基于matlab的电力系统短路电流计算
《基于MATLAB的电力系统短路故障的仿真报告_论文手册》
中国石油大学胜利学院本科生毕业设计( 论文)手册题目电力系统短路故障分析及仿真研究学生姓名梅西学号 201107013120 专业班级自动化一班指导教师马拉多纳2015 年6月10日目录本科生毕业设计(论文)任务书........................ 错误!未定义书签。
本科生毕业设计(论文)开题报告...................... 错误!未定义书签。
本科生毕业设计(论文)指导记录...................... 错误!未定义书签。
本科生毕业设计(论文)中期检查表.................... 错误!未定义书签。
本科生毕业设计(论文)指导教师评语.................. 错误!未定义书签。
本科生毕业设计(论文)答辩记录表.................... 错误!未定义书签。
本科生毕业设计(论文)专业答辩小组评语.............. 错误!未定义书签。
本科生毕业设计(论文)成绩汇总表.................... 错误!未定义书签。
本科生毕业设计(论文)任务书论文题目电力系统短路故障分析与仿真研究一、研究的主要内容1.电力系统故障分析主要研究电力系统故障(包括短路,断线和非正常操作)时,故障电流,电压及其在电网中的分布。
短路电流计算失效分析的主要内容。
的短路电流计算的目的是确定短路故障的严重程度,选择电气设备的参数。
调谐保护,负序和零序电流分布的分析系统,以确定它的电气设备和系统。
2. 本课题研究的目的及意义随工厂供电系统要求正常地不间断地对用电负荷供电,以保证工厂生产和生活的正常进行。
系统中最常见的故障就是短路。
短路电流比正常电流要大得多,在大电力系统中,短路电流可达几万安甚至几十万安。
电力系统的短路故障是严重的,而又是发生几率最多的故障,一般来说,最严重的短路是三相短路。
当发生短路时,其短路电流可以达到数万安以至十几万安,它们所产生的热效应和电动力效应将使电气设备遭受严重破坏。
课程设计(论文)-基于MATLAB的电力系统单相短路故障分析与仿真.doc
课程设计 ( 论文 )- 基于 MATLAB的电力系统单相短路故障分析与仿真————————————————————————————————作者:————————————————————————————————日期:电力系统分析课程设计说明书题目:单相接地短路专业:电气工程及其自动化班级:电气 1307姓名:陈欢目录课程设计(论文)任务书 ----------------------- (1)引言 ------------------------------------------------------------------- ( 3)第一章.电力系统短路故障分析------------------------------- ( 4)第二章.电力系统单相短路计算-------------------- ( 5)2.1 简单不对称故障的分析计算---------------------- ( 5)2.1.1. 对称分量法 ------------------- (5)2.2 单相接地短路------------------------------ ( 6)2.2.1. 正序等效定则 ---------------------------- (6)2.2.2. 复合序网 --------------------------------- (6)2.2.3. 单相接地短路分析 --------------------------- (7)第三章.电力系统单相短路时域分析 ---------------- ( 10)3.1 仿真模型的设计与实现------------------------ (10)3.1.1. 实例分析 -------------------------------- (10)3.1.2. 仿真参数 ----------------------------- -- -- -- (11)3.2 仿真结果分析------------------------------- (13)结束语 ----------------------------------------- ( 18)参考文献 --------------------------------------- ( 18)课程设计任务书题目:单相接地短路要求:本课程设计主要是对单相接地短路进行分析计算,并利用Matlab/Simulink软件对其进行仿真,通过仿真结果与计算结果进行比较,进一步研究短路故障的特点。
matlab实验 电力系统短路分析
页脚内容- 9 -实验二 短路电流计算程序的实现一、三相短路电流计算程序计算短路电流周期分量,如I ''(I ')时,实际上就是求解交流电路的稳态电流,其数学模型也就是网络的线性代数方程,一般选用节点电压方程。
方程的系数矩阵是对称的。
在短路电流计算中变化的量往往是方程的常数项,需要多次求解线性方程组。
1.等值网络图2-1给出了不计负荷情况下计算短路电流I ''的等值网络。
在图2-1(a )中G 代表发电机端电压节点,发电机等值电势和电抗分别为E '' 和dx '',D 表示负荷节点,f 点为直接短路点。
应用叠加原理如图2-1所示。
正常运行方式为空载运行,网络中各点电压均为1;在故障分量网络中。
只需作故障分量的计算。
由图2-1的故障分量网络可见,这个网络与潮流计算的网络的差别在于发电机节点上多接了对地电抗dx ''。
当然如果短路计算中可以忽略线路电阻和电纳,而且不计变压器的实际变比,则短路计算网络较潮流计算网络简化,而且网络本身是纯感性的。
1E ''x1E '' x 1E '' x 1-=1=图2-1 在不计负荷情况下计算短路电流I ″的等值电路2. 用节电阻抗矩阵计算短路电流如果已经形成了故障分量网络的节点阻抗矩阵,则矩阵中的对角元素就是网络从f 点看进去的等值阻页脚内容- 10 -抗,又称为f 点的自阻抗。
fi Z 为f 点与i 点的互阻抗,均用大写Z 表示。
由节点方程中的第f 个方程:n fn f ff f f I Z I Z I Z U ++++=11。
ff Z 为其它节电电流为零时,节点f 的电压和电流之比,即网络对f 点的等值阻抗。
根据故障分量网络,直接应用戴维南定理可求得直接短路电流(由故障点流出)为fff ffz Z U I +=0(2-1)式中,f z 为接地阻抗;0f U 为f 点短路前的电压。
基于MATLAB短路电流的计算及仿真
基于MATLAB短路电流的计算及仿真短路电流是指在电力系统中,当发生短路时,电流可以达到的最大值。
短路电流的计算和仿真对于电力系统的设计和运行具有重要的意义。
本文将介绍基于MATLAB的短路电流计算和仿真方法。
短路电流的计算可以通过解析法和数值法两种方法进行。
解析法是通过解闭合方程组得到短路电流的解析解,而数值法则是通过迭代计算来逼近短路电流的数值解。
首先,我们将介绍基于解析法的短路电流计算方法。
在电力系统中,短路电流通常可以用下式表示:Isc = U / Z其中,Isc为短路电流,U为系统电压,Z为系统的等值阻抗。
为了计算短路电流,我们首先需要确定系统的等值阻抗。
等值阻抗通常可以通过系统的参数和网络拓扑来计算。
在MATLAB中,可以使用电力系统仿真工具箱(Power System Toolbox)来计算等值阻抗。
具体的步骤如下:1. 创建一个空的系统模型:使用“new_system”函数创建一个新的系统模型。
2. 导入系统参数:使用“psat”函数将系统参数导入系统模型中。
3. 创建系统配置:使用“psscfg”函数创建一个系统配置,并设置相关参数。
4. 计算等值阻抗:使用“psadeqz”函数计算等值阻抗,并保存结果。
