图象.本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,当然在考试过程中,建议同学们直接判断是一次函数还是二次函数,不需要按部就班的解出解析式.解:在Rt△ADE中,AD=√AE2+DE2=13,在Rt△CFB中,BC=√BF2+CF2=13,①点P在AD上运动:过点P作PM⊥AB于点M,则PM=APsin∠A=1213t,此时y=12EF×PM=3013t,为一次函数;②点P在DC上运动,y=12EF×DE=30;③点P在BC上运动,过点P作PN⊥AB于点N,则PN=BPsin∠B=1213(AD+CD+BC−t)=12(31−t)13,则y=12EF×PN=30(31−t)13,为一次函数.综上可得选项A的图象符合.故选A.9.答案:B解析:解:如图,连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴∠PAO=∠PBO=90°,∴∠AOB=180°−∠P=110°,由圆周角定理知,∠C=12∠AOB=55°.故选B.如图,连接OA,OB,由PA,PB分别切⊙O于点A,B可以得到∠PAO=∠PBO=90°,然后可以求出∠AOB,再由圆周角定理可以求出∠C.本题利用了切线的性质,四边形的内角和为360度,圆周角定理求解.10.答案:B解析:解:作DM⊥AB,垂足为M,∵∠C=90°,BD是∠ABC的平分线,∴DM=DC,∵CD=n,AB=m,∴△ABD的面积=12mn.故选择B.作DM⊥AB,由题意可知DM=DC,即可推出△ABD的面积.本题主要考查角平分线的性质,关键在于作出D点到AB的距离.11.答案:A解析:连接BD,根据旋转的性质、等边三角形的判定定理得到△ABD为等边三角形,得到∠ABD=60°,根据扇形面积公式、等边三角形的面积公式计算即可.本题考查的是扇形面积计算、等边三角形的性质、旋转变换的性质,掌握扇形面积公式是解题的关键.解:连接BD,由题意得,AB=AD,∠BAD=60°,∴△ABD为等边三角形,∴∠ABD=60°,∴阴影部分的面积=90π×22360−(60π×22360−12×2×2×√32)=13π+√3,故选:A.12.答案:C解析:【试题解析】解:∵抛物线的开口向上,∴a>0,∵−b2a>0,∴b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵对称轴为直线x=1,∴−b2a=1,即2a+b=0,②正确,∵抛物线与x轴有2个交点,∴b2−4ac>0,③错误;∵对称轴为直线x=1,∴x=2与x=0时的函数值相等,而x=0时对应的函数值为正数,∴4a+2b+c>0,④正确;则其中正确的有②④.故选:C.此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2−4ac的符号,此外还要注意x=1,−1,2及−2对应函数值的正负来判断其式子的正确与否.13.答案:m<1且m≠04解析:本题考查了根的判别式,熟记一元二次方程根的情况与判别式Δ的关系是解题的关键,属于基础题.根据一元二次方程的根的判别式,建立关于m的不等式,结合二次项系数不为0求出m的取值范围.解:∵a=m2,b=2m−1,c=1,方程有两个不相等的实数根,∴Δ=b2−4ac=(2m−1)2−4m2=1−4m>0,∴m<1,4又∵二次项系数不为0,∴m2≠0,∴m≠0,即m<1且m≠0.4且m≠0.故答案为m<1414.答案:3得:解析:解:把(−3,−1)代入反比例函数y=kx−1=k,−3解得:k=3,故答案为:3.把(−3,−1)代入反比例函数y=k得到关于k的一元一次方程,解之即可.x本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.15.答案:4解析:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.设小王速度为a 米/分钟,汽车速度为b 米/分钟,公交车的固定发车时间为x 分钟/辆,根据每隔6分钟从背后驶过一辆18路车,每隔3分钟迎面驶来一辆18路公交车,利用追击问题和相遇问题,列方程组求解.解:设小王速度为a 米/分钟,汽车速度为b 米/分钟,公交车的固定发车时间为x 分钟/辆,根据题意得:{6b −6a =xb 3b +3a =xb, 解得:x =4.答:固定的发时间4分钟/辆.故答案为4.16.答案:2解析:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr =120⋅π⋅6180,然后解方程即可. 解:设圆锥的底面圆半径为r ,根据题意得2πr =120⋅π⋅6180,解得r =2,即圆锥的底面圆半径为2cm .故答案为2. 17.答案:95解析:解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,∴∠MPA=∠PAD=60°,∴PD=AP⋅sin∠PAD=80×√32=40√3(海里),∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP=PDsinB =40√3√22=40√3×√2≈95(海里),故答案为:95.根据题意得出∠MPA=∠PAD=60°,从而知PD=AP⋅sin∠PAD=40√3,由∠BPD=∠PBD=45°根据BP=PDsinB,即可求出即可.此题主要考查了方向角含义、勾股定理的运用,正确记忆三角函数的定义得出相关角度是解决本题的关键.18.答案:(2016√3,2016)解析::过B1作B1C⊥x轴,垂足为C,由条件可求得∠B1OC=30°,利用直角三角形的性质可求得B1C=1,OC=√3,可求得B1的坐标,同理可求得B2、B3的坐标,则可得出规律,可求得B2016的坐标.本题为规律型题目,利用等边三角形和直角三角形的性质求得B1的坐标,从而总结出点的坐标的规律是解题的关键.:解:如图,过B 1作B 1C ⊥x 轴,垂足为C ,∵△OAB 1是等边三角形,且边长为2,∴∠AOB 1=60°,OB 1=2,∴∠B 1OC =30°,在Rt △B 1OC 中,可得B 1C =1,OC =√3,∴B 1的坐标为(√3,1),同理B 2(2√3,2)、B 3(3√3,3),∴B n 的坐标为(n √3,n),∴B 2016的坐标为(2016√3,2016),故答案为:(2016√3,2016).19.答案:解: 原式=−x 2x(x+1)÷(x+1)(x−1)(x+1)2=−x x+1⋅x+1x−1=−x x−1. 解{−x ≤1,2x −1<4,得−1≤x <52, ∴不等式组的整数解为−1,0,1,2.若使分式有意义,只能取x =2,此时原式=−22−1=−2.解析:本题考查了分式的化简求值和一元一次不等式组的整数解,先对原式进行化简,先算括号里面的,再算除法,得出化简的结果,再求出x 的取值范围,选出合适的x 的值代入求值即可. 20.答案:(1)72;35%;84≤x <96;(2)学生的数学成绩的平均分数为:(100×94+80×90)÷(100+80)≈92.2(分).故这8000名学生的数学成绩的平均分约为92.2分.解析:解:(1)数学成绩在84≤x<96分数段的频数为180−(3+6+36+50+13)=72,等级为A的人数占抽样学生总数的百分比为63÷180=35%,第90个数和第91个数都在84≤x<96分数段,所以中位数所在的分数段为84≤x<96,故答案为:(1)72;35%,84≤x<96.(2)见答案.(1)用180−(3+6+36+50+13)就可以得到数学成绩在84≤x<96分数段的频数,等级为A的人数为63,而总人数为180,所以等级为A的人数占抽样学生总数的百分比可以用63÷180计算得到,根据中位数的定义即可得中位数所在分数段;(2)样本中,学生的数学成绩的平均分数可以用(100×94+80×90)÷(100+80)计算得到.此题考查了频数分布表、平均数、中位数、频率、频数的定义.21.答案:解:(1)设点B的坐标为(a,0),∵∠ABO=90°,AB=BO,∴点A的坐标为(a,−a),∵点A在直线y=−3x−4上,∴−a=−3a−4,解得,a=−2,即点A的坐标为(−2,2),∵点A在反比例函数y=k上,x∴k=−4;(2)∵点D与点O关于AB对称,∴点D的坐标为(−4,0)∴OD=4,∴DB=BA=2,则∠ADB=45°,∵直线y=−3x−4交y轴于C点,∴点C的坐标为(0,−4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)设点E的坐标为(m,−4m),∵S△OCE=S△OCD,∴12×4×4=12×4×(−m),解得,m=−4,∴点E的坐标为(−4,1).解析:(1)根据一次函数图象上点的坐标特征求出点A的坐标,利用待定系数法求出k;(2)根据等腰直径三角形的性质求出∠ADB=45°,求出点C的坐标,得到∠ODC=45°,证明结论;(3)设出点E的坐标,根据三角形的面积公式解答.本题考查的是反比例函数、一次函数,掌握待定系数法求反比例函数解析式的一般步骤、一次函数图象上点的坐标特征是解题的关键.22.答案:解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=−14x+10,3a=−34x+30,∴y=(−34x+30)x=−34x2+30x,∵a=−14x+10>0,∴x<40,则y =−34x 2+30x(0<x <40);(2)∵y =−34x 2+30x =−34(x −20)2+300(0<x <40),且二次项系数为−34<0, ∴当x =20时,y 有最大值,最大值为300平方米.解析:此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.(1)根据三个矩形面积相等,得到矩形AEFD 面积是矩形BCFE 面积的2倍,可得出AE =2BE ,设BE =a ,则有AE =2a ,表示出a 与3a ,进而表示出y 与x 的关系式,并求出x 的范围即可;(2)利用二次函数的性质求出y 的最大值,以及此时x 的值即可.23.答案:(1)设每水果卖x 元,根据题意得:(300+200)x −45000≥10000,x ≥110 答:每箱水果至少卖110元;(2)根据题意得:110×(1−2.5a%)×300×(1−a%)=110×200×(1−1.5a%)+4928解得a 1=8,a 2=92 (不合题意舍去).即a 的值为8.解析:一元二次方程的应用,一元一次不等式的应用.(1)设每箱B 水果卖x 元,则A 水果每箱卖(2x −10)元,根据“A 、B 两种水果的总销售额−总成本≥8000”列不等式求解可得;(2)根据“A 水果下降后的销量×下降后的售价=B 水果下降后的销量×售价”列出方程求解可得. 24.答案:解:(1)∵抛物线y =−x 2+bx +c 经过A(−1,0),C(0,3)两点,∴{−1−b +c =0c =3, 解得:{b =2c =3, ∴抛物线解析式为y =−x 2+2x +3;(2)在y =−x 2+2x +3中,令y =0可得0=−x 2+2x +3,解得x =−1或x =3,∴B(3,0),且C(0,3),设直线BC 解析式为y =kx +b ,将点B 、C 代入,可得{3k +b =0b =3 ,解得{k =−1b =3, ∴直线BC 解析式为y =−x +3,设M 点横坐标为m ,则M(m,−m 2+2m +3),N(m,−m +3),∵0<m <3,∴点M 在第一象限内,∴d =−m 2+2m +3−(−m +3)=−m 2+3m =−(m −32)2+94, ∴当m =32时,d 有最大值,d 最大为94.解析:本题考查的是二次函数解析式的求法,二次函数的综合应用有关知识.(1)把A 、C 坐标代入可求得抛物线解析式;(2)先求得直线BC 解析式,设M 点横坐标为m ,则可用m 表示出N 点坐标,则可求得d 关于m 的函数关系式,再利用函数的性质可求得d 的最大值.25.答案:解:∵△ABC 是等边三角形,AD 为中线,∴AD ⊥BC ,∠CAD =30°,∵AD =AE ,∴∠ADE =∠AED =180°−∠CAD 2=180°−30°2=75°,∴∠EDC =∠ADC −∠ADE =90°−75°=15°.解析:先根据△ABC 是等边三角形,AD 为中线可得出AD ⊥BC ,∠CAD =30°,再由AD =AE 可知∠ADE =∠AED ,根据三角形内角和定理即可求出∠ADE 的度数,故可得出∠EDC 的度数.本题考查的是等边三角形的性质及等腰三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.。

