《智能控制技术基础》试卷(A)标准答案剖析
智能控制技术复习考试题课后答案
一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。
1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和。
2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和。
3 、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和。
4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。
5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和。
6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和。
16、直接型专家控制器、间接型专家控制器17.普通集合可用 函数表示,模糊集合可用 函数表示。
2011-2012第一学期《智能控制技术基础》试卷试卷A标准答案
2、已知模糊关系矩阵 R
0.8 0.6 0.3 0.7 0.7 0.5 ,Q ,S ,试计算模糊关系合成矩阵 R Q S ,以及 R Q S 。 0.3 0.5 0.1 0.4 0.2 0.6
解: R Q
0.8 0.6 0.3 0.7 0.8 0.3 0.6 0.1 0.3 0.5 0.1 0.4 0.3 0.3 0.5 0.1
0.8 0.6 0.3 0.7 0.3 0.6 R Q 0.3 0.5 0.1 0.4 0.1 0.4
R
0.3 0.6 0.7 0.5 0.3 0.7 0.6 0.2 Q S 0.1 0.4 0.2 0.6 0.1 0.7 0.4 0.2
B, A B, A,B 。
B
0.9 0.4 0.5 0 0.9 0.7 0.6 0.3 „„6 分 ,A B x1 x2 x3 x4 x1 x2 x3 x4
A
0.1 0.3 0.4 0.7 0.1 0.6 0.5 1 ,B „„4 分 x1 x2 x3 x4 x1 x2 x3 x4
0.2 0.5 0.7
1 0.2 0.5 0.7 0.8 0.2 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0 0 0 0 0
0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 A B ' 0.5 1 0.96 0.75 0.51 0 0.5 0.5 0.5 0.5 0 0.7 0.7 0.7 0.7 0.51 0 1 1 0.96 0.75 0.51 0 0
智能控制习题答案
第一章绪论1. 什么是智能、智能系统、智能控制答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”;“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统;“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理; 2.智能控制系统有哪几种类型,各自的特点是什么答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等;各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统;该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散;人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型;这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的;专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题;可以说是一种模拟人类专家解决领域问题的计算机程序系统;多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统;这种结构的特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作;2.信息在上下级间垂直方向传递,向下的信息有优先权;同级控制器并行工作,也可以有信息交换,但不是命令;3.上级控制决策的功能水平高于下级,解决的问题涉及面更广,影响更大,时间更长,作用更重要;级别越往上,其决策周期越长,更关心系统的长期目标;4.级别越往上,涉及的问题不确定性越多,越难作出确切的定量描述和决策;学习控制系统:靠自身的学习功能来认识控制对象和外界环境的特性,并相应地改变自身特性以改善控制性能的系统;这种系统具有一定的识别、判断、记忆和自行调整的能力;3.比较智能控制与传统控制的特点;答:智能控制与传统控制的比较:它们有密切的关系,而不是相互排斥;常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题;1.传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,这些问题对基于模型的传统自动控制来说很难解决;2.传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息. 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况. 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置;3.传统的自动控制系统对控制任务的要求要么使输出量为定值调节系统,要么使输出量跟随期望的运动轨迹跟随系统,因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂;4. 传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意. 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径;5.与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的能力;6.与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式;7.与传统自动控制系统相比,智能控制系统具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力;8.与传统自动控制系统相比,智能控制系统有补偿及自修复能力和判断决策能力;4.把智能控制看作是AI人工智能、OR运筹学、AC自动控制和IT信息论的交集,其根据和内涵是什么答:智能控制具有明显的跨学科特点,在最早傅金孙提出的二元论中,智能控制系统被认为是自动控制与人工智能的交互作用,随着认识的深入,萨瑞迪斯提出运筹学融入智能控制而提出三元结构,蔡自兴教授提出将信息论引入智能控制,其依据在于:信息论是解释知识和智能的一种手段;控制论、信息论和系统论是紧密相连的;信息论已经成为控制智能机器的工具;信息论参与智能控制的全过程并对执行级起到核心作用,因此最终确定了智能控制的四元结构;5.智能控制有哪些应用领域试举出一个应用实例,并说明其工作原理和控制性能;答:智能控制应用于机器人、汽车、制造业、水下和陆地自助式车辆、家用电器、过程控制、电子商务、医疗诊断、飞行器、印刷、城市铁路、电力系统等领域;例如焊接机器人其基本工作原理是示教再现,即由用户导引机器人,一步步按实际任务操作一遍,机器人在导引过程中自动记忆示教的每个动作的位置、姿态、运动参数、焊接参数等,并自动生成一个连续执行全部操作的程序;完成示教后,只需给机器人一个起动命令,机器人将精确地按示教动作,一步步完成全部操作,实际示教与再现;控制性能为:弧焊机器人通常有五个自由度以上,具有六个自由度的弧焊机器人可以保证焊枪的任意空间轨迹和姿态;点至点方式移动速度可达60m/min以上,其轨迹重复精度可达到±0.2mm;这种弧焊机器人应具有直线的及环形内插法摆动的功能,共六种摆动方式,以满足焊接工艺要求,机器人的负荷为5kg;第二章模糊控制的理论基础1.