5.计算短路电流:根据上述公式计算短路电流。
以上就是基于解析法的短路电流计算的主要步骤。
通过这种方法,我们可以快速准确地计算出系统的短路电流。
接下来,我们将介绍基于数值法的短路电流计算方法。
数值法通常采用迭代过程来逼近短路电流的数值解。
在MATLAB中,可以使用电力系统仿真工具箱(Power System Toolbox)中的短路计算功能来进行数值计算。
具体的步骤如下:1. 创建一个空的系统模型:使用“new_system”函数创建一个新的系统模型。
2. 导入系统参数:使用“psat”函数将系统参数导入系统模型中。
3. 创建系统配置:使用“psscfg”函数创建一个系统配置,并设置相关参数。
基于Matlab计算程序的电力系统运行分析课程设计
基于Matlab计算程序的电力系统运行分析课程设计课程设计课程名称:电力系统分析设计题目:基于Matlab计算程序地电力系统运行分析学院:电力工程学院专业:电气工程自动化年级:学生姓名:指导教师:日期:教务处制目录前言 (1)第一章参数计算 (2)一、目标电网接线图 (2)二、电网模型地建立 (3)第二章潮流计算 (6)一.系统参数地设置 (6)二.程序地调试 (7)三、对运行结果地分析 (13)第三章短路故障地分析计算 (15)一、三相短路 (15)二、不对称短路 (16)三、由上面表对运行结果地分析及在短路中地一些问题 (21)心得体会 (26)参考文献 (27)前言电力系统潮流计算是电力系统分析中地一种最基本地计算,是对复杂电力系统正常和故障条件下稳态运行状态地计算.潮流计算地目标是求取电力系统在给定运行状态地计算.即节点电压和功率分布,用以检查系统各元件是否过负荷.各点电压是否满足要求,功率地分布和分配是否合理以及功率损耗等.对现有电力系统地运行和扩建,对新地电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础.潮流计算结果可用如电力系统稳态研究,安全估计或最优潮流等对潮流计算地模型和方法有直接影响.在电力系统中可能发生地各种故障中,危害最大且发生概率较高地首推短路故障.产生短路故障地主要原因是电力设备绝缘损坏.短路故障分为三相短路、两相短路、单相接地短路及两相接地短路.其中三相短路时三相电流仍然对称,其余三类短路统成为不对称短路.短路故障大多数发生在架空输电线路.电力系统设计与运行时,要采取适当地措施降低短路故障地发生概率.短路计算可以为设备地选择提供原始数据.第一章参数计算一、目标电网接线图系统参数说明:变压器零序电抗与正序电抗相等,且均为Δ/Y0接法.表3. 发电机参数表1表4. 发电机参数表2二、电网模型地建立设计中,采用精确计算算法,选取BS=100MV A ,BU=220KV ,将所有支路地参数都折算到220KV 电压等级侧,计算过程及结果如下:1、系统参数地计算(1)线路参数计算公式如下:R rls U=2B BX xls U=22B BBbl U s = 各条线路参数地结果: 4-5: 011.0220100 047.01132=?=R 093.02201004.01132=??=X 097.01002201078.1113226==-B 4-6:018.0220100074.01202=?=R 099.02201004.01202=?=X085.01002201047.1120226==-B 5-7: 027.0220079.01652=?=R 136.02201004.01652=?=X 013.0100 2201060.1165226==-B 6-9: 032.0220 100092.01662=?=R 137.02201004.01662=?=X 145.0100 2201080.1166226==-B 7-8: 009.0220 100047.0922=?=R 076.02201004.0922=?=X 079.0100 2201078.192226==-B 8-9: 012.0220 100047.01222=?=R 101.02201004.01222=?=X 105.01002201078.1122226==-B(2)变压器参数地计算:0576.022010022024210043.10100%222214=??==B B N N S T U S S U U X 0586.022010022024210081.5100%222227=??==B B N N S T U S S U U X 0576.022010022024210042.11100%222239=??==B B N N S T U S S U U X(3)发电机参数地计算:(暂态分析时,只用到发电机地暂态电抗来代替其次暂态电抗,故只求出暂态电抗)0514.0220100)5.17242(13.02222'1'1=??==B B dG dG S S KX X 0787.0220100)20242(26.02222'2'2=??==B B dG dG S S KX X 1129.0220100)15242(21.02222'1'3=??==B B dG dG S S KX X(4)负荷节点地计算241.0-6514.0)50-135(50135100)-(2225j j jQ P S S Z B L =?+==2751.0-9174.0)30-100(30100100)-(2226j j jQ P S S Z B L =?+==459.0-049.1)35-80(3580100)-(2228j j jQ P S S Z B L =?+==2.系统等值电路图地绘制根据以上计算结果,得到系统等值电路图如下:第二章潮流计算一.系统参数地设置设计中要求所有结点电压不得低于1.0p.u.,也不得高于1.05p.u.,若电压不符合该条件,可采取下面地方法进行调压:(1)改变发电机地机端电压(2)改变变压器地变比(即改变分接头)(3)改变发电机地出力(4)在电压不符合要求地结点处增加无功补偿调压方式应属于逆调压.结点地分类:根据电力系统中各结点性质地不同,将结点分为三类:PQ结点、PV结点和平衡结点,在潮流计算中,大部分结点属于PQ结点,小部分结点属于PV结点,一般只设一个平衡结点.对于平衡结点,给定其电压地幅值和相位,整个系统地功率平衡由这一点承担.本设计中,选1号节点为平衡节点;2、3号节点为P、U节点;4、5、6、7、8、9号结点为P、Q节点.设计中,节点数:n=9,支路数:nl=9,平衡母线节点号:isb=1,误差精度:pr=0.00001.由支路参数形成地矩阵:B1=[1 4 0.0576i 0 1 0。
基于MATLAB的电力系统短路计算分析【开题报告】
开题报告电气工程及其自动化基于MATLAB的电力系统短路计算分析一、课题研究意义及现状本课题主要研究如何应用MATLAB实现电力系统中短路电路的计算分析。
简单故障时指电力系统的某处发生一种故障的情况,简单不对称故障包括单相接地短路、两项短路、两项短路接地、单相断开和两相断开等。
随着电力系统的不断发展,系统电压等级不断提高,规模也越来越大,对系统的安全稳定运行提出了更高的要求。
电力系统发生短路故障会引起系统的大电流和低电压,如果不及时切除会对人身和设备造成极大的危害,严重时甚至会导致整个系统崩溃,因此对电力系统进行暂态分析是十分必要的。
在分析电路过程中,如果电路比较复杂且方程数量多,依靠手工求解相对复杂,费时而且容易出错。
而MATLAB由于其明显的特点,有利于分析计算电路的各种问题,可以通过MATLAB的编程对电路支路上的电源、电流、频率等进行求解。
当电路规模比较大,微分方程阶数多,编程困难是,可以运用Simulink模块对电路进行仿真分析,快速简单而且容易理解。
MATLAB做为当代科学研究者和工程技术人员最为青睐的数值计算平台,能够对电力系统进行故障仿真,并进行分析,就可以从技术上保证电网的安全运行,具有巨大的社会和经济效益。
