(完整版)七年级数学下册第五章同步练习及答案

合集下载

2020—2021年浙教版七年级数学下册《分式的基本性质》同步练习题及答案解析精品试卷.docx

2020—2021年浙教版七年级数学下册《分式的基本性质》同步练习题及答案解析精品试卷.docx

浙教版七年级下册第5章5.2分式的基本性质同步练习一、单选题(共11题;共22分)1、下列各式中,正确的是()A、=B、=C、=D、=-2、若2x+y=0,则的值为()A、-B、-C、1D、无法确定3、若=,则a的取值范围是()A、a>0且a≠1B、a≤0C、a≠0且a≠1D、a<04、a,b,c均不为0,若,则P(ab,bc)不可能在()A、第一象限B、第二象限C、第三象限D、第四象限5、下列各式变形正确的是()A、=B、=C、=D、6、如果把分式中的x和y都扩大5倍,那么分式的值()A、扩大5倍B、扩大10倍C、不变D、缩小7、如果分式中的x、y都缩小到原来的倍,那么分式的值()A、扩大到原来的3倍B、扩大到原来的6倍C、不变D、缩小到原来的倍8、下列计算错误的是()A、=B、=a-bC、=D、9、如果把分式中的x、y的值都扩大5倍,那么分式的值()A、扩大5倍B、缩小5倍C、不变D、扩大25倍10、下列等式成立的是()A、(﹣)﹣2=B、=﹣C、0.00061=6.1×10﹣5D、=11、下列分式变形中,正确的是()A、=a+bB、=﹣1C、=n﹣mD、=二、填空题(共7题;共8分)12、已知,则=________13、已知a,b,c是不为0的实数,且,那么的值是________ .14、不改变分式的值,把分子分母的系数化为整数:=________ .15、不改变分式的值,把分子、分母中各项系数化为整数,结果是________ .16、若,则的值是________17、若分式的值为0,则x=________ ;分式=成立的条件是________ .18、分式的值是m,如果分式中x,y用它们的相反数代入,那么所得的值为n,则m,n的关系是________三、解答题(共6题;共30分)19、在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会如何变化.20、已知x>0,y>0,如果x、y都扩大原来的三倍,那么分式的值如何变化?21、问题探索:(1)已知一个正分数(m>n>0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数(m>n>0)中分子和分母同时增加2,3…k(整数k>0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.22、已知a,b,c,d都不等于0,并且,根据分式的基本性质、等式的基本性质及运算法则,探究下面各组中的两个分式之间有什么关系?然后选择其中一组进行具体说明.(1)和;(2)和;(3)和(a≠b,c≠d).23、附加题:若a=,b=,试不用将分数化小数的方法比较a、b的大小.观察a、b的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.24、在学完分式的基本性质后,小刚和小明两人对下面两个式子产生了激烈的争论:①=,②=.小刚说:“①②两式都对.”小明说:“①②两式都错.”你认为他们两人到底谁对谁错,为什么?答案解析部分一、单选题1、【答案】C【考点】分式的基本性质【解析】【解答】解;A、分式的分子分母都乘或除以同一个不为零的整式,故A错误;B、分子除以(a﹣2),分母除以(a+2),故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C正确;D、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D错误;故选;C.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.2、【答案】B【考点】分式的基本性质【解析】【解答】解:∵2x+y=0,∴y=﹣2x,∴===﹣,故选B.【分析】由2x+y=0,得y=﹣2x,将其代入分式中求解.3、【答案】D【考点】分式的基本性质【解析】【解答】解:∵=,∴==,∴a<0,故选:D.【分析】直接利用分式与绝对值的基本性质,结合化简后结果得出a的取值范围4、【答案】A【考点】分式的基本性质【解析】【解答】解:∵abc<0.∴a,b,c中至少有一个是负数,另两个同号,可知三个都是负数或两正数,一个是负数,当三个都是负数时:若=abc,则x﹣y=a2bc>0,即x>y,同理可得:y>z,z>x这三个式子不能同时成立,即a,b,c不能同时是负数.则P(ab,bc)不可能在第一象限.故选A.【分析】应根据abc<0,得到这三个字母可能的符号,推出不存在的结论,进而得到不可能在的象限.5、【答案】D【考点】分式的基本性质【解析】【解答】解:A、原式=,所以A选项错误;B、原式=,所以B选项错误;C、原式=,所以C选项错误;D、,所以D选项正确.故选D.【分析】根据分式的基本性质把分子分母都乘以﹣1可对A、D进行判断;根据分子与分母同乘(或除以)一个不等于0的整式,分式的值不变对B、C进行判断.6、【答案】C【考点】分式的基本性质【解析】【解答】解:依题意得:===原式,故选C.【分析】解此题时,可将分式中的x,y用5x,5y代替,用此方法即可解出此题.7、【答案】C【考点】分式的基本性质【解析】【解答】解:分式中的x、y都缩小到原来的倍,那么分式的值不变,故C符合题意;故选:C.