举例说明模糊性的客观性和主观性;答:模糊性起源于事物的发展变化性,变化性就是不确定定性;模糊性是客观世界的普遍现象,世界上许多的事物都具有模糊非电量的特点;例如:年龄分段的问题;如果一个人的年龄大于60岁算老年,45-59岁之间的岁中年,小于44岁的就算青年;如果一个人的年龄是59岁零11个月零28天,那么他是属于中年还是老年呢理论上从客观的角度说他是中年人,但是与60岁只有两天区别,这区别我们是分辨不出来的;从主观上我们认为他又是老年人;这就是模糊性的主观性和客观性的体现;2.模糊性与随机性有哪些异同答:模糊性处于过渡阶段的事物的基本特征,是性态的不确定性,类属的不清晰性,是一种内在的不确定性;而随机性是在事件是否发生的不确定性中表现出来的不确定性,而事件本身的性态和类属是确定的,是一种外在的不确定性;相同点是:模糊性是由于事物类属划分的不分明而引起的判断上的不确定性;而随机性是由于天剑不充分而导致的结果的不确定性;但是他们都共同表现出不确定性;异同点是:模糊性反映的是排中的破缺,而随机性反映的是因果律的破缺;模糊性现象则需要运用模糊数学,随机性现象可用概率论的数学方法加以处理;3.比较模糊集合与普通集合的异同;答:模糊集合用隶属函数作定量描述,普通集合用特征函数来刻划; 两者相同点:都属于集合,同时具有集合的基本性质;两者异同点:模糊集合就是指具有某个模糊还年所描述的属性的对象的全体,由于概念本身不是很清晰,界限分明的,因而对象对集合的隶属关系也不是明确的;普通集合是指具有某种属性的对象的全体,这种属性所表达的概念应该是清晰的,界限分明的,因而每个对象对于集合的隶属关系也就是明确的;;4.考虑语言变量:“Old ”,如果变量定义为:确定“NOT So Old ”,“Very Old ”,“MORE Or LESS Old ”的隶属函数;解:1 o old 220 050()1(50/5) 50100NOT S x x x x μ--≤<⎧⎪=⎨⎡⎤+-≤<⎪⎣⎦⎩ 5.已知存在模糊向量A 和模糊矩阵R 如下:()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==3.06.03.001.004.06.02.01.08.05.04.01.07.0R A 计算R A B =; 6.令论域{}4321=U ,给定语言变量“Small ”=1/1+2+3+4和模糊关系R=“Almost 相等”定义如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=16.01.006.016.01.01.06.016.001.06.01R 利用max-min 复合运算,试计算:相等)是Almost Small X y R ()()( =;解:10.60.100.610.60.1y (10.70.30.1)0.10.610.600.10.61R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦() 7.已知模糊关系矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=15.05.01009.002.01.00014.009.004.018.02.01.008.01R 计算R 的二至四次幂;解:210.800.10.210.800.10.20.810.400.90.810.400.900.410000.41000.10010.50.10010.50.20.900.510.20.900.51R R R ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=•=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦10.80.40.20.80.810.40.50.90.40.4100.40.20.5010.50.80.90.40.51⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦8.设有论域},{ },,,{ },,,{21321321z z Z y y y Y x x x X ===,二维模糊条件语句为“若A且B 则C ”,其中)(C , 14.0)( , 6.011.0)( , 1.015.021321321Z F z z C Y F B y y y B X F A x x x A ∈+=∈++=∈++=已知 )(B , 15.01.0)( , 1.05.01*321**321*Y F y y y B X F A x x x A ∈++=∈++=由关系合成推理法,求得推理结论*C ; 解:令R 表示模糊关系,则R A B C =⨯⨯. 将1TR 按行展开写成列向量为[]0.10.50.50.110.60.10.10.1T所以,[]10.10.10.40.110.50.50.40.510.50.50.40.510.10.10.40.110.41110.4110.60.60.40.610.10.10.40.110.10.10.40.110.10.10.40.11TR R C ∧∧⎡⎤⎡⎤⎢⎥⎢⎥∧∧⎢⎥⎢⎥⎢⎥⎢⎥∧∧⎢⎥⎢⎥∧∧⎢⎥⎢⎥⎢⎥⎢⎥=⨯=⨯==∧∧⎢⎥⎢⎥∧∧⎢⎥⎢⎥⎢⎥⎢⎥∧∧⎢⎥⎢⎥∧∧⎢⎥⎢⎥⎢⎥⎢⎥∧∧⎣⎦⎣⎦0.10.10.40.50.40.50.10.10.410.40.60.10.10.10.10.10.1⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.又因为()C A B R ***=⨯⨯,[]10.10.510.50.10.510.10.50.50.10.10.10.1A B **⎡⎤⎡⎤⎢⎥⎢⎥⨯==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,将A B **⨯按行展开写成行向量,为[]0.10.510.10.50.50.10.10.1,则 ()()0.40.5C A B R ***=⨯⨯=即120.40.5C z z *=+ 9. 已知语言变量x,y,z;X 的论域为{1,2,3},定义有两个语言值: “大”={0, , 1};“小”={1, , 0}; Y 的论域为{10,20,30,40,50},语言值为:“高”={0, 0, 0, , 1};“中”={0, , 1, , 0}; “低”={1, , 0, 0, 0};Z的论域为{,,},语言值为:“长”={0, , 1};“短”={1, , 0}则:1试求规则:如果x 是“大”并且y 是“高”那么z是“长”;否则,如果x 是“小”并且y 是“中”那么z是“短”;所蕴涵的x,y,z之间的模糊关系R;2假设在某时刻,x是“略小”={, , 0},y是“略高”={0, 0, , , 1}试根据R分别通过Zadeh法和Mamdani法模糊推理求出此时输出z的语言取值;第三章模糊控制1.模糊控制器有哪几部分组成各完成什么功能1:答:模糊控制器由四个部分组成,这四个功能模块是模糊化、知识库、模糊推理和去模糊化;1模糊化:为实现模糊控制而将精确的输入量进行模糊化处理,是将精确量转化为模糊量的过程;模糊化模块在不同的阶段有不同的作用:a、确定符合模糊控制器要求的输入量和输出量;b、对输入输出变量进行尺度变换,使之落于各自的论域范围内;c、对已经论域变换的输入量进行模糊化处理,包括模糊分割和隶属函数的确定;2知识库:知识库通常由数据库和规则库组成,包含了具体应用领域的知识和要求;其中,数据库主要包含输入输出变量的初度变换因子、输入输出空间的模糊分割以及模糊变量的模糊取值及相应的隶属度函数选择和形状等方面的内容;规则库包含了用模糊语言描述专家的经验知识,来表示一系列控制规则;它们反映了控制专家的经验和知识;3模糊推理:是一种近似推理,根据模糊控制规则库和当前系统状态推断出应施加的控制量的过程,由推理机完成;4去模糊化:由于控制器输出到具体地执行机构的信号必须是清晰的精确量;因此,需要一个与输入模糊化相反的过程,即把模糊推理结果转变成清晰量,它实现从输出论域上输出模糊空间到输出精确空间的映射;2.