同时计算机语言技术也在不断发展和成熟,MATLAB作为一种新型的高性能语言,它和传统的程序设计语言相比具有强大的数学运算功能和绘图功能。
Matlab提供的电力系统工具箱可方便迅速地对所研究的电力系统对象进行各种暂态和稳态数字仿真,其方便的图形用户界面设计,模块化的仿真建模方法,避免了大量繁杂的编程,仿真分析结果逼近实际系统行为,是电力系统仿真分析的理想工具。
二、课题研究的主要内容和预期目标本课题主要研究如何应用MATLAB实现三相短路电流的暂态过程,主要内容:1.学习MATLAB语言中的仿真工具Simulink,以及其中的PowerSystem工具箱。
2.研究三相电路中短路电流的计算分析和原理。
基于matlab的电力系统短路电流计算
湖北民族学院信息工程学院题目: 基于matlab的电力系统短路电流计算专业:电气工程及其自动化班级: 0308407学号: *********学生姓名:指导教师:2011年6 月1 日信息工程学院课程设计任务书年月日信息工程学院课程设计成绩评定表摘要随着电力工业的发展,电力系统的规模越来越大,在这种情况下,许多大型的电力科研实验很难进行,尤其是电力系统中对设备和人员等危害最大的事故故障,尤其是短路故障,而在分析解决事故故障时要不断的实验,在现实设备中很难实现,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。
考虑这两种情况,寻求一种最接近于电力系统实际运行状况的数字仿真工具十分重要,而MATLAB软件中的SIMULINK是用来对动态系统进行建模、仿真和分析的集成开发环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具,为解决具体的工程问题提供了更为快速、准确和简洁的途径。
关键词:短路电流计算,MATLAB,仿真AbstractAlong with the development of the electric power industry, the scale of the power system is more and more big, in this case, many large power research is difficult to, especially in the power system, equipment and personnel to the harm such as the biggest accident, especially fault fault location, and on the analysis of the accident to solve the fault of the experiment, in the reality constantly in equipment, it is difficult to accomplish a is practical conditions to meet; The security of the system from the perspective is not allowed in the experiment. Consider the two kinds of circumstances, for one of the most close to power system actual the operation condition of digital simulation tool is very important, and MATLAB software SIMULINK is used for the dynamic system modeling, simulation and analysis of the integrated development environment, is combined with the block diagram interface and interactive simulation of nonlinear dynamic system ability of simulation tools, to solve the specific engineering problem, provides a more rapid, accurate and simple way.Keywords: short-circuit current calculation, MATLAB, the simulatio目录摘要 (4)1 概述 (6)1.1短路产生的原因 (6)1.2短路的危害 (6)1.3短路故障分析的内容和目的 (6)1.4防范短路电流的措施 (6)2短路计算 (8)2.1简单不对称故障的分析 (8)2.2短路电流的计算过程 (8)2.2.1选择基准值 (10)2.2.2计算系统各元件阻抗标幺值 (10)2.2.3求短路电流的周期分量及冲击电流 (10)3用MA TLAB计算短路电流 (12)3.1MA TLAB简介 (12)3.1.1MATLAB应用 (12)3.2Simulink简介 (12)3.2.1Simulink功能 (13)3.2.2Simulink特点 (13)3.3用MATLAB计算短路电流的实现 (14)3.3.1短路计算内容概述 (14)3.3.2电力系统短路电流计算仿真运行 (15)3.3.3仿真参数设置 (15)3.3.4仿真结果 (16)4 总结 (18)参考文献 (19)1 概述1.1短路产生的原因(1).元件损坏例如绝缘材料的自然老化,设计,安装维护不良所带来的设备缺陷发展成短路等,(2).气象条件恶化例如雷击造成的闪络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌(3).违规操作,例如运行人员带负荷拉刀闸,线路或设备检修后未拆除接地线就加上电压等;(4). 其他,例如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。
电力系统短路故障分析的MATLAB辅助程序设计短路计算程序
电力系统短路故障分析的MATLAB辅助程序设计短路计算程序电力系统短路故障分析是电力系统设计和运行过程中非常重要的一环。
短路故障会导致电力系统各个部分的电压、电流和功率的突然变化,对设备的保护和稳定运行产生不利影响甚至引起事故。
因此,进行短路计算和故障分析非常必要。
MATLAB是一种功能强大的数值计算和数据可视化工具,对于电力系统短路计算和故障分析也可以发挥重要的作用。
下面将介绍如何使用MATLAB设计一个简单的电力系统短路计算程序。
首先,我们需要建立一个电力系统的模型。
电力系统可以用图模型表示,其中节点表示发电机、变压器、负荷等设备,边表示导线、变压器等电力连接。
我们可以使用MATLAB中的图模型工具箱创建电力系统模型,并且设置各个节点和边的属性,例如电压、电流、阻抗等。
然后,我们需要编写短路计算程序。
短路计算可以分为对称故障和不对称故障两种情况。
对称故障是指短路故障发生在电力系统的正常运行条件下,例如三相短路。
不对称故障是指短路故障发生在电力系统的不正常运行条件下,例如单相接地短路。
对于对称故障,我们可以使用节点电流法进行计算。
首先,应用基尔霍夫电流定律,根据电压和阻抗计算电流。
然后,根据节点电流方程和电流方程计算电流分布。
最后,根据电流分布计算短路电流和故障点的电压。
对于不对称故障,我们可以使用仿真方法进行计算。
首先,需要设置故障位置和故障类型,例如A相到地短路。
然后,根据故障位置和类型修改节点和边的参数,例如将故障位置的阻抗设置为零。
最后,使用数值方法求解电力系统的动态响应,得到短路电流和故障点的电压。