2020年山东省泰安市新泰市中部联盟中考数学一模试卷 解析版

2020年山东省泰安市新泰市中部联盟中考数学一模试卷  解析版

2020年山东省泰安市新泰市中部联盟中考数学一模试卷一.选择题(共12小题)1.计算|﹣1|+()0的结果是()A.1B.C.2﹣D.2﹣12.下列运算正确的是()A.a3+a3=2a6B.a6÷a﹣3=a3C.a3•a2=a6D.(﹣2a2)3=﹣8a63.一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106 4.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.5.如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为()A.40°B.90°C.50°D.100°6.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄1213141516人数23251则这些学生年龄的众数和中位数分别是()A.15,14B.15,13C.14,14D.13,147.在一个不透明袋子中有12个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.8.若关于x的不等式组的整数解只有3个,则a的取值范围是()A.6≤a<7B.5≤a<6C.4<a≤5D.5<a≤69.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米10.如图,二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+c和反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.11.如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.πC.2πD.π12.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A.4B.8C.6D.二.填空题(共6小题)13.已知一元二次方程3x2+4x﹣k=0有两个实数根,则k的取值范围是.14.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.15.如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=12,OE=5,则阴影部分图形的面积是(结果保留π).16.如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B 恰好落在x轴上,记为B′,折痕为CE,已知tan∠OB′C=.则点B′点的坐标为.17.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为.18.如图,在△ABC和△ACD中,∠B=∠D,tan B=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=.三.解答题(共7小题)19.先化简,再求值:÷(a2+1)+(1﹣a)﹣1,其中a=﹣1.20.为响应市政府关于“垃圾不落地•市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有2000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.21.某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?22.如图,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.23.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.24.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B (0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F 在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.25.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.参考答案与试题解析一.选择题(共12小题)1.计算|﹣1|+()0的结果是()A.1B.C.2﹣D.2﹣1【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值.【解答】解:原式=﹣1+1=,故选:B.2.下列运算正确的是()A.a3+a3=2a6B.a6÷a﹣3=a3C.a3•a2=a6D.(﹣2a2)3=﹣8a6【分析】根据合并同类项法则、同底数幂相除、同底数幂相乘及幂的乘方【解答】解:A、a3+a3=2a3,此选项错误;B、a6÷a﹣3=a9,此选项错误;C、a3•a2=a5,此选项错误;D、(﹣2a2)3=﹣8a6,此选项正确;故选:D.3.一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字604800用科学记数法表示为6.048×105.故选:B.4.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.5.如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为()A.40°B.90°C.50°D.100°【分析】由平行线的性质得∠1=∠4=50°,根据平角的定义和角的和差求得∠3的度数为100°.【解答】解:如图所示:∵a∥b,∴∠1=∠4,又∵∠1=50°,∴∠4=50°,又∵∠2+∠3+∠4=180°,∠2=30°,∴∠3=100°,故选:D.6.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄1213141516人数23251则这些学生年龄的众数和中位数分别是()A.15,14B.15,13C.14,14D.13,14【分析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【解答】解:15出现的次数最多,15是众数.一共13个学生,按照顺序排列第7个学生年龄是14,所以中位数为14.故选:A.7.在一个不透明袋子中有12个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.【分析】用红球的个数除以总球的个数即可得出答案.【解答】解:∵不透明袋子中有12个红球和4个蓝球,共有16个球,∴从袋子中随机取出1个球是红球的概率是=;故选:B.8.若关于x的不等式组的整数解只有3个,则a的取值范围是()A.6≤a<7B.5≤a<6C.4<a≤5D.5<a≤6【分析】分别求出每一个不等式的解集,得出不等式组的解集,再结合不等式组整数解的个数可确定a的范围.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式5﹣2x<1,得:x>2,则不等式组的解集为2<x≤a,∵不等式组的整数解只有3个,∴5≤a<6,故选:B.9.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米【分析】过点E作EM⊥AB与点M,根据斜坡CD的坡度(或坡比)i=1:2.4可设CD =x,则CG=2.4x,利用勾股定理求出x的值,进而可得出CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐角三角函数的定义求出AM的长,进而可得出结论.【解答】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.10.如图,二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+c和反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=图象分布在第二、四象限,故选:D.11.如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.πC.2πD.π【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴的长为=π,故选:A.12.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A.4B.8C.6D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=4、∠OAB=60°,根据OB=AB tan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知,AB=AC=3,AO平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=4,∴光盘的直径为8,故选:B.二.填空题(共6小题)13.已知一元二次方程3x2+4x﹣k=0有两个实数根,则k的取值范围是k≥﹣.【分析】根据判别式的意义得到42﹣4×3×(﹣k)≥0,然后解关于k的不等式即可.【解答】解:根据题意得△=42﹣4×3×(﹣k)≥0,解得k≥﹣.故答案为k≥﹣.14.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【分析】设“△”的质量为x,“□”的质量为y,由题意列出方程:,解得:,得出第三个天平右盘中砝码的质量=2x+y=10.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.15.如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=12,OE=5,则阴影部分图形的面积是﹣60(结果保留π).【分析】连接OC,根据勾股定理可以求得OC的长,然后由图可知,阴影部分的面积=扇形的面积﹣矩形ODCE的面积,代入数据计算即可解答本题.【解答】解:连接OC,∵∠EOD=90°,四边形ODCE是平行四边形,∴四边形ODCE是矩形,∴∠ODC=90°,OE=DC,又∵OD=12,OE=5,∴DC=5,∴OC===13,∴阴影部分图形的面积是:﹣12×5=﹣60,故答案为:﹣60.16.如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B 恰好落在x轴上,记为B′,折痕为CE,已知tan∠OB′C=.则点B′点的坐标为(12,0).【分析】根据正切的定义求出OB′=12,根据点的坐标特征解答.【解答】解:在Rt△OB′C中,tan∠OB′C=,∴=,即=,解得,OB′=12,则点B′点的坐标为(12,0),故答案为:(12,0).17.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为139.【分析】根据题目中的图形,可以发现数字的变化特点,①最上面的小正方形中的数字是连续奇数,②左下小正方形中的数字是2n,③右下是前两个数的和;从而可以得到a 和b的值,相加可得结论.【解答】解:由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1,即2n﹣1=11,n=6,∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64,∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139,故答案为:139.18.如图,在△ABC和△ACD中,∠B=∠D,tan B=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=2.【分析】本题介绍两种解法:解法一:如图1,作辅助线,构建全等三角形,证明△BCA≌△QCA,则∠B=∠Q=∠D,根据等腰三角形的性质得:AD=AQ,由三角函数定义可得AH的长,根据勾股定理计算AD的长;解法二:作辅助线,构建三角形全等,根据tan B==,设FG=x,BG=2x,则BF =x,求得x=,即FG=,证明A、B、D、C四点共圆,根据四点共圆的性质得:∠DCE=∠ABD,∠BCA=∠ADB,证明△ABF≌△ADC(SAS),则AF=AC,利用勾股定理得:AB2=BH2+AH2=42+AH2①,由面积法得:S△ABF=AB•GF=BF•AH,则AH2=②,两式计算可得AD的长.【解答】解:解法一:如图1,延长DC至Q,使CQ=BC=5,连接AQ,过A作AH⊥DQ于H,则DQ=DC+CQ=CD+BC=3+5=8,∵∠BCA+∠ACQ+∠BCQ=180°,∵∠BCA=90°﹣∠BCD,设∠BCD=x°,则∠BCA=90﹣x°,∴∠ACQ=180°﹣x°﹣(90°﹣x)=90﹣x°=∠BCA,∴AC=AC,∴△BCA≌△QCA,∴∠B=∠Q=∠D,∴AD=AQ,∵AH⊥DQ,∴DH=QH=QD=4,tan∠B=tan∠Q==,∴AH=2,∴AQ=AD=2;解法二:如图2,在BC上取一点F,使BF=CD=3,连接AF,∴CF=BC﹣BF=5﹣3=2,过F作FG⊥AB于G,∵tan B==,设FG=x,BG=2x,则BF=x,∴x=3,x=,即FG=,延长AC至E,连接BD,∵∠BCA=90°﹣∠BCD,∴2∠BCA+∠BCD=180°,∵∠BCA+∠BCD+∠DCE=180°,∴∠BCA=∠DCE,∵∠ABC=∠ADC,∴A、B、D、C四点共圆,∴∠DCE=∠ABD,∠BCA=∠ADB,∴∠ABD=∠ADB,∴AB=AD,在△ABF和△ADC中,∵,∴△ABF≌△ADC(SAS),∴AF=AC,过A作AH⊥BC于H,∴FH=HC=FC=1,由勾股定理得:AB2=BH2+AH2=42+AH2①,S△ABF=AB•GF=BF•AH,∴AB•=3AH,∴AH=,∴AH2=②,把②代入①得:AB2=16+,解得:AB=,∵AB>0,∴AD=AB=2,故答案为:2.三.解答题(共7小题)19.先化简,再求值:÷(a2+1)+(1﹣a)﹣1,其中a=﹣1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=5••+=5••+=+=+==.当a=﹣1时,原式======2.20.为响应市政府关于“垃圾不落地•市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有2000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有1000名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)从两个统计图中可以得到“A非常了解”的有4人,占调查人数的8%,可求出调查总人数,再根据“各个选项的人数、总人数与各个选项所占的百分比”之间的关系,分别计算出各个选项的人数和所占的百分比,即可补全两个统计图;(2)样本中,“A非常了解”“B比较了解”所占的百分比为(8%+42%),即可估计总体中的占比也是50%,求出相应的人数即可;(3)用列表法表示所有可能出现的结果,找出“一男一女”的结果数,即可求出相应的概率.【解答】解:(1)调查人数为:4÷8%=50(人),B组所占百分比为:21÷50=42%,C组人数为:50×30%=15(人),D组人数为:50﹣4﹣21﹣15=10(人),所占百分比为:10÷50=20%,补全统计图如图所示:(2)2000×(8%+42%)=1000(人),故答案为:1000;(3)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中“一男一女”的有6种,因此,抽到一男一女的概率为=.21.某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x 元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y 的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣y)×=900,解得:y=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.22.如图,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.【分析】(1)由角角边证明△ABM≌△DCM,其性质得∠MBC=∠MCB,再根据角角边证明△ABC≌△DCB;(2)由平行线的性质得∠MBC=∠NCB,∠MCB=∠NBC,角边角证明△MBC≌△NCB,其性质得BM=CN,MC=NB,再根据菱形的判定证明四边形BNCM是菱形.【解答】解:如图所示(1)在△ABM和△DCM中,∴△ABM≌△DCM(AAS),∴BM=CM,∴∠MBC=∠MCB,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS)(2)四边形BNCM是菱形,其理由如下:∵CN∥BD,∴∠MBC=∠NCB,又∵BN∥AC,∴∠MCB=∠NBC,在△MBC和△NCB中,,∴△MBC≌△NCB(ASA)∴BM=CN,MC=NB,又∵BM=CM,∴BM=MC=CN=NB,∴四边形BNCM是菱形.23.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【分析】(1)运用待定系数法,根据A(3,m),B(﹣2,﹣3),即可得到直线AB和反比例函数的解析式;(2)根据直线AB在双曲线的下方,即可得到x的取值范围;(3)分三种情况进行讨论:延长AO交双曲线于点C1,过点C1作BO的平行线,交双曲线于点C2,过A作OB的平行线,交双曲线于点C3,根据使得△OBC的面积等于△OAB的面积,即可得到点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).【解答】解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).24.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B (0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F 在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【分析】(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB 的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE 表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.25.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系AF=AE;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA 再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF ≌△ECA,再证明△AEF是等腰直角三角形即可.【解答】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.故答案为AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.。