模糊控制器设计的步骤怎样2:答:模糊控制器设计的步骤如下:1:输入变量和输出变量的确定;2:输入输出变量的论域和模糊分割,以及包括量化因子和比例因子在内的控制参数的选择;3:输入变量的模糊化和输出变量的清晰化;4:模糊控制规则的设计以及模糊推理模型的选择;5:模糊控制程序的编制;3.清晰化的方法有哪些3:答:清晰化的方法一般有四种:1:最大隶属度法:这种方法将模糊推理得到的结论中最大隶属度值最对应的元素作为控制器输出的精确值,如果有多个最大点,则取其平均值;2:加权平均法:这种方法是指以各条规则的前件和输入的模糊集按一定法则确定的值为权值,并对后件代表值加权平均计算输出的清晰值的方法;3:面积等分法:把输出的模糊集合所对应的隶属函数与横坐标之间围成的面子分成两部分,那么该方法得到的精确值应满足使该两部分的面积相等;4:由于Tsukamoto模型和Takagi-Sugeno模型输出本身就是清晰量,则不需要去模糊化;4.已知某一炉温控制系统,要求温度保持在600度恒定;针对该控制系统有一下控制经验:1若炉温低于600度,则升压;低得越多升压就越高;2若炉温高于600度,则降压;高得越多降压就越低; 2若炉温等于600度,则保持不变;设计模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压;输入、输出变量的量化等级为7级,取5个模糊集;设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表; 解: 定义理想温度点的温度为T ,实际测量温度为T ,温度差为0e T T T=∆=-;以为输入、输出变量的量化等级均为7级, 5个模糊集,则e控制电压u 变化划分表为:根据一上两表设计一下模糊规则:若e 负大,则u 正大;若e 负小,则u 正小;若e 为0,则u 为0; 若e 正小,则u 负小;若e 正大,则u 负大; 模糊控制规则表为: 试分别设计:1常规的PID 控制器; 2常规的模糊控制器; 3模糊PID 控制器;分别对上述3种控制器进行Matlab 仿真,并比较控制效果; 解:1常规的PID 控制器的设计: a) 常规的PID 控制器的设计原理图: b 在matlab 中simulink 仿真图如下:第四章神经网络基础1、生物神经元模型的结构功能是什么答:生物神经元结构:1、细胞体:由细胞核、细胞质和细胞膜等组成;2、树突:胞体上短而多分枝的突起;相当于神经元的输入端,接受传入的神经冲动;3、轴突:胞体上最长枝的突起,也称神经纤维;端部有很多神经末稍传出神经冲动;4、突触:神经元间的连接接口,每个神经元约有1万~10万个突触;神经元通过其轴突的神经末稍,经突触与另一神经元的树突联接,实现信息的传递;由于突触的信息传递特性是可变的,形成了神经元间联接的柔性,称为结构的可塑性;5、细胞膜电位:神经细胞在受到电的、化学的、机械的刺激后,能产生兴奋,此时,细胞内外有电位差,称膜电位;电位膜内为正,膜外为负;生物神经元功能:1、兴奋与抑制当传入神经元的冲动,经整合,使细胞膜电位升高,超过动作电位的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出;当传入神经元的冲动,经整合,使细胞膜电位降低,低于阈值时,为抑制状态,不产生神经冲动;2、学习与遗忘由于神经元结构的可塑性,突触的传递作用可增强与减弱,因此,神经元有学习与遗忘的功能;2、人工神经元模型的特点是什么答:人工神经元模型的特点:1、神经元及其联接;2、神经元间的联接强度决定信号传递的强弱;3、神经元间的联接强度是可以随训练改变的;4、信号是可以起刺激作用的,也可以起抑制作用;5、一个神经元接受的信号的累积效果决定该神经元的状态;6、每个神经元可以有一个“阈值”;3、人工神经网络的特点是什么如何分类答:人工神经网络的特点:1、非线性2、分布处理3、学习并行和自适应4、数据融合5、适用于多变量系统6、便于硬件实现人工神经网络的分类:根据神经网络的连接方式,神经网络可分为三种形式:1、前向网络:神经元分层排列,组成输入层、隐含层和输出层;每一层的神经元只接受前一层神经元的输入;输入模式经过各层顺次的变换后,由输出层输出;在各神经元间不存在反馈;感知器和误差反向传播网络采用前向网络形式;2、反馈网络:该网络结构在输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的输入和来自输出神经元的反馈;这种神经网络是一种反馈动力学系统,它需要工作一段时间才能达到稳定;3、自组织网络:当神经网络在接受外界输入时,网络将会分成不同的区域,不同区域具有不同的响应特征,即不同的神经元以最佳方式响应不同性质的信号激励,从而形成一种拓扑意义上的特征图,该图实际上是一种非线性映射;这种映射是通过无监督的自适应过程完成的,所以也称为自组织特征图;4、有哪几种常用的神经网络学习算法常用的神经网络学习算法:1、有教师学习:在学习过程中,网络根据实际输出与期望输出的比较,进行联接权系的调整,将期望输出称导师信号是评价学习的标准;2、无教师学习:无导师信号提供给网络,网络能根据其特有的结构和学习规则,进行联接权系的调整,此时网络学习评价的标准隐含于其内部;3、再励学习:把学习看为试探评价过程,学习及选择一动作作用于环境,环境的状态改变,并产生再励信号反馈至学习机,学习机依据再励信号与环境当前的状态,再选择下一动作作用于环境,选择的原则是使受到奖励的可能性增大;4、Hebb学习规则5、Delta学习规则第五章典型神经网络1、BP算法的特点是什么增大权值是否能够使BP学习变慢答:误差反向传播的BP算法简称BP算法,是有导师的学习,其基本思想是梯度下降法;它采用梯度搜索技术,以使网络的实际输出值与期望输出值的误差均方值为最小;学习的过程由正向传播和反向传播组成,在正向过程中,输入信息由输入层经隐层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态,如果在输出层不能得到期望的输出,则转至反向传播,将误差信号按连接通路反向计算,由梯度下降法来调整各层神经元的权值,使误差信号减小;主要优点:1非线性映射能力:无需事先了解描述这种映射关系的数学方程,只要提供足够多的样本模式对BP网络进行详细训练,它便能完成由n维输入空间到m输出空间的非线性映射;2泛化能力:当向网络输入训练时未曾见过的非样本数据时,网络也能完成由输入空间向输出空间的正确映射,这种能力称为多层前馈网络的泛化能力;3容错能力:输入样本中带有较大的误差,甚至个别错误对网络的输入输出规律影响很小;标准的BP算法内在的缺陷:1易形成局部极小而得不到全局最优;2训练次数多使得学习效率低,收敛速度慢;3隐节点的选取缺乏理论指导;4训练时学习新样本有遗忘旧样本的趋势;增大权值不一定能够使BP学习变慢,由BP权值修正的原理可知,权值调整公式可汇总如下:2、为什么说BP网络是全局逼近的,而RBF网络是局部逼近的它们各有突出的特点是什么BP网络的活化函数为S函数,其值在输入空间中无限大的范围内为非零值,因而是全局逼近的神经网络;其突出特点如下:1、是一种多层网络化,包括输入层、隐含层和输出层;2、层与层之间采用全互联方式,同一层神经元不连接;3、权值通过delta 学习算法进行调节;4、神经元活化激发函数为S函数;5、学习算法由正向算法和反向算法组成;6、层与层之间的连接时单向的,信息的传播史双向的;RBF网络的活化函数为高斯基函数,其值在输入空间中有限范围内为非零值,并且RBF神经网络的神经元具有局部逼近的神经网络;其输出特点如下:1、RBF径向基函数是局部的,学习速度快;2、已证明RBF网络具有唯一最佳逼近的特性,且无局部最小;3、在函数创建过程中可以自动增加隐含层的神经元个数,直到满足均方差要求为止无需单独的代码来训练函数,网络的创建过程就是训练过程;4、RBF 网络用于非线性系统辨识与控制中,虽具有唯一最佳逼近特性,且无局部最小的优点,避免去确定隐层和隐层点数,网络可以根据具体问题自适应的调整,因此适应性更好; 3、何为神经网络的泛化能力影响泛化能力的因素有哪些答:泛化能力综合能力、概括能力:用较少的样本进行训练,是网络能在给定的区域内达到要求的精度;所以没有泛化能力的网络没有使用价值;影响泛化能力的因素:1、样本;2、结构;3、初始权值4、训练样本集;5、需测试集; 4. 