在MATLAB中,可以使用矩阵运算和数值求解函数实现短路计算。
例如,可以使用矩阵乘法和矩阵求逆函数计算节点电流和电流分布。
可以使用ODE求解器求解动态响应方程。
可以使用MATLAB的绘图函数绘制电力系统的电流分布和故障点的电压。
总结起来,电力系统短路故障分析的MATLAB辅助程序设计涉及建立电力系统模型、编写短路计算程序并使用MATLAB的数值计算和数据可视化工具进行计算和分析。
基于matlab的短路电流计算
目录一、课程设计说明 (3)二、选择所用计算机语言的理由 (3)三、程序主框图、子框图及主要数据变量说明 (5)四、三道计算题及网络图 (9)五、设计体会 (21)六、参考文献 (22)七、附录(主程序及其注释) (23)电分课设报告一、课程设计说明根据所给的电力系统,编制短路电流计算程序,通过计算机进行调试,最后完成一个切实可行的电力系统计算应用程序。
通过自己设计电力系统短路计算的程序,加深对电力系统短路计算的理解,同时培养自己在计算机编程方面的能力,提示自我的综合素质。
短路电流(short-circuit current)电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接(即短路)时流过的电流。
其值可远远大于额定电流,并取决于短路点距电源的电气距离。
例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达额定电流的10~15倍。
大容量电力系统中,短路电流可达数万安。
这会对电力系统的正常运行造成严重影响和后果。
三相系统中发生的短路有 4 种基本类型:三相短路,两相短路,单相对地短路和两相对地短路。
其中三相短路虽然发生的机会较少,但情况严重,又是研究其它短路的基础。
所以我们先研究最简单的三相短路电流的暂态变化规律。
二、选择所用计算机语言的理由MATLAB是一套功能强大的工程计算软件,被广泛的应用于自动控制、机械设计、流体力学和数理统计等工程领域。
工程技术人员通过使用MATLAB提供的工具箱,可以高效的求解复杂的工程问题,并可以对系统进行动态的仿真,用强大的图形功能对数值计算结果进行显示。
MATLAB是必备的计算与分析软件之一,也是研究设计部门解决工程计算问题的重要工具。
我这次选用的是MATLAB R2009b计算软件。
MATLAB实现的优势:MATLAB语言有不同于其他高级语言的特点,被称为第四代计算机语言。
正如第三代计算机语言如FORTRAN与C等使人们摆脱了对计算机硬件的操作一样,MATLAB语言使人们从繁琐的程序代码中解放出来。
matlab实验 电力系统短路分析
实验二 短路电流计算程序的实现一、三相短路电流计算程序计算短路电流周期分量,如I ''(I ')时,实际上就是求解交流电路的稳态电流,其数学模型也就是网络的线性代数方程,一般选用节点电压方程。
方程的系数矩阵是对称的。
在短路电流计算中变化的量往往是方程的常数项,需要多次求解线性方程组。
1.等值网络图2-1给出了不计负荷情况下计算短路电流I ''的等值网络。
在图2-1(a )中G 代表发电机端电压节点,发电机等值电势和电抗分别为E '' 和dx '',D 表示负荷节点,f 点为直接短路点。
应用叠加原理如图2-1所示。
正常运行方式为空载运行,网络中各点电压均为1;在故障分量网络中。
只需作故障分量的计算。
由图2-1的故障分量网络可见,这个网络与潮流计算的网络的差别在于发电机节点上多接了对地电抗dx ''。
当然如果短路计算中可以忽略线路电阻和电纳,而且不计变压器的实际变比,则短路计算网络较潮流计算网络简化,而且网络本身是纯感性的。
1E ''x1E '' x 1E '' x 1-=1=图2-1 在不计负荷情况下计算短路电流I ″的等值电路2. 用节电阻抗矩阵计算短路电流如果已经形成了故障分量网络的节点阻抗矩阵,则矩阵中的对角元素就是网络从f 点看进去的等值阻抗,又称为f 点的自阻抗。
fi Z 为f 点与i 点的互阻抗,均用大写Z 表示。
由节点方程中的第f 个方程:n fn f ff f f I Z I Z I Z U ++++=11。
ff Z 为其它节电电流为零时,节点f 的电压和电流之比,即网络对f 点的等值阻抗。
根据故障分量网络,直接应用戴维南定理可求得直接短路电流(由故障点流出)为fff ffz Z U I +=0(2-1)式中,f z 为接地阻抗;0f U 为f 点短路前的电压。
基于Matlab的电力系统短路电流分析与仿真
s t ysem .
Ke r s M a l b S mu a i n; i p we S s e s S o tc r u tc r e t a c l to y wo d : ta ; i l to S m o r y t m : h r . ic i u r n l u a i n c
l 引言
值 或 百 分值 给 出 的 ,而 在 进 行 电力 系 统 计 算 时 ,必 须取 统 一 的 基 准 值 , 所 以要 将 原 来 的 以本 身 额 定 值 为基 准 值 的 阻抗 标 么 值 换 算 到 统 一 的基 准 值 。 一般 先选 定 基 准 容 量S和 基 准 电 上 u。 而在 工 程 设 计 中通 常 取 S IO V・ ,U= K。 O M A u,其 中 u为 : 短 路 点 的短 路 计 算 电压 。 冈此 :
十 分 严 重 的 , 有 必 要 进 行 短 路 计 算 。而 短 路 电 流计 算 是 一
项复杂而又责任重大 的工作 ,这些 工作历来 南技术人员手
工 计 算 完 成 ,误 差 比较 难 免 , 因 而一 个 完 整 的 工 作 必 需 要
基准电流为:
基准电抗为:
瓦d S : S d
S o tcr u tCu r nt ay i ndSi ulto s d o a lb Pr g a st h e eP we y tm fS o tcr u t h r ic i r e An lssa m a i nBa e n M ta o r m o Ac iv o rS se o h r —ic i Cu r n a y i nd S m u a i n re t n A l ss a i l to
matlab电力系统快速解耦法潮流计算及短路计算程序
电力系统快速解耦法潮流分析及短路计算一.程序设计的基本思想:(1)由于电力系统潮流分析中要利用到矩阵运算,复数运算,故采用matlab编程。
采用文件输入,将系统的各个参数以文件的形式输入,便于程序的通用化。
(2)本程序共有两个输入文件,分别为线路参数的文件,和已知的节点状态文件(PQ)(3)为了使程序不仅仅局限于计算9节点网络,在形成节点导纳的函数Yn()中,利用循环,找出线路首节点中的最大编号数,自动确定节点导纳矩阵的维数。
故对于任意n节点网络,均可以计算出节点导纳矩阵(4)在(3)的前提下,为了使程序支持系统增加节点,增加负荷等造成的PQ参数改变,或者PQ表的加长。
对程序做了如下优化。
首先,程序执行的基础是PQ表中平衡节点在第一行,接下来是PV节点,最后是PQ节点,如果系统添加节点,或者删除节点,均在PQ表的末端操作,会造成PQ表的顺序不是平衡节点、PV节点、PQ节点的顺序。
故引入了seqencing()函数,其作用就是不论输入的PQ表是什么顺序,在程序读入后均按平衡-PV-PQ的顺序排列。
其次,顺序打乱的PQ表必须与支路参数表对应,故在Yn()函数中加入了两段循环体,使之对应(见相应函数体注释)(5)在满足了上述4个条件后,程序便可以通用化了。
当然,由于水平有限,且程序未能由大量数据测试,故缺陷在所难免,这里仅是做了通用化的尝试。
在本文最末附加了该程序通用化的实例。