山东省泰安市2020年中考数学一模试卷解析版

山东省泰安市2020年中考数学一模试卷解析版

16. 二次函数 y=ax2+bx+c(a,b,c 为常数,且 a≠0)中的 x 与 y 的部分对应值如表
x -1
0
1
3
y -1
3
5
3
下列结论: ①ac<0; ②当 x>1 时,y 的值随 x 值的增大而减小. ③3 是方程 ax2+(b-1)x+c=0 的一个根; ④当-1<x<3 时,ax2+(b-1)x+c>0. 其中正确的结论是______. 17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中 有这样一个问题:“今有邑方二百步,各中开门,出东门十五
四、解答题(本大题共 6 小题,共 50.0 分)
20. 先化简:
+ ÷ 在从-1≤x≤3 的整数中选取一你喜欢的 x 的值代入求值.
21. 如图,平面直角坐标系中,O 为原点,点 A、B 分别在 y 轴、x 轴的正半轴上.△AOB 的两条外角平分线交于点 P,P 在反比例函数 y= 的图象上.PA 的延长线交 x 轴于 点 C,PB 的延长线交 y 轴于点 D,连接 CD. (1)求∠P 的度数及点 P 的坐标; (2)求△OCD 的面积; (3)△AOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明 理由.
A. 2
B. 4
C.
D. 2
11. 如图,菱形 ABCD 的边长为 2,∠A=60°,以点 B 为圆心的
圆与 AD、DC 相切,与 AB、CB 的延长线分别相交于点 E、
F,则图中阴影部分的面积为( )
A. +
B. +π
C. -
D. 2 +
12. 如图,正△ABC 的边长为 4,点 P 为 BC 边上的任意一点( 不与点 B、C 重合),且∠APD=60°,PD 交 AB 于点 D.设 BP=x,BD=y,则 y 关于 x 的函数图象大致是( )

2020年中考数学第一次模拟考试(山东)-数学(参考答案)

2020年中考数学第一次模拟考试(山东)-数学(参考答案)