已知一个非线性函数2121()sin(2)2y x x ππ=,试用三层BP 网络逼近输出y,画出网络的结构,写出网络各层节点的表达式以及各层节点输出值的范围; 解:非线性函数2121()sin(2)2y x x ππ=画出三层BP 网络的结构图 由输入得到两个隐节点、一个输出层节点的输出,输入层不考虑阈值 两个隐节点、一个输出层节点输出为 活化函数选择S 型函数1()1xly f xl e -==+如教材例,取第一个输入、输出神经元与各隐含神经元的连接权均为1,第二个输入、输出神经元与各隐含层单元的连接权为2.则 由上式可得第六章 高级神经网络控制器的一般形式为0()()()[()(1)]kp idj u k k e k k e j k e k e k ==++--∑,也可写成等价形式112233()()()()u k k u k k u k k u k =++,其中1203()(),()(),()()()(1)kj u k e k u k e k u k e k e k e k ====∆=--∑,123,,k k k 为PID 控制器,,p i d k k k 三个参数的线性表示;这一形式可以看成以123(),(),()u k u k u k 为输入,123,,k k k 为权系数的神经网络结构,试推导出自适应神经网络PID 控制器参数调整的学习算法; 解:自适应神经网络PID 控制器结构如下图所示: 由图可知:控制器由两部分组成,分别为常规PID 控制和神经网络;其中,常规PID 直接对被控对象进行闭环控制,并且其控制参数kp 、ki 、kd 为在线调整方式;神经网络根据系统的运动状态,调节PID 控制器的参数,使输出层神经元的输出对应于PID 控制器的三个可调参数;学习算法如下:首先确定神经网络的结构,即确定输入节点数和隐含层节点数,并给出各层加权系数的初值w1和w2,并选定学习速率和惯性系数,令k=1;采样得到rk 和yk,计算当前时刻误差rk-yk ;计算各神经网络的输入和输出,其输出层的输出即为PID 控制器的三个控制参数kp 、ki 、kd 并计算PID 控制器的输出进行神经网络学习,在线调整加权系数,实现PID 控制参数的自适应调整;令k=k1,进行上述步骤;网络各层输入输出算法:。
智能控制复习题-参考答案
(书本 P 13)上海第二工业大学《智能控制系统》练习卷一、填空题1、机器智能是把信息进行组织 、并 把它转换成知识 的过程。
2、智能控制方法比传统的控制方法更能适应对象的 时变性 、 非线性 和 不确定性 。
3、智能控制中的三元论指的是: 人工智能 、 自动控制 和 运筹学 。
4、从 工程控制角度看,智能控制三个基本要素是: 归纳 、 集注 、 组合操作 。
(这道题有点疑问,大家找找资料)5、生物神经元经抽象化后,得到的人工神经元模型,它有三个基本要素 连接权值 、 求和函数 和 激发函数 。
6、神 经网络的结构按照神经元连接方式可分成 层状 和 网状 。
7、定义一个语言变量需要定义 4 个方面的内容: 定义变量名称 、 定义变量的论域 、 定义变量的语言 、 定义每个模糊集合的隶属函数 。
8、� = 0.2 + 0.3 + 0.4 + 0.9,则 A0.2={x1, x2, x3, x4},A0.4={ x3, x4} ,A0.9={ x4 }�1�2�3 �49、假设论域为 5 个人的体重分别为 110kg 、95kg 、85kg 、78kg 、65kg ,他们 的体重对于“肥胖”的模糊概念的隶属度分别为 0.95、0.88、0.8、0.72、0. 5。
试用:(1) Zadeh 表示法表示模糊集“肥胖” 答:肥胖=0. 95 +0. 88 +0. 8 +0. 72 +0. 5 11095857865(2)序偶表示法表示模糊集“ 肥胖”答:肥胖={(110,0.95), (95,0.88)(85,0.8)(78,0.72)(65,0.5)} (或 肥胖={0.95, ,0.88,0.8,0.72,0.5})10、专家系统的核心部分是: 知识库子系统 、 推理子系统 。
11、在专家系统中,解释器是专家系统与用户间的人-机接口。
12、人工神经网络常见的激发函数或作用函数有:阈值型函数、饱和型函数、和双曲函数(此外还有S 型函数,高斯函数等)。
智能控制基础答案
智能控制基础答案【篇一:智能控制基础思考题】xt>复习思考题一重要概念解释 1 智能控制答:智能控制是一门交叉学科,美国学者在运筹学的基础上提出了三元论的智能控制概念,即ic=ac n ai n or 各子集的含义为:ic为智能控制,ai为人工智能,ac为自动控制,or为运筹学。
所谓智能控制,即设计一个控制器,使之具有学习、抽象、推理、决策等功能,并能根据环境(包含被控对象或被控过程)信息的变化做出适应性反应,从而实现由人来完成的任务。
2 专家系统与专家控制答:专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。
专家控制是智能控制的一个重要分支,又称专家智能控制。
所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。
3 模糊集合与模糊关系,模糊推理模糊控制答:模糊集合:给定论域u上的一个模糊集a?是指:对任何元素u?u 都存在一个数?a?u???0,1?与之对应,表示元素u属于集合a?的程度,这个数称为元素u对集合a?的隶属度,这个集合称为模糊集合。
模糊关系:二元模糊关系:设a、b是两个非空集合,则直积a?b???a,b?|a?a,b?b?中的一个模糊集合称为从a到b的一个模糊关系。
模糊关系r?可由其隶属度?r?a,b?完全描述,隶属度?r?a,b?表明了元素a与元素b具有关系r?的程度。
模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。
4神经网络?答:人工神经网络(artificial neural network )是模拟人脑思维方式的数学模型。
神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,它从微观结构和功能上对人脑进行抽象和简化,神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。
智能控制试卷及答案4套
附件 1
题号
一
二
三
四
五
六
七
分数
总分
合分人:
复查人:
一、填空题(每空 1 分,共 20 分)
分数
评卷人
1.智能控制是一门新兴的
学科,它具有非常广泛的应用领域,例如
、
、
、
和
。
2.智能控制系统的主要类型有:
、
、
和
。
、
、
3.一个理想的智能控制系统应具备的性智能能是
、
、
等。
4.在设计知识表达方法时,必须从表达方法的
-2
-1
0
“neglarge ” “negsmall ” “zero ”
16
8
d
4
e t , ra d . dt
1
2
“possmall ” “poslarge ”
-30
-20
-10
10
20
30 u t , N
2. 设论域 U { u1, u2 , u3 ,u4 ,u5} ,且 0.4 0.3 0.9 1 0.5
种:
、
和
。
6. 专家系统具有三个重要的特征是:
、
和
。
二、简答题: (每题 5 分,共 30 分) 1. 智能控制有哪些应用领域?试举例说明其工作原理。 2. 试说明智能控制的三元结构,并画出展示它们之间关系的示意图。 3. 模糊逻辑与随机事件的联系与区别。
分数
评卷人
精彩文档
4. 给出典型的神经元模型。
12. 比较智能控制与传统控制的特点。
4.神经网络应具的四个基本属性是什么?