二、潮流计算框图三.定义相应的函数1.形成节点导纳矩阵的函数Yn()function Y=Yn(x,y)%定义一名为Yn的函数,其功能是自动识别输入表中节点的个数,形成相应的节点导纳矩阵[fid,message]=fopen(x,'r') ; %从x文件中读入支路参数if fid==-1; %判断文件是否正确打开error(message);end;[HeadPoint,HeadNumber, EndPoint,EndNumber,R,X,B,k]=textread(x,'%s %d %s %d %f %f %f %f'); %将读入的参数处理为以列为向量的数组fclose(fid);%关闭文件L=length(HeadNumber); %确定输入表的行数[Pointstyle,PointNumber,Ps,Qs,Uk,Ok]=seqencing(y);%调用seqencing函数,引入y文件中的PQ参数A=PointNumber;for i=1:L; %通过以下两循环体,实现PQ参数与支路参数的编号对应for j=1:L;if HeadNumber(i)==j;HeadNumber(i)=A(j);break;end;end;end;for i=1:L;for j=1:L;if EndNumber(i)==j;EndNumber(i)=A(j);break;end;end;end;Y=zeros(L,L); %根据txt文件中数据表的长度建立空的节点导纳矩阵for i=1:Lm=HeadNumber(i);n=EndNumber(i);if k(i)==0; %判断是否何种元件,为输电线元件if n~=0;Y(m,m)=Y(m,m)+1j*B(i)+1/(R(i)+1j*X(i));Y(n,n)=Y(n,n)+1j*B(i)+1/(R(i)+1j*X(i));Y(m,n)=Y(m,n)-1/(R(i)+1j*X(i));Y(n,m)=Y(n,m)-1/(R(i)+1j*X(i));elseY(m,m)=Y(m,m)+R(i)+1j*X(i);end;else %为变压器元件if n~=0;Y(m,m)=Y(m,m)+1/(R(i)+1j*X(i));Y(m,n)=Y(m,n)-1/(k(i)*(R(i)+1j*X(i)));Y(n,n)=Y(n,n)+1/(k(i)*k(i)*(R(i)+1j*X(i)));Y(n,m)=Y(n,m)-1/(k(i)*(R(i)+1j*X(i)));elseY(m,m)=Y(m,m)+R(i)+1j*X(i);end;end;end;maxm=HeadNumber(1);%通过下面两个循环体,确定输入表中节点编号的最大值,及为节点导纳矩阵的维数for i=1:L;if maxm<=HeadNumber(i);maxm=HeadNumber(i);end;end;maxn=EndNumber(1);for i=1:L;if maxn<=EndNumber(i);maxn=EndNumber(i);end;end;Y=Y(1:max(maxm,maxn),1:max(maxm,maxn));%形成导纳矩阵2.对不满足要求的PQ参数表进行排序的函数seqencing()function [Pointstyle,PointNumber,Ps,Qs,Uk,Ok]=seqencing(y)%定义名为seqencing的函数,其功能是在系统添加节点,或输入的PQ参数的顺序不满足要求时,对PQ参数表进行重新排序,保证平衡节点放在第一行,接下来是PV节点,最后是PQ节点[fid,message]=fopen(y,'r'); %从y文件中读入PQ参数if fid==-1; %判断文件是否正确打开error(message);end;[Pointstyle,PointNumber,Ps,Qs,Uk,Ok]=textread(y,'%f %f %f %f %f %f');fclose(fid);L=length(PointNumber);%通过以下两个循环体,完成对PQ输入表的重新排序,其思想是,在PQ参数之前加入一列Pointstyle用于标识节点类型,平衡节点为0,PV节点为1,PQ节点为2,以Pointstyle列为基准进行排序for i=1:L;for j=1:L-i;if Pointstyle(j)>Pointstyle(j+1);t=Pointstyle(j+1);Pointstyle(j+1)=Pointstyle(j);Pointstyle(j)=t;t=PointNumber(j+1);PointNumber(j+1)=PointNumber(j);PointNumber(j)=t;t=Ps(j+1);Ps(j+1)=Ps(j);Ps(j)=t;t=Qs(j+1);Qs(j+1)=Qs(j);Qs(j)=t;t=Uk(j+1);Uk(j+1)=Uk(j);Uk(j)=t;end;end;end;3、形成解耦算法B’矩阵的函数 formB1()function B1=formB1(x,y)%定义名为B1的函数形成解耦算法中的B’矩阵,得到的B’矩阵用B1表示[fid,message]=fopen(x,'r') ; %从x文件中读入支路参数if fid==-1; %判断文件是否正确打开error(message);end;[HeadPoint,HeadNumber,EndPoint,EndNumber,R,X,B,k]=textread(x,'%s %d %s %d %f %f %f %f'); %将读入的参数处理为以列为向量的数组fclose(fid);L=length(HeadNumber);[Pointstyle,PointNumber,Ps,Qs,Uk,Ok]=seqencing(y);%调用seqencing函数,引入y文件中的PQ参数A=PointNumber;%通过以下两循环体,实现PQ参数与支路参数的编号对应for i=1:L;for j=1:L;if HeadNumber(i)==j;HeadNumber(i)=A(j);break;end;end;end;for i=1:L;for j=1:L;if EndNumber(i)==j;EndNumber(i)=A(j);break;end;end;end;B1=zeros(L,L);for i=1:L %以行为单位,通过循环,用支路参数对B1进行修改,形成B’矩阵 m=HeadNumber(i);n=EndNumber(i);B1(m,m)=B1(m,m)-1/X(i);B1(n,n)=B1(n,n)-1/X(i);B1(m,n)=B1(m,n)+1/X(i);B1(n,m)=B1(n,m)+1/X(i);endmaxm=HeadNumber(1);for i=1:L;if maxm<=HeadNumber(i);maxm=HeadNumber(i);end;end;maxn=EndNumber(1);for i=1:L;if maxn<=EndNumber(i);maxn=EndNumber(i);end;end;B1=B1(2:max(maxm,maxn),2:max(maxm,maxn)); %形成B’矩阵4、形成解耦算法B’’矩阵的函数 formB11()function B11=formB11(x,y)%定义名为B11的函数形成解耦算法中B’'矩阵,用B11表示从x文件中读入支路参数确定Y,从y文件中读入PQ参数确定B11的维数,即除去平衡节点和pv节点,此处要求PQ参数录入时,将平衡节点和PQ节点放在前排,这一要求在Yn函数中通过seqencing函数已经满足Y=Yn(x,y);B=imag(Y);[Pointstyle,PointNumber,Ps,Qs,Uk,Ok]=seqencing(y);i=1;j=1;while Pointstyle(i)<=1;i=i+1;j=j+1;end;B11=B(j:end,j:end); %形成B’’矩阵5、计算正常情况下系统节点电压的函数 