2020年中考数学第一次模拟考试【山东卷】数学·参考答案1 2 3 4 5 6 7 8 9 10 1112A D CB B D D B AC A A13.ab(a–1)2 14.415.54.16.0.4或2.8 17.8233π-18.522-.19.【解析】原式=4×3+1–23+2=23+1–23+2=3.20.【解析】解不等式①,得:54x≥-.解不等式②,得:43x<.则不等式组的解集为5443x-≤<.∴不等式组的整数解为:1,0,1-.21.【解析】四边形AECF为菱形.证明如下:∵AD∥BC,∴∠1=∠2,∵O是AC中点,∴AO=CO,在△AOE和△COF中12AOE COF AO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△COF(AAS),∴AE=CF,∵EF⊥AC,OA=OC,∴AF=CF,AE=CE,∴AF=CF=AE=CE,∴平行四边形AECF为菱形.22.【解析】(1)设商品每件进价x元,乙商品每件进价y元,得3240 2130 x yx y+=⎧⎨+=⎩解得:3070 xy=⎧⎨=⎩,答:甲商品每件进价30元,乙商品每件进价70元; (2)设甲商品进a 件,乙商品(100﹣a )件, 由题意得,a ≥4(100﹣a ),解得a ≥80,设利润为y 元,则y =10a +20(100﹣a )=﹣10a +2000, ∵y 随a 的增大而减小,∴要使利润最大,则a 取最小值, ∴a =80,∴y =2000﹣10×80=1200, 答:甲商品进80件,乙商品进20件,最大利润是1200元.23.【解析】(1)∵C 是»BD的中点,∴»»CD BC =, ∵AB 是O e 的直径,且CF AB ⊥,∴»»BC BF =, ∴»»CDBF =,∴CD BF =, 在BFG ∆和CDG ∆中,∵F CDG FGB DGC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BFG CDG AAS ∆≅∆;(2)如图,过C 作CH AD ⊥交AD 延长线于点H ,连接AC 、BC ,∵»»CDBC =,∴HAC BAC ∠=∠,∵CE AB ⊥,∴CH CE =, ∵AC AC =,∴Rt AHC Rt AEC ∆≅∆,∴AE AH =, ∵CH CE =,CD CB =,∴()Rt CDH Rt CBE HL ∆≅∆, ∴2DH BE ==,∴224AE AH ==+=,∴426AB =+=, ∵AB 是O e 的直径,∴90ACB ∠=o ,∴90ACB BEC ∠=∠=o , ∵EBC ABC ∠=∠,∴BEC BCA ∆∆:, ∴BC BEAB BC=,∴26212BC AB BE =⋅=⨯=,∴BF BC ==24.【解析】(1)10÷20%=50,16=32%50,故m =32. (Ⅱ)捐30元的人数为:50-(4+16+12+10)=8451610151210208301650x ⨯+⨯+⨯+⨯+⨯==Q∴这组样本数据的平均数为16∵在这组样本数据中,10出现了16次,出现次数最多, ∴这组样本数据的众数为10∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15, 有1515152+= ∴这组样本数据的中位数为15 (III )∵捐款20元以上的学生占16 %∴捐款20元以上的学生人数是:200016%320⨯= 答:估计该校捐款20元以上的学生约有320人. 25.【解析】(1)将x =4代入y =12x 得,y =2. ∴A (4,2).把A (4,2)代入y =kx,得k =xy =8. ∴反比例函数的解析式为y =8x.(2)解:根据题意可知:l 解析式为y =12x +3. 由13,28.y x y x⎧=+⎪⎪⎨⎪=⎪⎩得11 2, 4.x y =⎧⎨=⎩228, 1.x y =⎧⎨=⎩--(舍去) ∴C (2,4). (3)如图:4个.故答案为4.26.【解析】(1)问题发现:①如图1,∵∠AOB =∠COD =40°,∴∠COA =∠DOB ,∵OC =OD ,OA =OB ,∴△COA ≌△DOB (SAS ),∴AC =BD ,∴1ACBD,= ②∵△COA ≌△DOB ,∴∠CAO =∠DBO , ∵∠AOB =40°,∴∠OAB +∠ABO =140°,在△AMB 中,∠AMB =180°–(∠CAO +∠OAB +∠ABD )=180°–(∠DBO +∠OAB +∠ABD )=180°–140°=40°, (2)类比探究: 如图2,3ACBD=AMB =90°,理由是: Rt △COD 中,∠DCO =30°,∠DOC =90°,∴303OD tan OC ︒==同理得:303OB tan OA ︒=OD OB OC OA =, ∵∠AOB =∠COD =90°,∴∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴3AC OCBD OD==,∠CAO =∠DBO , 在△AMB 中,∠AMB =180°–(∠MAB +∠ABM )=180°–(∠OAB +∠ABM +∠DBO )=90°; (3)拓展延伸:①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD , ∴∠AMB =90°,3ACBD=, 设BD =x ,则AC =3x ,Rt △COD 中,∠OCD =30°,OD =1,∴CD =2,BC =x –2, Rt △AOB 中,∠OAB =30°,OB =7,∴AB =2OB =27, 在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2, (3x )2+(x −2)2=(27)2,整理得x 2–x –6=0,解得x 1=3,x 2=–2,∴AC =33; ②点C 与点M 重合时,如图4,同理得:∠AMB =90°,3ACBD= 设BD =x ,则AC 3,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 23x )2+(x +2)2=(7)2, 整理得x 2+x –6=0,解得x 1=–3,x 2=2,∴AC 3. 综上所述,AC 的长为3或327.【解析】(1)抛物线2y ax bx c =++经过点A (–2,0),B (4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(–2,0),∴OA =2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC =6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC ,∴S △BCD =39642⨯=,设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+,∵点B 的坐标为(4,0),∴OB =4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=,解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154,当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍),∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4,此时233156424x x -++=-,解得:12114,114x x =-=+∴315(114,)4N +-,415(114,)4N --,∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D (3,154),∴N 1D =4,∴BM 1=N 1D =4,∴OM 1=OB +BM 1=8,∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.。

2020年山东省泰安市新泰实验中学中考数学一模测试试卷 (解析版)

2020年山东省泰安市新泰实验中学中考数学一模测试试卷 (解析版)