精彩文档
智能控制考试题及答案
智能控制技术考试题及答案《智能控制技术》考试试题A《智能控制》课程考试试题A参考答案一、填空题(1) OPEN (2) 最有希望 (3) 置换 (4) 互补文字 (5) 知识库(6) 推理机 (7) 硬件 (8) 软件 (9) 智能 (10) 傅京孙(11) 萨里迪斯 (12) 蔡自兴 (13) 组织级 (14) 协调级(15) 执行级 (16) 递阶控制系统 (17) 专家控制系统(18) 模糊控制系统 (19) 神经控制系统 (20) 学习控制系统二、选择题1、D2、A3、C4、B5、D6、B7、A8、D9、A 10、D三、问答题1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。
(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。
人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。
人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平──智能控制发展。
智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的过程,并以知识进行推理,以启发式策略和智能算法来引导求解过程。
(2) 智能控制的核心在高层控制,即组织级。
高层控制的任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。
智能控制技术试卷
一、选择题1、蔡自兴教授提出智能控制系统的四元结构,认为智能控制就是人工智能、控制理论、系统理论与运筹学四种学科的交叉。
2、专家就是指在某一专业领域内其专业知识与解决问题的能力达到很高水平的学者。
3、专家系统中的知识按其在问题求解中的作用可分为三个层次,即数据级、知识库级与控制级。
4、不确定性知识的表示有三种:概率、确定性因子与模糊集合。
5、Hebb学习规则就是一种无教师的学习方法,它只根据神经元连接间的激活水平改变权值,因此这种方法又称为相关学习与并联学习。
6、交叉运算就是两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。
二、判断题1、IEEE控制系统协会把智能控制归纳为:智能控制系统必须具有模拟人类学习与自适应的能力。
( T )2、不精确推理得出的结论可能就是不确定的,但会有一个确定性因子,当确定性因子超过某个域值时,结论便不成立。
( F )3、一般的专家系统由知识库、推理机、解释机制与知识获取系统等组成。
( T )4、人机接口就是专家系统与领域专家、知识工程师、一般用户间进行交互的界面,由一组程序及相应的硬件组成,用于完成知识获取工作。
( F )5、Hopfield神经网络就是反馈神经网络中最简单且应用广泛的模型,它具有联想记忆的功能。
( F )6、知识就是将有关的信息进一步关联在一起,形成了更高层次含义的一种信息结构,信息与关联就是构成知识的两个基本要素。
( T )7、建造知识库涉及知识库建造的两项主要技术就是知识获取与知识存放。
( F )8、模糊控制系统往往把被控量的偏差(一维)、偏差变化(二维)以及偏差的变化率(三维)作为模糊控制器的输入。
( T )9、RBF网络的学习过程与BP网络的学习过程就是类似的,两者的主要区别在于使用了相同的激励函数。
( F )10、应用遗传算法求解问题时,在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自信组织搜索。
(完整版)智能控制习题参考答案
1.递阶智能控制系统的主要结构特点有哪些。
答:递阶智能控制是在研究早期学习控制系统的基础上,从工程控制论角度总结人工智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。
递阶智能控制系统是由三个基本控制级(组织级、协调级、执行级)构成的。
如下所示:1. 组织级组织级代表控制系统的主导思想,并由人工智能起控制作用。
根据贮存在长期存储交换单元内的本原数据集合,组织器能够组织绝对动作、一般任务和规则的序列。
其结构如下:2.协调级协调级是组织级和执行级间的接口,承上启下,并由人工智能和运筹学共同作用。
协调级借助于产生一个适当的子任务序列来执行原指令,处理实时信息。
它是由不同的协调器组成,每个协调器由计算机来实现。
下图是一个协调级结构的候选框图。
该结构在横向上能够通过分配器实现各协调器之间的数据共享。
3. 执行级执行级是递阶智能控制的最底层,要求具有较高的精度但较低的智能;它按控制论进行控制,对相关过程执行适当的控制作用。
其结构模型如下:2.信息特征,获取方式,分层方式有哪些?答:一、信息的特征1,空间性:空间星系的主要特征是确定和不确定的(模糊)、全空间和子空间、同步和非同步、同类型和不同类型、数字的和非数字的信息,比传统系统更为复杂的多源多维信息。
2,复杂性:复杂生产制造过程的信息往往是一类具有大滞后、多模态、时变性、强干扰性等特性的复杂被控对象,要求系统具有下层的实时性和上层的多因素综合判断决策能力,以保证现场设备局部的稳定运行和在复杂多变的各种不确定因素存在的动态环境下,获得整个系统的综合指标最优。
3,污染性:复杂生产制造过程的信息都会受到污染,但在不同层次的信息受干扰程度不同,层次较低的信号受污染程度较大。
二、获取方式信息主要是通过传感器获得,但经过传感器后要经过一定的处理来得到有效的信息,具体处理方法如下:1,选取特征变量可分为选择特征变量和抽取特征变量。
选择特征变量直接从采集样本的全体原始工艺参数中选择一部分作为特征变量。
智能控制考试题库
填空题(每空1分,共20分)控制论的三要素是:信息、反馈和控制。
传统控制是经典控制和现代控制理论的统称。
智能控制系统的核心是去控制复杂性和不确定性。
神经元(即神经细胞)是由细胞体、树突、轴突和突触四部分构成。
按网络结构分,人工神经元细胞可分为层状结构和网状结构按照学习方式分可分为:有教师学习和无教师学习。
前馈型网络可分为可见层和隐含层,节点有输入节点、输出节点、计算单元。
神经网络工作过程主要由工作期和学习期两个阶段组成。
1、智能控制是一门控制理论课程,研究如何运用人工智能的方法来构造控制系统和设计控制器;与自动控制原理和现代控制原理一起构成了自动控制课程体系的理论基础。
2、智能控制系统的主要类型有:分级递阶控制系统,专家控制系统,学习控制系统,模糊控制系统,神经控制系统,遗传算法控制系统和混合控制系统等等。
3、模糊集合的表示法有扎德表示法、序偶表示法和隶属函数描述法。
4、遗传算法是以达尔文的自然选择学说为基础发展起来的。
自然选择学说包括以下三个方面:遗传、变异、适者生存。
5、神经网络在智能控制中的应用主要有神经网络辨识技术和神经网络控制技术。
6、在一个神经网络中,常常根据处理单元的不同处理功能,将处理单元分成输入单元、输出单元和隐层单元三类。
7、分级递阶控制系统:主要有三个控制级组成,按智能控制的高低分为组织级、协调级、执行级,并且这三级遵循“伴随智能递降精度递增”原则。
传统控制方法包括经典控制和现代控制,是基于被控对象精确模型的控制方式,缺乏灵活性和应变能力,适于解决线性、时不变性等相对简单的控制。
智能控制的研究对象具备以下的一些特点:不确定性的模型、高度的非线性、复杂的任务要求。
IC(智能控制)=AC(自动控制)∩AI(人工智能) ∩OR(运筹学)AC:描述系统的动力学特征,是一种动态反馈。
AI :是一个用来模拟人思维的知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。
OR:是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等。
《智能控制技术基础》试卷(A)标准答案
《智能控制技术基础》试卷(A)标准答案2006~2007学年第一学期期末考试《智能控制技术基础》试卷(A)标准答案一、填空题(每空1分,共10分)1 智能控制具有两个不同于常规控制的本质特点:以知识表示的非数学广义模型和以数学模型表示的混合控制过程。
2 传统控制包括经典反馈控制和现代理论控制。
3 模糊逻辑控制的过程主要有三个步骤:模糊化过程、模糊逻辑推理和精确化计算。
4 在一个神经网络中,常常根据处理单元的不同处理功能,将处理单元分成输入单元、隐含层单元(或隐层单元)和输出单元三类。
5 系统辨识的基本要素包括数据、模型类和等价准则。
二、问答题(每小题8分, 共40分)1 智能控制系统由哪几部分组成?各部分的作用是什么?答:智能控制系统由广义对象、传感器、感知信息处理、认知、通信接口、规划和控制和执行器等七个功能模块组成;各部分的作用为:广义对象——包括通常意义下的控制对象和外部环境;传感器——包括关节传感器、力传感器、视觉传感器、距离传感器、触觉传感器等;感知信息处理——将传感器得到的原始信息加以处理;认知——主要用来接收和储存信息、知识、经验和数据,并对它们进行分析、推理,作出行动的决策,送至规划和控制部分;通信接口——除建立人机之间的联系外,还建立系统各模块之间的联系;规划和控制——是整个系统的核心,它根据给定的任务要求、反馈的信息以及经验知识,进行自动搜索,推理决策,动作规划,最终产生具体的控制作用;执行器——将产生的控制作用于控制对象。