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数或者整式,分式的值不变,可得答案.8、【答案】B【考点】分式的基本性质【解析】【解答】解:A、分子分母都除以a2b2,故A正确;B、分子除以(a﹣b),分母除以(b﹣a),故B错误;C、分子分母都乘以10,故C正确;D、同分母分式相加减,分母不变,分子相加减,故D正确;故选:B.【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.9、【答案】A【考点】分式的基本性质【解析】【解答】解:如果把分式中的x、y的值都扩大5倍,那么分式的值扩大5倍,故选;A.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.10、【答案】D【考点】分式的基本性质【解析】【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A错误;B、=﹣,故B错误;C、0.00061=6.1×10﹣4,故C错误;D、分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,故D正确;故选:D.【分析】根据负整数指数幂与正整数指数幂互为倒数,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变;科学记数法表示小数,可得答案.11、【答案】C【考点】分式的基本性质【解析】【解答】就饿:A、分子分母除以不同的整式,故A错误;B、分子分母除以不同的整式,故B错误;C、分子分母都除以(n﹣m)2,故C正确;D、m=0时无意义,故D错误.故选:C.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,可得答案.二、填空题12、【答案】【考点】分式的基本性质【解析】【解答】解:设=k,则x=2k,y=3k,z=4k,则===.故答案为.【分析】首先设恒等式等于某一常数,然后得到x、y、z与这一常数的关系式,将各关系式代入求值.13、【答案】【考点】分式的基本性质【解析】【解答】解:∵=,∴=3,即+=3①;同理可得+=4②,+=5③;∴①+②+③得:2(++)=3+4+5;++=6;又∵的倒数为,即为++=6,则原数为.故答案为.14、【答案】【考点】分式的基本性质【解析】【解答】解:不改变分式的值,把分子分母的系数化为整数:=,故答案为:.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.15、【答案】【考点】分式的基本性质【解析】【解答】解:分子分母都乘以6,得.故答案为:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,可得答案.16、【答案】6【考点】分式的基本性质【解析】【解答】解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.【分析】若,可以得到:a﹣b=﹣4ab.代入所求的式子化简就得到所求式子的值.17、【答案】﹣2 ;x≠﹣2【考点】分式的基本性质【解析】解:∵分式的值为0,∴x2﹣4=0且x﹣2≠0,解得:x=﹣2,分式=成立的条件是x+2≠0,即x≠﹣2,故答案为:﹣2,x≠﹣2.【分析】根据分式值为0得出x2﹣4=0且x﹣2≠0,求出即可;分式有意义的条件得出x+2≠0,求出即可.18、【答案】m+n=0【考点】分式的基本性质【解析】【解答】解:∴m+n=0.【分析】把分式中的分子,分母中的x,y都同时变成﹣x,﹣y看得到的式子与原式子的关系.三、解答题19、【答案】解:中,字母m,n,p的值分别扩大为原来的2倍,得=×,在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会缩小为原来的.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.20、【答案】解:x>0,y>0,如果x、y都扩大原来的三倍,那么分式的值扩大为原来的3倍,答:式的值扩大为原来的3倍.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.21、【答案】解:(1)<(m>n>0)证明:∵﹣=,又∵m>n>0,∴<0,∴<.(2)根据(1)的方法,将1换为k,有<(m>n>0,k>0).(3)设原来的地板面积和窗户面积分别为x、y,增加面积为a,由(2)的结论,可得一个真分数,分子分母增大相同的数,则这个分数整体增大;则可得:>,所以住宅的采光条件变好了.【考点】分式的基本性质【解析】【分析】(1)使用作差法,对两个分式求差,有﹣=,由差的符号来判断两个分式的大小.(2)由(1)的结论,将1换为k,易得答案,(3)由(2)的结论,可得一个真分数,分子分母增大相同的数,则这个分数整体增大;结合实际情况判断,可得结论.22、【答案】解:例如:取a=1,b=2,c=3,d=6,有,则(1);(2);(3)观察发现各组中的两个分式相等.现选择第(2)组进行说明证明.已知a,b,c,d都不等于0,并且,所以有:,所以有:=.【考点】分式的基本性质【解析】【分析】先利用具体的数计算,然后发现各组中的两个分式相等;再对(2)进行证明:等式两边加上1,通分即可.23、【答案】解:a、b的特征是分母比分子大1;∵a==1﹣,b==1﹣,∴a<b,∴当分子比分母小1时,分子(或分母)越大的数越大.【考点】分式的基本性质【解析】【分析】当分子比分母小1时,分子(或分母)越大的数越大.24、【答案】解:都错了①=分子分母都除以a,故①正确;②=,a=0时,分子分母都乘以a无意义,故②错误;∴两人的说法都错误.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案.。