2020年中考数学一模试卷一、选择题1.下列四个数中,最大的一个数是()A.2B.C.0D.﹣22.下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0 3.2019年春运前四日,全国铁路、道路、水路、民航共累计发送旅客约为275000000人次,275000000这个数用科学记数法表示为()A.27.5×107B.0.275×109C.2.75×108D.2.75×1094.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.如图,如果∠1=∠3,∠2=60°,那么∠4的度数为()A.60°B.100°C.120°D.130°6.某班45名同学某天每人的生活费用统计如表:生活费(元)1015202530学生人数(人)41015106对于这45名同学这天每人的生活费用,下列说法错误的是()A.平均数是20B.众数是20C.中位数是20D.极差是207.解不等式组,该不等式组的最大整数解是()A.3B.4C.2D.﹣38.如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ的长是()A.2cm B.3cm C.4cm D.5cm9.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.10.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC =5,DE=2,则△BCE的面积等于()A.10B.7C.5D.411.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0其中正确的是()A.①②B.只有①C.③④D.①④二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.14.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.15.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.16.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.17.如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)18.如图,在平面直角坐标系中,直线l:y=与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2018的横坐标是.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.20.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图(如图).请根据图表信息解答以下问题:知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x≤10018(1)本次调查一共随机抽取了名参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.21.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.22.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C =135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出该矩形材料面积的最大值;如果不能,说明理由.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的表达式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.25.如图(1)所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1交AB的延长线于B1.(1)请你探究:,是否都成立?(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断.(3)如图(2)所示Rt△ABC中,∠ACB=90︒,AC=8,BC=,DE∥AC交AB 于点E,试求的值.参考答案一、选择题(本大题共12小题,满分48分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.下列四个数中,最大的一个数是()A.2B.C.0D.﹣2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:根据实数比较大小的方法,可得﹣2<0<<2,故四个数中,最大的一个数是2.故选:A.2.下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选:D.3.2019年春运前四日,全国铁路、道路、水路、民航共累计发送旅客约为275000000人次,275000000这个数用科学记数法表示为()A.27.5×107B.0.275×109C.2.75×108D.2.75×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将275000000用科学记数法表示为:2.75×108.故选:C.4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选:D.5.如图,如果∠1=∠3,∠2=60°,那么∠4的度数为()A.60°B.100°C.120°D.130°【分析】根据平行线的判定推出两直线平行,根据平行线的性质得出∠2=∠5即可求出答案.解:∵∠1=∠3,∴a∥b,∴∠5=∠2=60°,∴∠4=180°﹣60°=120°,故选:C.6.某班45名同学某天每人的生活费用统计如表:生活费(元)1015202530学生人数(人)41015106对于这45名同学这天每人的生活费用,下列说法错误的是()A.平均数是20B.众数是20C.中位数是20D.极差是20【分析】根据众数、中位数、极差、平均数的概念求解.解:这组数据中位数是20,则众数为:20,平均数为:20.4,极差为:30﹣10=20.故选:A.7.解不等式组,该不等式组的最大整数解是()A.3B.4C.2D.﹣3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此可得其最大整数解.解:解不等式(x﹣1)≤1,得:x≤3,解不等式1﹣x<2,得:x>﹣1,则不等式组的解集为﹣1<x≤3,所以不等式组的最大整数解为3,故选:A.8.如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ的长是()A.2cm B.3cm C.4cm D.5cm【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.9.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.【分析】首先由切线的性质得出OB⊥BC,根据锐角三角函数的定义求出cos∠BOC的值;连接BD,由直径所对的圆周角是直角,得出∠ADB=90°,又由平行线的性质知∠A=∠BOC,则cos∠A=cos∠BOC,在直角△ABD中,由余弦的定义求出AD的长.解:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC==,∴cos∠A=cos∠BOC=.又∵cos∠A=,AB=4,∴AD=.故选:B.10.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC =5,DE=2,则△BCE的面积等于()A.10B.7C.5D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选:C.11.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,OO′=OA,∴点O′中⊙O上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选:C.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0其中正确的是()A.①②B.只有①C.③④D.①④【分析】根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.解:∵抛物线的开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线与y轴交于负半轴,∴c<0,∴abc<0,①正确;∵对称轴为直线x=﹣1,∴﹣=﹣1,即2a﹣b=0,②错误;∴x=﹣1时,y<0,∴a﹣b+c<0,③错误;∴x=﹣2时,y<0,∴4a﹣2b+c<0,④正确;故选:D.二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是k<1.【分析】直接利用根的判别式得出△=b2﹣4ac=4﹣4k>0进而求出答案.解:∵一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴△=b2﹣4ac=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.14.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.15.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的6倍.【分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:,解得:x=6y.故答案为:6.16.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.【分析】设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=AB=2cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=AB=2cm,∴扇形OAB的弧AB的长==π,∴2πr=π,∴r=(cm).故答案为.17.如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为22海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)【分析】根据题意得MN=20,∠ANB=63.5°,∠BMN=45°,∠AMN=∠BNM=90°,于是得到BN=MN=20,如图,过A作AE⊥BN于E,得到四边形AMNE是矩形,根据矩形的性质得到AE=MN=20,EN=AM,解直角三角形即可得到结论.解:由题意得,MN=20,∠ANB=63.5°,∠BMN=45°,∠AMN=∠BNM=90°,∴BN=MN=20,如图,过A作AE⊥BN于E,则四边形AMNE是矩形,∴AE=MN=20,EN=AM,∵AM=MN•tan26.5°=20×0.50=10,∴BE=20﹣10=10,∴AB==10≈22海里.故答案为:22.18.如图,在平面直角坐标系中,直线l:y=与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2018的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2018的横坐标.解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2018的横坐标是,故答案为:.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.【分析】先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.解:原式=(+)÷=•=•=,解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、0、1、2,∵分式有意义时x≠±1、0,∴x=2,则原式=0.20.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图(如图).请根据图表信息解答以下问题:知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x≤10018(1)本次调查一共随机抽取了50名参赛学生的成绩;(2)表1中a=8;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是C;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有320人.【分析】(1)由D组人数及其所占百分比可得;(2)根据各组人数之和等于总人数可得a的值;(3)本次调查一共随机抽取50名学生,中位数落在C组;(4)利用样本估计总体思想求解可得.【解答】解析(1)本次调查一共随机抽取的学生有18÷36%=50(人),故答案为50.(2)a=50﹣18﹣14﹣10=8,故答案为8.(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C.(4)该校九年级竞赛成绩达到8(0分)以上(含80分)的学生有500×=320(人),故答案为320.21.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.【分析】(1)将点A(,1)代入y=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,﹣3),计算求出S△AOB=××4=2.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.解:(1)∵点A(,1)在反比例函数y=的图象上,∴k=×1=,∴反比例函数的表达式为y=;(2)∵A(,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得OC2=AC•BC,可得BC=3,B(,﹣3),S△AOB=××4=2.∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=2,∵P是x轴的负半轴上的点,∴m=﹣2,∴点P的坐标为(﹣2,0);(3)点E在该反比例函数的图象上,理由如下:∵OA⊥OB,OA=2,OB=2,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=2,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(﹣,﹣1),∵﹣×(﹣1)=,∴点E在该反比例函数的图象上.22.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C =135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出该矩形材料面积的最大值;如果不能,说明理由.【分析】(1)①若所截矩形材料的一条边是BC,过点C作CF⊥AE于点F,则可判定四边形ABCF为矩形,按照矩形面积公式计算即可;②若所截矩形材料的一条边是AE,过点E作EF∥AB交CD于点F,FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,证明△CHF为等腰直角三角形,从而求得AE、AG的长,再按矩形面积公式计算即可;(2)能,在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG ⊥FM于点G,设AM=x,则BM=6﹣x,根据题意得出矩形面积S关于x的二次函数,根据二次函数的性质可得答案.解:(1)①若所截矩形材料的一条边是BC,如图1所示,过点C作CF⊥AE于点F,又∵∠A=∠B=90°,∴四边形ABCF为矩形,∵AB=AE=6,BC=5,∴S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示,过点E作EF∥AB交CD于点F,FG ⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠DCB=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30.(2)能,如图3,在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∴MG=BC=5,BM=CG,∵∠DCB=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.24.如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的表达式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.【分析】(1)将点A、B的坐标代入抛物线的解析式,求得a、b的值,从而得到抛物线的解析式;(2)设直线AB为:y=kx+b.将A、B的坐标代入可得到k,b的方程组,从而可求得k,b于是得到直线AB的解析式,记CD与x轴的交点坐标为E.过点B作BF⊥DC,垂足为F.设D(m,﹣m2+2m+)则C(m,m+),依据三角形的面积公式可得到S与m的函数关系式,接下来由抛物线的对称轴方程,可求得m的值,于是可得到点C的坐标.解:(1)∵由题意得解得:,∴y=﹣x2+2x+.(2)设直线AB为:y=kx+b.则,解得直线AB的解析式为y=+.如图所示:记CD与x轴的交点坐标为E.过点B作BF⊥DC,垂足为F.设D(m,﹣m2+2m+)则C(m,m+).∵CD=(﹣m2+2m+)﹣(m+)=m2+m+2,∴S=AE•DC+CD•BF=CD(AE+BF)=DC=m2+m+5.∴S=m2+m+5.∵﹣<0,∴当m=时,S有最大值.∴当m=时,m+=×+=.∴点C(,).25.如图(1)所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1交AB的延长线于B1.(1)请你探究:,是否都成立?(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断.(3)如图(2)所示Rt△ABC中,∠ACB=90︒,AC=8,BC=,DE∥AC交AB 于点E,试求的值.【分析】(1)根据等边三角形的性质得到AD垂直平分BC,∠CAD=∠BAD=30°,AB=AC,则DB=CD,易得;由于∠C1AB1=60°,得∠B1=30°,则AB1=2AC1,同理可得到DB1=2DC1,易得;(2)过B点作BE∥AC交AD的延长线于E点,根据平行线的性质和角平分线的定义得到∠E=∠CAD=∠BAD,则BE=AB,并且根据相似三角形的判定得△EBD∽△ACD,得到,而BE=AB,于是有,这实际是三角形的角平分线定理;(3)AD为△ABC的内角角平分线,由(2)的结论,根据相似三角形的判定得△DEF ∽△ACF,利用相似三角形的性质解答即可.解:(1)等边△ABC中,线段AD为其内角角平分线,所以=1,因为B1C1⊥AC于C1交AB的延长线于B1,所以∠CAB=60°,∠B1=∠CAD=∠BAD =30°,所以AD=B1D,所以.这两个等式都成立;(2)可以判断结论仍然成立,证明如下:如图所示,△ABC为任意三角形,过B点作BE∥AC交AD的延长线于E点,∵∠E=∠CAD=∠BAD,∴BE=AB,又∵△EBD∽△ACD∴,又∵BE=AB.∴即对任意三角形结论仍然成立;(3)如图(2)所示,因为Rt△ABC中,∠ACB=90°,AC=8,BC=,所以AB =.∵AD为△ABC的内角角平分线,∴,∵DE∥AC,∴△DEF∽△ACF,∴。

山东省新泰市2020年中考数学一模试卷

山东省新泰市2020年中考数学一模试卷

山东省新泰市2020年中考数学一模试卷一、选择题1.在-1,0,- ,-π这四个数中,最小的数是()A. 0B. - πC. -D. -12.下列运算正确的是()A. x²+x²=x4B. 3a3·2a²=6a6C. (-a2)3÷a3=-a2D. -2x-²=3.如图,通过折纸可以得到好多漂亮的图案,观察下列用纸折叠成的图案,其中轴对称图形和中心对称图形的个数分别是()A. 3,1B. 3,0C. 3,2D. 1,34.【海外网5月14日|战疫全时区】发布的实时统计数据显示,截至北京时间5月14日6时30分,全球累计确诊新冠肺炎病例4330982例,累计死亡295671例.数据433万用科学记数法表示为()A. 4.33×107B. 4.33x106C. 4.33×105D. 43.3×1065.如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D2处,若∠C1BA=40°,则∠ABE的度数为()A. 15°B. 20°C. 25°D. 30°6.甲、乙二人在相同条件下各射靶10次,每次射靶成绩如图所示,经计算得:=1,S甲2=1.2,S乙2=5.8,则下列结论中正确的个数是()①甲、乙的总环数不相等;②甲的成绩稳定;③甲、乙的众数相同A. 0B. 1C. 2D. 37.已知关于x的不等式组恰好有两个整数解,则实数a的取值范围是()A. -4≤a<-3B. -4<a≤-3C. -4≤a≤-3D. -4<a<-38.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时40海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是()A. 20 海里B. 10 海里C. 20 海里D. 10 海里9.若一个圆锥的底面半径为2cm,高为4 cm,则圆锥的侧面展开图中圆心角的度数为()A. 80°B. 100°C. 120°D. 150°10.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx-a的图象可能是()A. B. C. D.11.如图,在△ABC中,以BC为直径的⊙O,又AB的延长线于点D,交AC于点E,连接OD,OE。