2 模糊逻辑控制器由哪几部分组成?各完成什么功能?答:模糊逻辑控制器由模糊化接口、知识库、推理机与解模糊接口四个部分组成;各部分的功能为:模糊化接口——将真实的确定量输入转换为一个模糊矢量;知识库——包括数据库和规则库。
数据库存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值,若论域为连续域则为隶属度函数,在规则推理的模糊关系方程求解过程中,向推理机提供数据;规则库是基于专家知识或手动操作人员长期积累的经验,它是按人的直觉推理的一种语言表示形式,存放全部模糊控制规则,在推理时为“推理机”提供控制规则。
智能控制基础期末考试题答案
2010级智能控制基础期末复习思考题一重要概念解释1 智能控制所谓的智能控制,即设计一个控制器(或系统),使之具有学习、抽象、推理、决策等功能,并能根据环境信息的变化做出适应性反应,从而实现由人来完成的任务。
2 专家系统与专家控制专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。
专家控制是智能控制的一个重要分支。
所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。
它由知识库和推理机构构成主体框架,通过对控制领域知识的获取与组织,按某种策略及时的选用恰当的规则进行推理输出,实现对实际对象的控制 3 模糊集合与模糊关系,模糊推理模糊控制● 1)模糊集合:给定论域U 上的一个模糊集A 是指:对任何元素u U ∈ 都存在一个数()[]0,1A u μ∈与之对应,表示元素u 属于集合A 的程度,这个数称为元素u 对集合A 的隶属度,这个集合称为模糊集合。
● 模糊关系:二元模糊关系:设A 、B 是两个非空集合,则直积(){},|,A B a b a A b B ⨯=∈∈中的一个模糊集合 称为从A 到B 的一个模糊关系。
模糊关系R 可由其隶属度(),R a b μ完全描述,隶属度(),R a b μ 表明了元素a 与元素b 具有关系R 的程度。
● 模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。
4 神经网络?答:人工神经网络是模拟人脑思维方式的数学模型。
神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,对人脑进行抽象和简化,反映了人脑的基本特征,信息处理、学习、联想、模式分类、记忆等。
5 遗传算法答:遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适配置函数并通过遗传的复制、交叉及变异对个体进行筛选,使适配值高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。
《智能控制技术基础》试卷(A)标准答案剖析
《智能控制技术基础》试卷(A)标准答案剖析20__6~20__7 学年第一学期期末考试《智能控制技术基础》试卷(A)标准答案一、填空题(空每空 1 分,共 10 分分))1 智能控制具有两个不同于常规控制的本质特点:以以知识表示的非数学广义模型和以数学模型表示的混合控制过程。
2 传统控制包括经典反馈控制和现代理论控制。
3 模糊逻辑控制的过程主要有三个步骤:模糊化过程、模糊逻辑推理和精确化计算。
4 在一个神经网络中,常常根据处理单元的不同处理功能,将处理单元分成输入单元、隐含层单元(或隐层单元)和输出单元元三类。
5 系统辨识的基本要素包括数据、模型类和等价准则。
二、问题答题(每小题 8 分, 共共 40 分)1 智能控制系统由哪几部分组成?各部分的作用是什么?答:智能控制系统由广义对象、传感器、感知信息处理、认知、通信接口、规划和控制和执行器等七个功能模块组成;各部分的作用为:广义对象;;包括通常意义下的控制对象和外部环境;传感器;;包括关节传感器、力传感器、视觉传感器、距离传感器、触觉传感器等;感知信息处理;;将传感器得到的原始信息加以处理;认知;;主要用来接收和储存信息、知识、经验和数据,并对它们进行分析、推理,作出行动的决策,送至规划和控制部分;通信接口;;除建立人机之间的联系外,还建立系统各模块之间的联系;规划和控制;;是整个系统的核心,它根据给定的任务要求、反馈的信息以及经验知识,进行自动搜索,推理决策,动作规划,最终产生具体的控制作用;执行器;;将产生的控制作用于控制对象。
2 模糊逻辑控制器由哪几部分组成?各完成什么功能?答:模糊逻辑控制器由模糊化接口、知识库、推理机与解模糊接口四个部分组成;各部分的功能为:模糊化接口;;将真实的确定量输入转换为一个模糊矢量;;知识库;;包括数据库和规则库。
数据库存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值,若论域为连续域则为隶属度函数,在规则推理的模糊关系方程求解过程中,向推理机提供数据;规则库是基于专家知识或手动操作人员长期积累的经验,它是按人的直觉推理的一种语言表示形式,存放全部模糊控制规则,在推理时为“推理机”提供控制规则。
智能控制技术复习题课后答案.
智能控制研究的数学工具为:(1)符号推理与数值计算的结合;(2)离散事件与连续时间系统得结合;(3)模糊集理论;(4)神经网络理论;(5)优化理论
第二章
1、何谓专家系统?它有哪些基本特征?
答:所谓专家系统就是利用存储在计算机内的某一特定领域内人类专家的知识,来解决过去需要人类专家才能解决的现实问题的计算机系统。
42.神经元模型、神经网络结构、神经网络学习算法
43.神经网络的学习过程主要由正向传播和反向传播两个阶段组成。
44.神经网络控制是将和相结合而发展起来的智能控制方法。神经网络,控制理论
45. 遗传算法的主要用途是。45、寻优(优化计算)
46.常用的遗传算法的染色体编码方法有二种,它们分别为实数编码和。
演绎推理又可以分为正向演绎推理、反向演绎推理、正向与反向相结合的联合演绎推理(也称双向推理)3种形式。其中,正向演绎推理是一种条件驱动的推理方式;反向演绎推理是一种结论驱动的推理方式;若将两种演绎推理方式相结合,可发挥它们的各自优点而克服其局限性,这就形成了双向联合的演绎推理。
答:专家控制系统的任务是:(1).能提供一个熟练工或专家对受控对象操作所能达到的性能指标;(2).监督对象和控制器的运行情况;(3).检测系统元件可能发生的故障或失误;
(4).对特殊情况,要选择合适的控制算法以适应系统参数的变化。
6、比较专家系统和专家控制系统的区别和联系。
答:专家控制系统是将人工智能领域的专家系统理论和技术与控制理论方法和技术相结合,仿效专家智能,实现对较为复杂问题的控制。
2).知识的特性
相对正确性;不确定性;可表示性;关联性。
8、简述知识获取的概念和分类方法。
答:4).知识获取的概念
知识获取就是把用于求解专门领域问题的知识从拥有这些知识的知识源中抽取出来,并转换为一特定的计算机表示。知识源包括专家、教科书、数据库及人本身的经验。计算机表示有状态空间表示法、谓词逻辑表示法、与/ /或图表示法、语义网络表示、产生式表示法、框架表示法等。
智能控制基础答案
智能控制基础答案【篇一:智能控制基础思考题】xt>复习思考题一重要概念解释 1 智能控制答:智能控制是一门交叉学科,美国学者在运筹学的基础上提出了三元论的智能控制概念,即ic=ac n ai n or 各子集的含义为:ic为智能控制,ai为人工智能,ac为自动控制,or为运筹学。
所谓智能控制,即设计一个控制器,使之具有学习、抽象、推理、决策等功能,并能根据环境(包含被控对象或被控过程)信息的变化做出适应性反应,从而实现由人来完成的任务。
2 专家系统与专家控制答:专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。
专家控制是智能控制的一个重要分支,又称专家智能控制。
所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。
3 模糊集合与模糊关系,模糊推理模糊控制答:模糊集合:给定论域u上的一个模糊集a?是指:对任何元素u?u 都存在一个数?a?u???0,1?与之对应,表示元素u属于集合a?的程度,这个数称为元素u对集合a?的隶属度,这个集合称为模糊集合。
模糊关系:二元模糊关系:设a、b是两个非空集合,则直积a?b???a,b?|a?a,b?b?中的一个模糊集合称为从a到b的一个模糊关系。
模糊关系r?可由其隶属度?r?a,b?完全描述,隶属度?r?a,b?表明了元素a与元素b具有关系r?的程度。
模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。
4神经网络?答:人工神经网络(artificial neural network )是模拟人脑思维方式的数学模型。