初一数学下册(人教版)第五章5.3知识点总结含同步练习及答案

初一数学下册(人教版)第五章5.3知识点总结含同步练习及答案

描述:初一数学下册(人教版)知识点总结含同步练习题及答案第五章 相交线与平行线 5.3 平行线的性质一、学习任务1. 能够熟练的运用平行线的性质定理和判定定理解题.2. 发展空间观念、逻辑推理能力和有条理的表达能力.二、知识清单平行线的性质三、知识讲解1.平行线的性质平行线性质① 两条平行线被第三条直线所截,同位角相等;② 两条平行线被第三条直线所截,内错角相等;③ 两条平行线被第三条直线所截,同旁内角互补.平行线间的拐点问题① 已知 ,如图,当点 处于以下位置时, 与 , 的关系是:② 已知 ,如图,当存在 个 点时, 的值.③ 已知 ,如图,当存在 个 点时,, 与 的关系.AB ∥CD E ∠E ∠B ∠D AB ∥CD n E ∠B +∠D +∠+∠+∠+⋯+∠E 1E 2E 3E n AB ∥CD n E ∠B ∠D ∠+∠+∠+⋯+∠E 1E 2E 3E n例题:四、课后作业(查看更多本章节同步练习题,请到快乐学)AB ∥CD如图所示,已知直线 ,,则 _______.解:.AB ∥CD ∠1=50∘∠2=50∘答案:1. 如图,直线 ,直线 与 , 相交,,则 .A .B .C .D .Ba ∥bc a b ∠1=65∘∠2=()115∘65∘35∘25∘答案:2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 A .先向左转 ,再向左转 B .先向左转 ,再向右转 C .先向左转 ,再向右转 D .先向左转 ,再向左转 B()130∘50∘50∘50∘50∘40∘50∘40∘答案:3. 如图,,直线 分别交 、 于点 、 ,若 ,则 的度数为 .A .B .C .D .DAB ∥CD BC AB CD B C ∠1=50∘∠2()40∘50∘120∘130∘4. 如图,直线 ,, 交直线 于点,,则 的度数是 a ∥b AC ⊥AB AC b C ∠1=60∘∠2()高考不提分,赔付1万元,关注快乐学了解详情。