2020—2021年新山东省泰安市中考数学模拟试题 解析版(下载后可直接打印).doc

2020—2021年新山东省泰安市中考数学模拟试题  解析版(下载后可直接打印).doc

山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3 C.|﹣3.14| D.π2.(4分)下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a4 3.(4分)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为()A.4.2×109米B.4.2×108米C.42×107米D.4.2×107米4.(4分)下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④5.(4分)如图,直线11∥12,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°6.(4分)某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8C.平均数是8.2 D.方差是1.27.(4分)不等式组的解集是()A.x≤2 B.x≥﹣2 C.﹣2<x≤2 D.﹣2≤x<2 8.(4分)如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.309.(4分)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°10.(4分)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.B.C.D.11.(4分)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π12.(4分)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P 为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.(4分)已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是.14.(4分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.15.(4分)如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.16.(4分)若二次函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x ﹣13的解为.17.(4分)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.18.(4分)如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.(8分)先化简,再求值:(a﹣9+)÷(a﹣1﹣),其中a=.20.(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):组别分数人数第1组90<x≤100 8第2组80<x≤90 a第3组70<x≤80 10第4组60<x≤70 b第5组50<x≤60 3 请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?21.(11分)已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.22.(11分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?23.(13分)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.24.(13分)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.25.(14分)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3 C.|﹣3.14| D.π【分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反尔小.【解答】解:∵||=<|﹣3|=3∴﹣<(﹣3)C、D项为正数,A、B项为负数,正数大于负数,故选:B.【点评】此题主要考查利用绝对值来比较实数的大小,此题要掌握性质”两负数比较大小,绝对值大的反尔小,正数大于负数,负数的绝对值为正数“.2.(4分)下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a4【分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a6÷a3=a3,故此选项正确;B、a4•a2=a6,故此选项错误;C、(2a2)3=8a6,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:A.【点评】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.(4分)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为()A.4.2×109米B.4.2×108米C.42×107米D.4.2×107米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42万公里=420000000m用科学记数法表示为:4.2×108米,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解.【解答】解:①是轴对称图形且有两条对称轴,故本选项正确;②是轴对称图形且有两条对称轴,故本选项正确;③是轴对称图形且有4条对称轴,故本选项错误;④不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(4分)如图,直线11∥12,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°【分析】过点E作EF∥11,利用平行线的性质解答即可.【解答】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=30°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=30°+180°=210°,故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.6.(4分)某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8C.平均数是8.2 D.方差是1.2【分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得到不正确的选项.【解答】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A选项正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是(8+8)=8,故B选项正确;平均数为(6+7×2+8×3+9×2+10×2)=8.2,故C选项正确;方差为[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.56,故D选项错误;故选:D.【点评】本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.7.(4分)不等式组的解集是()A.x≤2 B.x≥﹣2 C.﹣2<x≤2 D.﹣2≤x<2【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x≥﹣2,由②得,x<2,所以不等式组的解集是﹣2≤x<2.故选:D.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.(4分)如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.30【分析】根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,解直角三角形即可得到结论.【解答】解:根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km,故选:B.【点评】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.9.(4分)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【分析】连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC=180°﹣∠A=61°,由等腰三角形的性质得出∠OCD=∠ODC=61°,求出∠DOC =58°,由直角三角形的性质即可得出结果.【解答】解:如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.【点评】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.10.(4分)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案.【解答】解:画树状图如图所示:∵共有25种等可能的结果,两次摸出的小球的标号之和大于5的有15种结果,∴两次摸出的小球的标号之和大于5的概率为=;故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.11.(4分)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π【分析】连接OA、OB,作OC⊥AB于C,根据翻转变换的性质得到OC=OA,根据等腰三角形的性质、三角形内角和定理求出∠AOB,根据弧长公式计算即可.【解答】解:连接OA、OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴的长==2π,故选:C.【点评】本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.12.(4分)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P 为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP 的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.【点评】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.(4分)已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是k.【分析】根据方程有两个不相等的实数根可得△=(2k﹣1)2﹣4(k2+3)>0,求出k 的取值范围;【解答】解:∵原方程有两个不相等的实数根,∴△=(2k﹣1)2﹣4(k2+3)=﹣4k+1﹣12>0,解得k;故答案为:k.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.14.(4分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.15.(4分)如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为π.【分析】连接OC,作CH⊥OB于H,根据直角三角形的性质求出AB,根据勾股定理求出BD,证明△AOC为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.【解答】解:连接OC,作CH⊥OB于H,∵∠AOB=90°,∠B=30°,∴∠OAB=60°,AB=2OA=6,由勾股定理得,OB==3,∵OA=OC,∠OAB=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠COB=30°,∴CO=CB,CH=OC=,∴阴影都分的面积=﹣×3×3×+×3×﹣=π,故答案为:π.【点评】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.16.(4分)若二次函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x ﹣13的解为x1=2,x2=4 .【分析】根据对称轴方程求得b,再解一元二次方程得解.【解答】解:∵二次函数y=x2+bx﹣5的对称轴为直线x=2,∴,得b=﹣4,则x2+bx﹣5=2x﹣13可化为:x2﹣4x﹣5=2x﹣13,解得,x1=2,x2=4.故意答案为:x1=2,x2=4.【点评】本题主要考查的是抛物线与x轴的交点,利用抛物线的对称性求得b的值是解题的关键.17.(4分)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是(2n﹣1).【分析】根据题意和函数图象可以求得点A1,A2,A3,A4的坐标,从而可以得到前n个正方形对角线长的和,本题得以解决.【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:×(2n﹣1),故答案为:(2n﹣1),【点评】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.18.(4分)如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是2.【分析】连接EC,利用矩形的性质,求出EG,DE的长度,证明EC平分∠DCF,再证∠FEC=90°,最后证△FEC∽△EDC,利用相似的性质即可求出EF的长度.【解答】解:如图,连接EC,∵四边形ABCD为矩形,∴∠A=∠D=90°,BC=AD=12,DC=AB=3,∵E为AD中点,∴AE=DE=AD=6由翻折知,△AEF≌△GEF,∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,∴GE=DE,∴EC平分∠DCG,∴∠DCE=∠GCE,∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,∴∠GEC=∠DEC,∴∠FEC=∠FEG+∠GEC=×180°=90°,∴∠FEC=∠D=90°,又∵∠DCE=∠GCE,∴△FEC∽△EDC,∴,∵EC===3,∴,∴FE=2,故答案为:2.【点评】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质等,解题关键是能够作出适当的辅助线,连接CE,构造相似三角形,最终利用相似的性质求出结果.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.