powerflow()function [U0,O0]=powerflow(x,y)%定义名为powerflow的函数,利用快速解耦算法来计算正常情况下系统内各个节点的电压和相角[Pointstyle,PointNumber,Ps,Qs,Uk,Ok]=seqencing(y);% 调用seqencing函数对PQ参数表进行排序Y=Yn(x,y); %形成节点导纳矩阵,Yn为n维B1=formB1(x,y); %形成解耦算法中的B矩阵,B1为n-1维B11=formB11(x,y); %形成解耦算法中的B'矩阵,B'为m维G=real(Y); %取Y的实部B=imag(Y); %取Y的虚部U0=Uk;O0=Ok;L=length(PointNumber);P=zeros(L,1);Q=zeros(L,1);dP=zeros(L,1);dQ=zeros(L,1);number=1;i=1;k=1;while Pointstyle(i)<=1; %通过k值确定系统中PQ节点的个数i=i+1;k=k+1;end;while number<100 %定义迭代次数上限为100次for i=2:L;sum1=0;for j=1:L;sum1=sum1+U0(j)*(G(i,j)*cos(O0(i)-O0(j))+B(i,j)*sin(O0(i)-O0(j))); %潮流方程,n-1维end;dP(i)=Ps(i)-U0(i)*sum1;endfor i=k:L;sum2=0;for j=1:L;sum2=sum2+U0(j)*(G(i,j)*sin(O0(i)-O0(j))-B(i,j)*cos(O0(i)-O0(j))); %潮流方程,m 维end;dQ(i)=Qs(i)-U0(i)*sum2;enddP1=dP(2:L)./U0(2:L);dQ1=dQ(k:L)./U0(k:L);a=max(norm(dP1,inf));b=max(norm(dQ1,inf));if max(a,b)<0.00001 %判断是否收敛break;disp(‘迭代’)disp(k);disp(‘次后收敛’);else %如不收敛,dO=-inv(B1)*dP1; %dO为n-1维dU=-inv(B11)*dQ1; %dU为m维zero1=zeros(k-1,1);zero2=[0];DU=[zero1;dU];DO=[zero2;dO];U0=U0+DU;O0=O0+DO;number=number+1;end;if number==100;disp('迭代100次后不收敛,迭代结束');end;end;四.对相应的系统进行潮流分析和短路计算定义完上述函数之后,可直接调用函数形成导纳矩阵,计算正常情况下的节点电压,进行短路计算计算短路电流,短路后各个节点电压以及支路潮流分布。
电力系统短路故障分析的MATLAB辅助程序设计短路计算程序
电力系统短路故障分析的MATLAB辅助程序设计电力系统短路故障可分为三相对称短路故障(three-phase balanced faults)和不对称短路故障(unbalanced faults )。
不对称短路故障又分为单相接地短路故障(single line-to-ground fault)、两相短路故障 (line-to-line fault)以及两相接地短路故障(double line-to-ground fault)。
根据故障分析结果可以对继电保护装置、自动装置进行整定计算,我们可以建立算法来形成节点阻抗矩阵,利用节点阻抗矩阵来计算短路故障情况下的节点电压和线路电流。
一、三相对称短路故障进行三相短路计算需要两个程序:zbuild /zbuildpi和symfault程序,zbuild、zbuildpi用来在MATLAB中形成节点阻抗矩阵,symfault用来计算三相对称故障。
Zbus=zbuild(zdata)这里的参数zdata是一个(e×4)阶矩阵,e是拓扑图的总支路数目。
第一列和第二列为元素两端的节点编号,第三列和第四列分别是线路的电阻、电抗的标幺值。
连接在0节点和发电机节点之间的发电机阻抗可能是次暂态电抗、暂态电抗或同步电抗,而且这个矩阵中还包含并联电抗器和负荷阻抗。
Zbus=zbuildpi(linedata,gendata,yload)这个函数与潮流计算程序是相容的,第一个参数linedat a与潮流计算程序中的文件是一致的。
第一列和第二列为节点编号;第三列到第五列分别是线路的电阻、电抗以及1/2线路电纳值,这三项都为在统一基准容量下的标幺值;最后一列是变压器分接头位置,对线路来说,必须输入1;线路无输入顺序。
发电机参数不包含在Linedata参数中,而是包含在第二个参数gendata中,gendata是一个g×4阶矩阵,g是发电机总数。
第一列和第二列为0节点、发电机节点编号,第三列和第四列为发电机的暂态电阻和暂态电抗。
基于MATLAB的短路电流计算程序编制
言, 而且 几乎 与数学 表达式 相 同 , 言 中基 本 元素是 语
节 点 电压 的故 障分 量 。两者 的叠 加就 等于发 生短 路 后 节点 i 的实 际 电压 , : 即 V =V ’ If i i 一Zf I () 2
序编制 。
关 键 词 短路 电流计算
MA L B 短路故 障 TA
在 电力 系统 的设计 、 行 的各个 部 门 , 运 无论 是在 设 计时 需要选 择 断 路器 等 电气设 备 , 还是 在 电 力 系 统 运行 时要 进行 继 电保 护 整 定 值计 算 , 要 事先 进 都
以直接 调用 。 同时通 过建 立 Me调 文件 的形式 可 以 方便地 调 用有 关用 F ra 、 言的子程 序 。另 外 , o rn C语 t 它不 需定 义数 组 的维数 , 给 出矩阵 函数 、 殊矩 阵 并 特
统分 析 、 仿真发 展 的必然 趋势 。 同时 , 随着数 据库 技
术 的发展 , 数据 的管理更 加有 序 、 便 。这 为 电力应 方
保持 故障处 的边界条件不 变 , 网络 的原有部 分 同故 把 障支 路分开 。容得 得 出, 于正 常状 态 的网 络而 言 , 对 发生 短路相 当 于在 故 障节 点 f 加 了一 个 注入 电流 增
() 2 式也 适用 于故 障节 点 f于是 有 ,
V =V 一z I f f’ f () 3
矩阵, 可提供各种矩阵的运算和操作 , 且具有符号计 算 、 学 和文字 统一 处理 , 数 离线 和在 线计算 等 功能 。 与传 统 的 B s 、 ai C语 言 及 F ra c ot n语 言 相 比 , r M TA A T AB简 介
基于 MATLAB 的电力系统短路故障分析
基于 MATLAB 的电力系统短路故障分析电力系统是现代社会不可或缺的基础设施,其重要性不言而喻。
因为电力系统中涉及到高压、大电流的电力传输,因此电力系统故障问题一直是一个备受关注的话题。
电力系统中最常见的故障就是电路短路,而由于电力系统的复杂性,短路故障对电力系统的影响也是非常大的。
因此,电力系统短路故障的分析和解决是电力工程领域中的一个重要课题。
近年来,随着计算机软件的发展,电力系统的短路故障分析也得到了很大的改善。
其中,MATLAB 是一款功能强大的科学计算软件,非常适合用于电力系统短路故障的分析。
下面将简要地介绍基于 MATLAB 的电力系统短路故障分析的相关内容。
1. 电力系统短路故障的原理电力系统是由发电机、变电站、输电线路和配电系统等构成的。
在电力系统运行中,如果电力系统中的设备、绝缘体或接触件出现损坏,会导致电路的短路。
短路的本质是电路中存在低阻值路径,通常都伴随着大电流流动,这些特点使得短路故障非常危险。
短路故障一般分为单相短路和三相短路两种类型,其中三相短路是最为常见和严重的,因此本文主要讨论三相短路的分析方法。