神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,它从微观结构和功能上对人脑进行抽象和简化,神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。
17秋北理工《智能控制基础》在线作业
1. 解决自动控制面临问题的一条有效途径就是把人工智能等技术用于自动控制系统,其核心是()A. 控制算法B. 控制结构C. 控制器智能化D. 控制系统仿真正确答案:C 满分:2 分2. 一种值得研究的新型智能控制是()A. 机器人控制B. 反馈控制C. 进化控制D. 在线控制正确答案:C 满分:2 分3. 成为“专家控制先行者”的科学家是()A. P.H.WinstonB. N.J.NilssonC. K.J.AstromD. E.A.Feigenbaum正确答案:D 满分:2 分4. 最早提出人工神经网络思想的学者是()A. McCulloch-PittsB. HebbC. Widrow-HoffD. Rosenblatt正确答案:A 满分:2 分5. 递阶控制系统的结构是根据下列原理设计的()A. 精度随智能降低而提高B. 精度随智能提高而提高C. 精度随智能降低而降低D. 精度与智能无关正确答案:A 满分:2 分6. 建立专家系统最艰难的任务是()A. 知识表示B. 知识应用C. 知识推理D. 知识获取正确答案:A 满分:2 分7. 被称为“智能控制先驱”的科学家是()A. G-N-SaridisB. K-S-FuC. K-J-AstromD. N-Wiener正确答案:B 满分:2 分8. 智能控制成为国际上独立新学科的时间为20世纪()A. 60年代B. 70年代C. 80年代D. 90年代正确答案:C 满分:2 分9. 智能控制的“四元交集结构”的四元,指的是()A. 计算机科学、自动控制、人工智能、神经网络B. 人工智能、自动控制、信息论、系统论C. 人工智能、自动控制、信息论、机器学习D. 自动控制、人工智能、信息论、运筹学正确答案:D 满分:2 分10. 增强学习属于()A. 自主学习B. 有师学习C. 主动学习D. 无师学习正确答案:B 满分:2 分11. 基于模式识别的控制系统属于()A. 学习控制系统B. 专家控制系统C. 进化控制系统D. 模糊控制系统正确答案:A 满分:2 分12. 模糊控制是以模糊集合为基础的,提出模糊集合的科学家是()A. N.J.NilsonB. L.A.ZadehC. A.TuringD. H.A.Simon正确答案:B 满分:2 分13. 一般认为,人工神经网络适用于()A. 线性系统B. 多变量系统C. 多输入多输出系统D. 非线性系统正确答案:D 满分:2 分14. 智能自动化研究开发与应用应当面向()A. 生产系统B. 复杂系统C. 管理系统D. 非线性系统正确答案:B 满分:2 分15. 能够在系统运行过程中估计未知信息,并据之进行优化与控制,以便逐步改进系统性能的控制叫做()A. 最优控制B. 反馈控制C. 随机控制D. 学习控制正确答案:D 满分:2 分16. 学习控制具有()等功能。
[精选]智能控制试卷及答案4套资料
精品文档智能控制 课程试题A合分人:复查人:一、填空题(每空 1 分,共 20分)1.智能控制系统的基本类型有 、 、 、 、 和 。
2.智能控制具有2个不同于常规控制的本质特点: 和 。
3.一个理想的智能控制系统应具备的性能是 、 、 、 、 等。
4. 人工神经网络常见的输出变换函数有: 和 。
5. 人工神经网络的学习规则有: 、 和 。
6. 在人工智能领域里知识表示可以分为 和 两类。
二、简答题:(每题 5 分,共 30 分)1. 智能控制系统应具有的特点是什么?2. 智能控制系统的结构一般有哪几部分组成,它们之间存在什么关系?4.神经元计算与人工智能传统计算有什么不同?5.人工神经元网络的拓扑结构主要有哪几种?6.简述专家系统与传统程序的区别。
三、作图题:(每图 4 分,共 20 分)1. 画出以下应用场合下适当的隶属函数: (a )我们绝对相信4π附近的e(t)是“正小”,只有当e(t)足够远离4π时,我们才失去e(t)是“正小”的信心; (b )我们相信2π附近的e(t)是“正大”,而对于远离2π的e(t)我们很快失去信心; (c )随着e(t)从4π向左移动,我们很快失去信心,而随着e(t)从4π向右移动,我们较慢失去信心。
2. 画出以下两种情况的隶属函数:(a )精确集合 {}82A x x ππ=≤≤的隶属函数;(b )写出单一模糊(singleton fuzzification )隶属函数的数学表达形式,并画出隶属函数图。
四、计算题:(每题 10 分,共 20 分)1. 一个模糊系统的输入和输出的隶属函数如图1所示。
试计算以下条件和规则的隶属函数: (a )规则1:If error is zero and chang-in-error is zero Then force is zero 。
均使用最小化操作表示蕴含(using minimum opertor);(b )规则2:If error is zero and chang-in-error is possmall Then force is negsmall 。
(完整版)智能控制-考试题(附答案)
《智能控制》考试试题试题1:针对某工业过程被控对象:0.520()(101)(21)s G s e s s -=++,试分别设计常规PID 算法控制器、模糊控制器、模糊自适应PID 控制器,计算模糊控制的决策表,并进行如下仿真研究及分析:1. 比较当被控对象参数变化、结构变化时,四者的性能;2. 研究改善Fuzzy 控制器动、静态性能的方法。
解:常规PID 、模糊控制、Fuzzy 自适应PID 控制、混合型FuzzyPID 控制器设计 错误!未找到引用源。
. 常规PID 调节器PID 控制器也就是比例、积分、微分控制器,是一种最基本的控制方式。
它是根据给定值()r t 与实际输出值()y t 构成控制偏差()e t ,从而针对控制偏差进行比例、积分、微分调节的一种方法,其连续形式为:01()()[()()]t p d i de t u t K e t e t dt T T dt=++⎰ (1.1) 式中,p K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。
PID 控制器三个校正环节中p K ,i T 和d T 这三个参数直接影响控制效果的好坏,所以要取得较好的控制效果,就必须合理地选择控制器的参数。
Ziegler 和Nichols 提出的临界比例度法是一种非常著名的工程整定方法。
通过实验由经验公式得到控制器的近似最优整定参数,用来确定被控对象的动态特性的两个参数:临界增益u K 和临界振荡周期u T 。
用临界比例度法整定PID 参数如下:表1.1 临界比例度法参数整定公式51015202530354000.20.40.60.811.21.41.61.8Time(s)y (t )051015202530354000.511.5Time(s)y (t )PID 0.6u K 0.5u T 0.125u T据以上分析,通过多次整定,当 1.168p K =时系统出现等幅振荡,从而临界增益 1.168u K =,再从等幅振荡曲线中近似的测量出临界振荡周期 5.384u T =,最后再根据表1.1中的PID 参数整定公式求出:0.701, 2.692,0.673p i d K T T ===,从而求得:比例系数0.701p K =,积分系数/0.260i p i K K T ==,微分系数0.472d p d K K T ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知 识 库——包括数据库和规则库。数据库存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值,若论域为连续域则为隶属度函数,在规则推理的模糊关系方程求解过程中,向推理机提供数据;规则库是基于专家知识或手动操作人员长期积累的经验,它是按人的直觉推理的一种语言表示形式,存放全部模糊控制规则,在推理时为“推理机”提供控制规则。
0
0
0
NS
0
0.4
1
0.4
0
0
0
0
0
NB
1
0.35
0
0
0
0
0
0
0
试表2控制规则表
U
E
DE
NB
NS
ZE
PS
PB
NB
*
PB
PB
PS
NB
NS
PB
PS
PS
ZE
NB
ZE
PB
PS
ZE
NS
NB
PS
PB
ZE
NS
NS
NB
PB
PB
NS
NB
NB
*
第一条规则:
第二条规则:
控制量的输出模糊集:
试图1图解法坐标纸
四、计算题(每小题10分,共20分)
推 机 理——根据输入模糊量,由模糊控制规则完成模糊推理来求解模糊关系方程,并获得模糊控制量的功能部分;
解模糊接口——在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值去控制或驱动执行机构。
3模糊控制器常规设计的步骤怎样?应注意哪些问题?