(8分)先化简,再求值:(a﹣9+)÷(a﹣1﹣),其中a=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=(+)÷(﹣)=÷=•=,当a=时,原式==1﹣2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及二次根式的运算能力.20.(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):组别分数人数第1组90<x≤100 8第2组80<x≤90 a第3组70<x≤80 10第4组60<x≤70 b第5组50<x≤60 3请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?【分析】(1)抽取学生人数10÷25%=40(人),第2组人数40×50%﹣8=12(人),第4组人数40×50%﹣10﹣3=7(人),所以a=12,b=7;(2)=27°,所以“第5组”所在扇形圆心角的度数为27°;(3)成绩高于80分:1800×50%=900(人),所以成绩高于80分的共有900人.【解答】解:(1)抽取学生人数10÷25%=40(人),第2组人数40×50%﹣8=12(人),第4组人数40×50%﹣10﹣3=7(人),∴a=12,b=7;(2)=27°,∴“第5组”所在扇形圆心角的度数为27°;(3)成绩高于80分:1800×50%=900(人),∴成绩高于80分的共有900人.【点评】本题考查了统计图,熟练掌握条形统计图与扇形统计图是解题的关键.21.(11分)已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.【分析】(1)先求出OB,进而求出AD,得出点A坐标,最后用待定系数法即可得出结论;(2)分三种情况,①当AB=PB时,得出PB=5,即可得出结论;②当AB=AP时,利用点P与点B关于AD对称,得出DP=BD=4,即可得出结论;③当PB=AP时,先表示出AP2=(9﹣a)2+9,BP2=(5﹣a)2,进而建立方程求解即可得出结论.【解答】解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB=,∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.22.(11分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?【分析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量=总价÷单价结合用3000元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,根据总价=单价×数量结合总价不超过7000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,依题意,得:3m+2.5(2600﹣m)≤7000,解得:m≤1000.答:A种粽子最多能购进1000个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(13分)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.(2)证明△AEP∽△DEC,可得=,由此即可解决问题.(3)利用(2)中结论.求出DE,AE即可.【解答】(1)证明:如图①中,∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵∠AGP=∠BAG+∠ABG,∠APD=∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP是平行四边形,∵PA=PF,∴四边形AGFP是菱形.(2)证明:如图②中,∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴=,∵AB=CD,∴AE•AB=DE•AP;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,∠BAD=90°,∴BD==,∵AE⊥BD,∴S△ABD=•BD•AE=•AB•AD,∴AE=,∴DE==,∵AE•AB=DE•AP;∴AP==.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,矩形的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(13分)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.【分析】(1)用A、B、C三点坐标代入,用待定系数法求二次函数表达式.(2)设点P横坐标为t,用t代入二次函数表达式得其纵坐标.把t当常数求直线BP解析式,进而求直线BP与x轴交点C坐标(用t表示),即能用t表示AC的长.把△PBA 以x轴为界分成△ABC与△ACP,即得到S△PBA=AC(OB+PD)=4,用含t的式子代入即得到关于t的方程,解之即求得点P坐标.(3)作点O关于直线AB的对称点E,根据轴对称性质即有AB垂直平分OE,连接BE 交抛物线于点M,即有BE=OB,根据等腰三角形三线合一得∠ABO=∠ABM,即在抛物线上(AB下方)存在点M使∠ABO=∠ABM.设AB与OE交于点G,则G为OE中点且OG⊥AB,利用△OAB面积即求得OG进而得OE的长.易求得∠OAB=∠BOG,求∠OAB的正弦和余弦值,应用到Rt△OEF即求得OF、EF的长,即得到点E坐标.求直线BE解析式,把BE解析式与抛物线解析式联立,求得x的解一个为点B横坐标,另一个即为点M横坐标,即求出点M到y轴的距离.【解答】解:(1)∵二次函数的图象经过点A(3,0)、B(0,﹣2)、C(2,﹣2)∴解得:∴二次函数表达式为y=x2﹣x﹣2(2)如图1,设直线BP交x轴于点C,过点P作PD⊥x轴于点D 设P(t,t2﹣t﹣2)(t>3)∴OD=t,PD=t2﹣t﹣2设直线BP解析式为y=kx﹣2把点P代入得:kt﹣2=t2﹣t﹣2∴k=t﹣∴直线BP:y=(t﹣)x﹣2当y=0时,(t﹣)x﹣2=0,解得:x=∴C(,0)∵t>3∴t﹣2>1∴,即点C一定在点A左侧∴AC=3﹣∵S△PBA=S△ABC+S△ACP=AC•OB+AC•PD=AC(OB+PD)=4 ∴=4解得:t1=4,t2=﹣1(舍去)∴t2﹣t﹣2=∴点P的坐标为(4,)(3)在抛物线上(AB下方)存在点M,使∠ABO=∠ABM.如图2,作点O关于直线AB的对称点E,连接OE交AB于点G,连接BE交抛物线于点M,过点E作EF⊥y轴于点F∴AB垂直平分OE∴BE=OB,OG=GE∴∠ABO=∠ABM∵A(3,0)、B(0,﹣2),∠AOB=90°∴OA=3,OB=2,AB=∴sin∠OAB=,cos∠OAB=∵S△AOB=OA•OB=AB•OG∴OG=∴OE=2OG=∵∠OAB+∠AOG=∠AOG+∠BOG=90°∴∠OAB=∠BOG∴Rt△OEF中,sin∠BOG=,cos∠BOG=∴EF=OE=,OF=OE=∴E(,﹣)设直线BE解析式为y=ex﹣2把点E代入得:e﹣2=﹣,解得:e=﹣∴直线BE:y=﹣x﹣2当﹣x﹣2=x2﹣x﹣2,解得:x1=0(舍去),x2=∴点M横坐标为,即点M到y轴的距离为.【点评】本题考查了待定系数法求二次函数、一次函数解析式,一元二次方程的解法,轴对称的性质,等腰三角形性质,三角函数的应用.第(3)题点的存在性问题,可先通过画图确定满足∠ABO=∠ABM的点M位置,通过相似三角形对应边成比例或三角函数为等量关系求线段的长.25.(14分)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.【分析】(1)过点F作FM⊥AB交BA的延长线于点M,可证四边形AGFM是矩形,可得AG=MF,AM=FG,由“AAS”可证△EFM≌△CEB,可得BE=MF,ME=BC=AB,可得BE=MA=MF=AG=FG;(2)延长GH交CD于点N,由平行线分线段成比例可得,且CH=FH,可得GH=HN,NC=FG,即可求DG=DN,由等腰三角形的性质可得DH⊥HG.【解答】解:(1)AG=FG,理由如下:如图,过点F作FM⊥AB交BA的延长线于点M∵四边形ABCD是正方形∴AB=BC,∠B=90°=∠BAD∵FM⊥AB,∠MAD=90°,FG⊥AD∴四边形AGFM是矩形∴AG=MF,AM=FG,∵∠CEF=90°,∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC∴△EFM≌△CEB(AAS)∴BE=MF,ME=BC∴ME=AB=BC∴BE=MA=MF∴AG=FG,(2)DH⊥HG理由如下:如图,延长GH交CD于点N,∵FG⊥AD,CD⊥AD∴FG∥CD∴,且CH=FH,∴GH=HN,NC=FG∴AG=FG=NC又∵AD=CD,∴GD=DN,且GH=HN∴DH⊥GH【点评】本题考查了正方形的性质,矩形的判定,全等三角形的判定和性质,等腰三角形的性质,证明△EFM≌△CEB是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年山东省泰安市新泰市西部中考数学一模试卷一.选择题(共12小题)1.计算[()2]3×[()2]2之值为何?()A.1B.C.()2D.()42.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣43.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×1044.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm25.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.6.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.7.关于x的方程的解为非正数,且关于x的不等式组无解,那么满足条件的所有整数a的和是()A.﹣19B.﹣15C.﹣13D.﹣98.某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是()A.1000(1+x)2=3990B.1000+1000(1+x)+1000(1+x)2=3990C.1000(1+2x)=3990D.1000+1000(1+x)+1000(1+2x)=39909.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π10.下列命题错误的是()A.平分弦的直径垂直于弦B.三角形一定有外接圆和内切圆C.等弧对等弦D.经过切点且垂直于切线的直线必经过圆心11.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1B.2C.3D.412.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE =90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A.1B.2C.3D.4二.填空题(共6小题)13.计算:(π﹣3.14)0+2cos60°=.14.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.15.一次函数y=kx﹣3k+1的图象必经过一个定点,该定点的坐标是16.如图,正方形ABCD的边长为2a,E为BC边的中点,、的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为.17.已知x,y为实数,y=,则x﹣6y的值18.如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.三.解答题(共7小题)19.先化简,再求值:,其中a是方程﹣2x2﹣x+3=0的解.20.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,CE⊥x轴于点E,且tan∠ABO=,OB=4,OE=1.(1)求一次函数的解析式和反比例函数的解析式(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.21.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.22.如图,已知A、B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG =3,求⊙O的半径.23.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?24.如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.25.已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE 于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.参考答案与试题解析一.选择题(共12小题)1.计算[()2]3×[()2]2之值为何?()A.1B.C.()2D.()4【分析】先算乘方,再算乘法即可.【解答】解:原式=()6×()4=()6×()﹣4,=()2故选:C.2.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【分析】根据整式的乘法、合并同类项、整式的除法以及平方差公式判断即可.【解答】解:A、2x2•2xy=4x3y,错误;B、不是同类项不能合并,错误;C、x﹣1÷x﹣2=x,错误;D、(﹣3a﹣2)(﹣3a+2)=9a2﹣4,正确;故选:D.3.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:27 809=2.780 9×104.故选D.4.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长==13,所以这个圆锥的侧面积=•2π•5•13=65π(cm2).故选:B.5.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【分析】由题意可求m<﹣2,即可求解.【解答】解:∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选:B.6.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是=,故选:B.7.关于x的方程的解为非正数,且关于x的不等式组无解,那么满足条件的所有整数a的和是()A.﹣19B.﹣15C.﹣13D.﹣9【分析】分式方程去分母转化为整式方程,由分式方程的解为非正数求出a的范围,再根据不等式组无解求出a的范围,确定出满足题意整数a的值,求出之和即可.【解答】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到≤0,且≠﹣1,解得:a<1且a≠﹣2,不等式组整理得:,由不等式组无解,得到<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选:C.8.