2. MATLAB 程序设计介绍MATLAB 是一种基于矩阵运算和数值计算的高级工具,是进行科学计算和工程仿真的重要环境。
该软件具有强大的计算功能和友好的交互式界面,可以帮助电力工程师进行复杂的计算和仿真,从而更好地分析电力系统的短路故障。
下面将介绍 MATLAB 中电力系统短路故障分析的实现方式。
3. 电路模型及参数定义在 MATLAB 中进行电力系统短路故障分析前,需要先定义电路模型,即将电力系统抽象为一个电路图。
在电路图中,每个设备用阻抗、电抗和电感等元器件来表示,这些元器件的参数需要根据实际电路的物理特性来确定。
例如,发电机可以表示为电压源模型,输电线路可以表示为电阻、电感和电容模型,而负荷则可以表示为电阻模型等。
将这些元器件通过连线连接起来,就可以得到电力系统的电路模型,从而进行短路故障分析。
基于MATLAB的电力系统短路计算技术研究
基于MATLAB的电力系统短路计算技术研究第一章研究背景在电力系统运行中,电力系统短路是指电力系统中导线或者设备的两个或多个点之间出现短接,从而让大量电流在短路处通过,从而导致电力系统的稳定性受到严重威胁,并对电力设备产生极大的损害。
因此,准确的电力系统短路计算技术是电力系统保护的重要组成部分。
传统的电力系统短路计算技术主要是基于手工计算,并且很难进行针对性的分析和优化,且存在计算速度较慢和易受到人为因素影响等缺陷。
随着计算机及其应用软件的快速发展,利用计算机进行电力系统短路计算成为实现高效优化电力系统短路计算的重要手段。
MATLAB是一种功能强大、功能丰富的数学软件,具有优秀的计算图形化能力和强大的编程语言,可以满足电力系统短路计算的需求。
因此,本文考虑基于MATLAB的电力系统短路计算技术的研究。
第二章研究现状当前,电力系统短路计算技术的研究主要关注于以下方面:电力系统短路计算方法的研究、电力系统短路计算模型的研究、电力系统短路计算软件的研究等。
2.1 电力系统短路计算方法的研究电力系统短路计算方法主要是基于AC传输线模型、电源模型或者复合模型进行计算。
AC传输线模型能够较好的描述绕组线性特性,但在电压谐波或者非绕组输电系统的计算中该模型存在明显局限性。
电源模型由于可以忽略绕组电感成分的贡献,因此在分别明确电源和参考电源之后,适用于各种情况下电力系统的短路计算。
复合模型是将AC传输线模型和电源模型相结合进行的电力系统短路计算方法,可以综合考虑电源和传输线的特性,适用范围广,但计算复杂度较高。
2.2 电力系统短路模型的研究电力系统短路模型是指在进行电力系统短路计算时所使用的电路模型,主要包括以下模型:节点电位模型、分支电流模型、传输线模型、电源模型等。
2.3 电力系统短路计算软件的研究电力系统短路计算软件是指实现电力系统短路计算的计算机程序或工具,如PSCAD、MATLAB等。
这些软件提供了一种更为实用的电力系统短路计算手段,并且计算效率高,计算精度高,数据处理方便,计算过程可视化。
基于MATLAB的短路电流计算程序开发
基于MATLAB的短路电流计算程序开发唐昊;张一山;郭力峰【期刊名称】《软件》【年(卷),期】2014(000)011【摘要】Short circuit current calculation plays an important role in the power system design, in order to improve the designer’s working efficiency, the short circuit current calculation program of ship power system based on MTLAB is de-signed. First the principle of GJB and IEC are studied then a friendly man-machine interface is designed based on GUI technology of MATLAB, and by calling the ActiveX control of Word to realize the output of the so ftware. Finally, it’s proved that the interface of the software is easy operation and can provide the process of the short circuit current calcula-tion.%短路电流计算在电力系统设计中起着重要作用,为提高设计人员的工作效率,对基于MATLAB软件的船舶电力系统短路电流计算程序进行了开发。
首先分析了国军标和国标的短路电流计算步骤,通过 MATLAB 软件的 GUI 技术设计了船舶电力系统短路电流计算软件的人机界面,且通过调用Word软件的ActiveX控件实现了其结果的Word文档格式输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北民族学院信息工程学院题目: 基于matlab的电力系统短路电流计算专业:电气工程及其自动化班级: 0308407学号: 030840705学生姓名:指导教师:2011年6 月1 日信息工程学院课程设计任务书年月日信息工程学院课程设计成绩评定表摘要随着电力工业的发展,电力系统的规模越来越大,在这种情况下,许多大型的电力科研实验很难进行,尤其是电力系统中对设备和人员等危害最大的事故故障,尤其是短路故障,而在分析解决事故故障时要不断的实验,在现实设备中很难实现,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。
考虑这两种情况,寻求一种最接近于电力系统实际运行状况的数字仿真工具十分重要,而MATLAB软件中的SIMULINK是用来对动态系统进行建模、仿真和分析的集成开发环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具,为解决具体的工程问题提供了更为快速、准确和简洁的途径。
关键词:短路电流计算,MATLAB,仿真AbstractAlong with the development of the electric power industry, the scale of the power system is more and more big, in this case, many large power research is difficult to, especially in the power system, equipment and personnel to the harm such as the biggest accident, especially fault fault location, and on the analysis of the accident to solve the fault of the experiment, in the reality constantly in equipment, it is difficult to accomplish a is practical conditions to meet; The security of the system from the perspective is not allowed in the experiment. Consider the two kinds of circumstances, for one of the most close to power system actual the operation condition of digital simulation tool is very important, and MATLAB software