答:模糊控制器常规设计的步骤:①确定模糊控制器的输入、输出变量;②确定各输入、输出变量的变化范围、量化等级和量化因子;③在各输入和输出语言变量的量化域内定义模糊子集;④确定模糊控制规则;⑤求模糊控制表。应注意以下问题:①模糊控制器的构造;②模糊信息与精确信息转换的物理结构和方法;③模糊控制器对外界环境的适应性及适应技术;④实现模糊控制系统的软技术;⑤模糊控制器和被控对象匹配技术。
试表1模糊集的隶属度函数
误差e
-50
-30
-15
-5
0
5
15
30
50
误差率de
-150
-90
-30
-10
0
10
30
90
150
控制u
-64
-16
-4
-2
0
2
4
16
64
量化等级
-4
-3
-2
-1
0
1
2
3
4
状态变量
相关的隶属度函数
PB
0
0
0
0
0
0
0
0.35
1
PS
0
0
0
0
0
0.4
1
0.4
0
ZE
0
0
0
0.2
1
0.2
为 ,学习算法为:
输出层: ;隐含层:
2)若已知 的符号,学习算法调整为:
输出层: ;隐含层:
3) ;
4在一个神经网络中,常常根据处理单元的不同处理功能,将处理单元分成输入单元、隐含层单元(或隐层单元)和输出单元三类。
5系统辨识的基本要素包括数据、模型类和等价准则。
二、问答题(每小题8分,共40分)
1智能控制系统由哪几部分组成?各部分的作用是什么?
答:智能控制系统由广义对象、传感器、感知信息处理、认知、通信接口、规划和控制和执行器等七个功能模块组成;各部分的作用为:
应性,且成为基本上不依赖于模型的一类控制,因此神经网络属于“智能控制”。
三、作图题:(本大题10分)
为了克服实时计算量大的缺点,常规模糊控制在实际中通常采用的是查表法。现已知某系统的输入变量(误差和误差的变化)、输出变量(控制量)的变化范围、量化等级、模糊集的隶属度函数如试表1所示,控制规则如试表2所示。设系统误差e的量化值为-1、误差变化de的量化值为4,根据极大极小推理法可得控制量的输出模糊集合。要求在试图1的坐标纸上用图解法给出模糊推理的过程。
;由马达尼推理法,
由扎德推理法可得 ,即 的关系矩阵 可计算得到
;由扎德推理法,
五、(本大题8分)
画出静态多层前向人工神经网络(BP网络)的结构图,并简述BP神经网络的工作过程。
答:静态多层前向人工神经网络的结构图如下:
学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经隐含层处理后传向输出层。若输出层的实际输出与期望输
2)假定只已知 的符号,重新设计直接网络控制法实现期望轨迹的跟踪控制;
3)利用神经网络辨识器,设计多神经网络控制器实现期望轨迹的跟踪控制。(注:只需给出准则函数,并画出相应的控制结构图)
解:
1)神经网络模型选用四层前向传播神经网络,并假设输出单元层的神经元为线性单元,其余层的神经元为S激励元,目标函数
1设在论域 (误差) 和控制电压 上定义的模糊子集的隶属度函数如试图2所示。
试图2隶属度函数
已知模糊控制规则:
规则1:如果误差 为 ,则 为 ;
规则2:如果误差 为 ,则 为 ;
试应用马达尼推理法计算出当输入误差 时,输出电压 ?(精确化计算采用重心法,计算结果保留到小数点后三位)
解:
计算图中隶属度函数各拐点的坐标(0,0)、(1,0.5)、(5,0.5)、(6,0),套用精确化过程重心计算法的积分公式,从而得到输出电压。
规划和控制——是整个系统的核心,它根据给定的任务要求、反馈的信息以及经验知识,进行自动搜索,推理决策,动作规划,最终产生具体的控制作用;
执行器——将产生的控制作用于控制对象。
2模糊逻辑控制器由哪几部分组成?各完成什么功能?
答:模糊逻辑控制器由模糊化接口、知识库、推理机与解模糊接口四个部分组成;
各部分的功能为:
出(教师信号不符,则转向误差的反向传播。误差的反向传播是将输出误差以某种形式通过隐层向输入层反传,并将误差分摊给各层的所有单元,从而获得各层
单元的误差信号,此误差信号即作为修正个单元权值的依据。
六、综合设计题(本大题12分)
已知一非线性动态系统: ;给定的期望轨迹为:
求:1)假定系统已知,即 从方程中可以求出,采用直接网络控制法实现期望轨迹的跟踪控制;
2006~2007学年第一学期期末考试《智能控制技术基础》试卷(A)标准答案
一、填空题(每空1分,共10分)
1智能控制具有两个不同于常规控制的本质特点:以知识表示的非数学广义模型和以数学模型表示的混合控制过程。
2传统控制包括经典反馈控制和现代理论控制。
3模糊逻辑控制的过程主要有三个步骤:模糊化过程、模糊逻辑推理和精确化计算。
2考虑如下的逻辑条件语句:
如果转角误差远远大于 那么快速减少方向角
其隶属度函数定义为
转角误差远远大于
快速减少方向角
设 转角误差大约在 的隶属度函数
试分别应用马达尼(Mamdani)推理法和扎德(Zadeh)推理法计算当“ 转角误差大约在 ”时方向角应该怎么变化?
解:已知 , 且
由马达尼推理法可得 ,即 的关系矩阵 可计算得到
4神经PID控制与常规PID控制有何不同?
答:常规PID控制与神经PID相比,结构更简单、实现更容易,但它的局限性在于被控对象具有复杂的非线性特性时难以建立精确的数学模型,且由于对象和
环境的不确定性,往往难以达到满意的控制效果。神经PID控制具有两个神经网络:NNI——系统在线辨识器,NNC——自适应PID控制器,分别实现对被控对
象进行在线辨识和自适应控制的目的。
5为什么说神经网络控制属于智能控制?
答:由于神经网络是从微观结构与功能上对人脑神经系统的模拟而建立起来的一类模型,具有模拟人的部分智能的特性,主要是具有非
线性特性、学习能力和自适应性,使神经网络控制能对变化的环境(包括外加扰动、量测噪声、被控对象的时变特性三方面)具有自适
广义对象——包括通常意义下的控制对象和外部环境;
传感器——包括关节传感器、力传感器、视觉传感器、距离传感器、触觉传感器等;
感知信息处理——将传感器得到的原始信息加以处理;
认知——主要用来接收和储存信息、知识、经验和数据,并对它们进行分析、推理,作出行动的决策,送至规划和控制部分;
通信接口——除建立人机之间的联系外,还建立系统各模块之间的联系;