某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是()A.1000(1+x)2=3990B.1000+1000(1+x)+1000(1+x)2=3990C.1000(1+2x)=3990D.1000+1000(1+x)+1000(1+2x)=3990【分析】设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x的一元二次方程,此题得解.【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990.故选:B.9.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π【分析】连接AC,根据菱形的性质求出∠BCD和BC=AB=6,求出AE长,再根据三角形的面积和扇形的面积求出即可.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=6,∵∠B=60°,E为BC的中点,∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,∵∠B=60°,∴∠BCD=180°﹣∠B=120°,由勾股定理得:AE==3,∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,故选:A.10.下列命题错误的是()A.平分弦的直径垂直于弦B.三角形一定有外接圆和内切圆C.等弧对等弦D.经过切点且垂直于切线的直线必经过圆心【分析】根据垂径定理、三角形外接圆、圆的有关概念判断即可.【解答】解:A、平分弦(不是直径)的直径垂直于弦,是假命题;B、三角形一定有外接圆和内切圆,是真命题;C、等弧对等弦,是真命题;D、经过切点且垂直于切线的直线必经过圆心,是真命题;故选:A.11.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1B.2C.3D.4【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0,可判断①;根据对称轴是x=﹣1,可得x=﹣2、0时,y的值相等,所以4a﹣2b+c>0,可判断③;根据﹣=﹣1,得出b=2a,再根据a+b+c<0,可得b+b+c<0,所以3b+2c<0,可判断②;x=﹣1时该二次函数取得最大值,据此可判断④.【解答】解:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选:C.12.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE =90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A.1B.2C.3D.4【分析】①只要证明△ADE为等腰直角三角形即可②只要证明△AEF≌△CBF(SAS)即可;③假设BF2=FG•FC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,④由△ADF∽△GBF,可得==,由EG∥CD,推出==,推出=,由AD=AE,EG•AE=BG•AB,故④正确,【解答】解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG•FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠BCD=90°,∴∠DCF=45°,∵∠CDF=45°,∴∠DFC=90°,显然不可能,故③错误,④∵∠BGF=180°﹣∠CGB,∠DAF=90°+∠EAF=90°+(90°﹣∠AGF)=180°﹣∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴==,∵EG∥CD,∴==,∴=,∵AD=AE,∴EG•AE=BG•AB,故④正确,故选:C.二.填空题(共6小题)13.计算:(π﹣3.14)0+2cos60°=2.【分析】原式利用零指数幂法则,特殊角的三角函数值计算即可求出值.【解答】解:原式=1+2×=1+1=2,故答案为:214.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.【分析】根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.【解答】解:∵sin A==,∴∠A=60°,∴sin=sin30°=.故答案为:.15.一次函数y=kx﹣3k+1的图象必经过一个定点,该定点的坐标是(3,1)【分析】把一次函数解析式转化为y=k(x﹣3)+1,可知点(3,1)在直线上,且与系数无关.【解答】解:根据题意可把直线解析式化为:y=k(x﹣3)+1,故函数一定过点(3,1).故答案为:(3,1).16.如图,正方形ABCD的边长为2a,E为BC边的中点,、的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为.【分析】作EF的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,依据勾股定理可得GE=FG=,根据四边形EGFH 是菱形,四边形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【解答】解:如图,作EF的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a﹣x,CE=a,Rt△CEG中,(2a﹣x)2+a2=x2,解得x=,∴GE=FG=,同理可得,EH=FH=,∴四边形EGFH是菱形,四边形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE==a,∴EF=a,故答案为:a.17.已知x,y为实数,y=,则x﹣6y的值﹣2【分析】根据被开方数大于等于0,分母不等于0列不等式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,,解得x=﹣3,∴y=,∴x﹣6y=﹣3﹣6×=﹣3+1=﹣2.故答案为:﹣2.18.如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.【分析】根据折叠可得ABNM是正方形,CD=CF=5,∠D=∠CFE=90°,ED=EF,可求出三角形FNC的三边为3,4,5,在Rt△MEF中,由勾股定理可以求出三边的长,通过作辅助线,可证△FNC∽△PGF,三边占比为3:4:5,设未知数,通过PG=HN,列方程求出待定系数,进而求出PF的长,然后求PE的长.【解答】解:过点P作PG⊥FN,PH⊥BN,垂足为G、H,由折叠得:ABNM是正方形,AB=BN=NM=MA=5,CD=CF=5,∠D=∠CFE=90°,ED=EF,∴NC=MD=8﹣5=3,在Rt△FNC中,FN==4,∴MF=5﹣4=1,在Rt△MEF中,设EF=x,则ME=3﹣x,由勾股定理得,12+(3﹣x)2=x2,解得:x=,∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,∴△FNC∽△PGF,∴FG:PG:PF=NC:FN:FC=3:4:5,设FG=3m,则PG=4m,PF=5m,∴GN=PH=BH=4﹣3m,HN=5﹣(4﹣3m)=1+3m=PG=4m,解得:m=1,∴PF=5m=5,∴PE=PF+FE=5+=,故答案为:.三.解答题(共7小题)19.先化简,再求值:,其中a是方程﹣2x2﹣x+3=0的解.【分析】根据分式的减法和除法可以化简题目中的式子,再根据a是方程﹣2x2﹣x+3=0的解,可以求得a的值,再将a的值代入化简后的式子即可解答本题,注意代入的a的值必须使得原分式有意义【解答】解:====,由﹣2x2﹣x+3=0,得x1=﹣,x2=1,当a=1时,原分式无意义,当a=﹣时,原式==.20.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,CE⊥x轴于点E,且tan∠ABO=,OB=4,OE=1.(1)求一次函数的解析式和反比例函数的解析式(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.【解答】解:(1)∵OB=4,OE=1,∴BE=1+4=5.∵CE⊥x轴于点E,tan∠ABO===,∴OA=2,CE=2.5.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣1,2.5).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得.∴直线AB的解析式为y=﹣x+2.∵反比例函数y=的图象过C,∴2.5=,∴k=﹣2.5.∴该反比例函数的解析式为y=﹣;(2)联立反比例函数的解析式和直线AB的解析式可得,解得点D的坐标为(5,﹣),则△BOD的面积=4××=1,△BOC的面积=4××=5,∴△OCD的面积为1+5=6;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣1或0<x<5.21.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【解答】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.22.如图,已知A、B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG =3,求⊙O的半径.【分析】(1)连接OC,先证明∠OCB=∠CBD得到OC∥AD,再利用CD⊥AB得到OC ⊥CD,然后根据切线的判定定理得到结论;(2)解:连接OE交AB于H,如图,利用垂径定理得到OE⊥AB,再利用圆周角定理得到∠ABE=∠AFE,在Rt△BEH中利用正切可设EH=3x,BH=4x,则BE=5x,所以BG=BE=5x,GH=x,接着在Rt△EHG中利用勾股定理得到x2+(3x)2=(3)2,解方程得x=3,接下来设⊙O的半径为r,然后在Rt△OHB中利用勾股定理得到方程(r ﹣9)2+122=r2,最后解关于r的方程即可.【解答】(1)证明:连接OC,如图,∵BC平分∠OBD,∴∠OBC=∠CBD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠CBD,∴OC∥AD,而CD⊥AB,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE交AB于H,如图,∵E为的中点,∴OE⊥AB,∵∠ABE=∠AFE,∴tan∠ABE=tan∠AFE=,∴在Rt△BEH中,tan∠HBE==设EH=3x,BH=4x,∴BE=5x,∵BG=BE=5x,∴GH=x,在Rt△EHG中,x2+(3x)2=(3)2,解得x=3,∴EH=9,BH=12,设⊙O的半径为r,则OH=r﹣9,在Rt△OHB中,(r﹣9)2+122=r2,解得r=,即⊙O的半径为.23.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?【分析】(1)利用二元一次方程组解决问题;(2)用不等式组确定方案,利用一次函数找到费用最低值.【解答】解:(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据题意得解这个方程组得:答:甲、乙两种型号的机器人每台价格分别是6万元、4万元(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得解这个不等式组得∵a为正整数∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台设该公司的购买费用为w万元,则w=6a+4(8﹣a)=2a+32∵k=2>0∴w随a的增大而增大当a=2时,w最小,w最小=2×2+32=36(万元)∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.24.如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2﹣(m ﹣2)=2m+3﹣2,解方程可得m的值,从而得到A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣[(x﹣2)2+n]可求出n的值;(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣x2+x,然后利用二次函数的性质求解;(3)先利用勾股定理计算出BC=,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP ∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.【解答】解:(1)∵抛物线的解析式为y=﹣[(x﹣2)2+n]=﹣(x﹣2)2﹣n,∴抛物线的对称轴为直线x=2,∵点A和点B为对称点,∴2﹣(m﹣2)=2m+3﹣2,解得m=1,∴A(﹣1,0),B(5,0),把A(﹣1,0)代入y=﹣[(x﹣2)2+n]得9+n=0,解得n=﹣9;(2)作ND∥y轴交BC于D,如图2,抛物线解析式为y=﹣[(x﹣2)2﹣9]=﹣x2+x+3,当x=0时,y=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(5,0),C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),∴ND=﹣x2+x+3﹣(﹣x+3)=﹣x2+3x,∴S△NBC=S△NDC+S△NDB=•5•ND=﹣x2+x=﹣(x﹣)2+,当x=时,△NBC面积最大,最大值为;(3)存在.∵B(5,0),C(0,3),∴BC==,当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,∵∠MBP=∠OBC,∴△BMP∽△BOC,∴==,即==,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此时P点坐标为(,0);当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,∵∠MBP=∠CBO,∴△BMP∽△BCO,∴==,即==,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此时P点坐标为(,0);综上所述,P点坐标为(,0)或(,0).25.已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE 于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.【分析】(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得=,即HC2=EH•CD,由此构建方程即可解决问题;【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵AC,BD为对角线,∴OD=OC,∵OG=OE,∠DOG=∠COE=90°,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴=,∴HC2=EH•CD,∴x2=(1﹣x)•1,解得x=或(舍弃),∴HC=.。

相关文档
最新文档