SIMULINK is used for the dynamic system modeling, simulation and analysis of the integrated development environment, is combined with the block diagram interface and interactive simulation of nonlinear dynamic system ability of simulation tools, to solve the specific engineering problem, provides a more rapid, accurate and simple way.Keywords: short-circuit current calculation, MATLAB, the simulatio目录摘要 (4)1 概述 (6)1.1短路产生的原因 (6)1.2短路的危害 (6)1.3短路故障分析的内容和目的 (6)1.4防范短路电流的措施 (6)2短路计算 (8)2.1简单不对称故障的分析 (8)2.2短路电流的计算过程 (8)2.2.1选择基准值 (10)2.2.2计算系统各元件阻抗标幺值 (10)2.2.3求短路电流的周期分量及冲击电流 (10)3用MA TLAB计算短路电流 (12)3.1MA TLAB简介 (12)3.1.1MATLAB应用 (12)3.2Simulink简介 (12)3.2.1Simulink功能 (13)3.2.2Simulink特点 (13)3.3用MATLAB计算短路电流的实现 (14)3.3.1短路计算内容概述 (14)3.3.2电力系统短路电流计算仿真运行 (15)3.3.3仿真参数设置 (15)3.3.4仿真结果 (16)4 总结 (18)参考文献 (19)1 概述1.1短路产生的原因(1).元件损坏例如绝缘材料的自然老化,设计,安装维护不良所带来的设备缺陷发展成短路等,(2).气象条件恶化例如雷击造成的闪络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌(3).违规操作,例如运行人员带负荷拉刀闸,线路或设备检修后未拆除接地线就加上电压等;(4). 其他,例如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。
1.2短路的危害(1)由于短路时产生的很大的点动力和很高的温度,而使故障元件和短路电路中的其他元件破坏;(2)短路时电路中电压要骤降,严重影响其中电气设备的正常运行;(3)短路时保护装置动作,要造成停电,而且越靠近电源,停电范围越大,造成的损失也越大;(4)严重的短路要影响电力系统的运行稳定性,可使并列运行的发电机组失去同步,造成系统解列;(5)不对称短路包括单相短路的两相短路,其短路电流将产生较强的不平衡交变磁场,对附近的通信线路,电子设备等产生干扰,影响其正常运行,甚至使之发生误动作。
1.3短路故障分析的内容和目的短路故障分析的主要内容包括故障后电流的计算、短路容量的计算、故障后系统中各点电压的计算以及其他的一些分析和计算,如故障时线路电流与电压之间的相位关系等。
短路电流计算与分析的主要目的在于应用这些计算结果进行继电保护设计和整定值计算,开关电器、串联电抗器、母线、绝缘子等电气设备的设计,制定限制短路电流的措施和稳定性分析等。
1.4防范短路电流的措施1.做好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。
2.正确选择继电保护的整定值和熔体的额定电流,采用速断保护装置,以便发生短路时,能快速切断短路电流,减少短路电流持续时间,减少短路所造成的损失。
3.在变电站安装避雷针,在变压器四周和线路上安装避雷器,减少雷击损害。
4.保证架空线路施工质量,加强线路维护,始终保持线路弧垂一致并符合规定。
5.带电安装和检修电气设备,注重力要集中,防止误接线,误操作,在带电部位距离较近的部位工作,要采取防止短路的措施。
6.加强治理,防止小动物进入配电室,爬上电气设备。
7.及时清除导电粉尘,防止导电粉尘进入电气设备。
8.在电缆埋设处设置标记,有人在四周挖掘施工,要派专人看护,并向施工人员说明电缆敷设位置,以防电缆被破坏引发短路。
9电力系统的运行、维护人员应认真学习规程,严格遵守规章制度,正确操作电气设备,禁止带负荷拉刀闸、带电合接地刀闸。
线路施工,维护人员工作完毕,应立即拆除接地线。
要经常对线路、设备进行巡视检查,及时发现缺陷,迅速进行检修。
2短路计算2.1简单不对称故障的分析在电力系统的故障中,仅在一处发生不对称短路或断线的故障称为简单不对称故障。
它通常分为两类,一类叫横向不对称故障,包括两相短路,单相接地短路以及两相接地短路三种类型。
这种故障发生在系统中某一点的一些相之间或相与地之间,是处于网络三相支路的横向,故称为横向不对称故障,其特点是由电力系统网络中的某一点(节点)和公共参考点(地接点)之间构成故障端口。
该端口一个是高电位点,另一个是零电位点。
另一类故障时发生在网络沿三相支路的纵向,叫纵向不对称故障,它包括一相断相和两相断相两种基本类型,其特点是由电力系统网络中的两个高电位之间构成故障端口。
分量法以及在abc 分析计算不对称故障的方法很多,如对称分量法、0坐标系统中直接进行计算等。
目前实际中用的最多的和最基本的方法仍是对称分量法,现在就重点介绍这种方法,其他方法只做简略的介绍。
应用对称分量法分析计算简单不对称故障时,对于各序分量的求解一般有两种方法:一种是直接联立求解三序的电动势方程和三个边界条件方程;另一种是借助于复合序网进行求解,即根据不同故障类型所确定的边界条件,将三个序网络进行适当的链接,组成一个复合序网,通过对复合序网的计算,求出电流、电压的各序对称分量。
由于这种方法比较简单,又容易记忆,因此应用较广。
在所讨论的各种不对称故障的分析计算中,求出的各序电流、电压对称分量及各相电流、电压值,一般都是指起始时或稳态时的基频分量。
在工程计算中都假定发电机转子是对称的,也就是忽略了不对称短路时的高次谐波分量。
这种假定对稳极发电机和d轴及q轴都装有阻尼绕组的凸极发电机是比较切合实际的。
2.2短路电流的计算过程用标么值进行计算。
标么值是建立在不同电压等级的基础上各元件参数直接进行运算的,此法不仅方便简洁,而且计算结果可以直接进行分析。
电力系统中各种电气设备如发电机、变压器的阻抗参数均是以本身额定值为基准值的标么值或百分值给出的,而在进行电力系统计算时,必须取统一的基准值,所以要将原来的以本身额定值为基准值的阻抗标么值换算到统一的基准值。
一般先选定基准容量Sd 和基准电压Ud 。
而在工程设计中通常取Sd=100MV ·A ,d U =c U ,其中Uc 为短路点的短路计算电压。
因此,基准电流为:UcSd UdSd Id 33==基准电抗为: Sd Uc IdUdXd 23== (1)电力系统的电抗标幺值: *S X =s d X X =2C oc U S /2C d U S =doc S S 2)电力变压器的电抗标幺值: *T X =T d X X =200100k c N U U S /2C d U S =00100k d N U S S 3)电力线路的电抗标幺值: *WL X =WL d X X =o X l /2C d U S =2do C S X l U三相短路电流周期分量有效值的标幺值:(3)*k I =(3)k d I Icd =2C d U S X ∑*1X ∑ 由此可得三相短路电流周期分量的有效值为:(3)k I =(3)*k I d I =*dI X ∑求得(3)k I 后,可求①(3)''I=(3)I ∞=(3)k I (其中(3)k I 为短路点短路电流的周期分量有效值)。