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题A组(基础题)一、填空题1.(1)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=______.(2)在△ABC中,∠A=∠B=60°,且AB=5 cm,则BC=______cm.2.(1)如图,在等边△ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE=______.(2)如图,在△ABC中,∠B=60°,AB=AC, BC=5,则△ABC的周长为______.3.(1)如图,将边长为6 cm的等边△ABC沿BC方向向右平移后得△DEF,DE,AC相交于点G.若线段CF=4.5 cm,则△GEC的周长是______cm.(2)如图,在△ABC中,BC=16,BO和CO分别是∠ABC和∠ACB的平分线,OD∥AB,OE∥AC,则△ODE的周长为______.4.如图,已知直线l∥l2,将等边三角形如图放置.若∠α=30°,则∠β=______.二、选择题5.如图,l1∥l2,等边△ABC的顶点A,B分别在直线l1,l2上,则∠1+∠2=( ) A.30° B.40°C.50° D.60°6.如图所示,在等边△ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是( )A.7 B.6 C.5 D.47.如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为( )A.30° B.20° C.25° D.15°8.下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形三、解答题9.如图,已知在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为E,F,且DE=DF.求证:△ABC是等边三角形.10.(1)如图,△ABC为等边三角形,AB=AC,P为BC上一点,△APQ为等边三角形.求证:AB∥CQ.(2)如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.①求证:AD=BE;②求AD的长.B组(中档题)一、填空题11.如图,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6 cm, DE=2 cm,则BC的长为______.12.如图,点P是∠AOB内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,∠AOB=30°,则△PMN周长的最小值为______.13.如图,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD. 其中正确的有______个.二、解答题14.如图,过边长为2的等边三角形的边上一点P作PE⊥AC于点E,Q是BC延长线上一点,当PA=CQ时,连接PQ交AC于点D,求DE的长.C组(综合题)15.如图,△ABC是等边三角形,E是BC边上任意一点,∠AEF=60°,EF交△ABC的外角∠ACD的平分线于点F.求证:AE=EF.参考答案2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题A组(基础题)一、填空题1.(1)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=60°.(2)在△ABC中,∠A=∠B=60°,且AB=5 cm,则BC=5cm.2.(1)如图,在等边△ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE=60°.(2)如图,在△ABC中,∠B=60°,AB=AC, BC=5,则△ABC的周长为15.3.(1)如图,将边长为6 cm的等边△ABC沿BC方向向右平移后得△DEF,DE,AC相交于点G.若线段CF=4.5 cm,则△GEC的周长是4.5cm.(2)如图,在△ABC中,BC=16,BO和CO分别是∠ABC和∠ACB的平分线,OD∥AB,OE∥AC,则△ODE的周长为16.4.如图,已知直线l∥l2,将等边三角形如图放置.若∠α=30°,则∠β=30°.二、选择题5.如图,l1∥l2,等边△ABC的顶点A,B分别在直线l1,l2上,则∠1+∠2=(D) A.30° B.40°C.50° D.60°6.如图所示,在等边△ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是(A)A.7 B.6 C.5 D.47.如图,AD 是等边△ABC 的中线,AE =AD ,则∠EDC 的度数为(D) A .30° B .20° C .25° D .15°8.下列条件中,不能得到等边三角形的是(D) A .有两个内角是60°的三角形 B .三边都相等的三角形C .有一个角是60°的等腰三角形D .有两个外角相等的等腰三角形 三、解答题9.如图,已知在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为E ,F ,且DE =DF.求证:△ABC 是等边三角形.证明:∵DE ⊥AB ,DF ⊥BC , ∴∠AED =∠CFD =90°. ∵D 为AC 的中点,∴AD =DC. 在Rt △ADE 和Rt △CDF 中,⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt △ADE ≌=Rt △CDF(HL). ∴∠A =∠C.∴BA =BC.∵AB =AC ,∴AB =BC =AC. ∴△ABC 是等边三角形.10.(1)如图,△ABC 为等边三角形,AB =AC ,P 为BC 上一点,△APQ 为等边三角形.求证:AB ∥CQ.证明:∵△ABC 和△APQ 都是等边三角形, ∴AB =AC ,AP =AQ ,∠BAC =∠PAQ =60°. ∴∠BAC -∠PAC =∠PAQ -∠PAC , 即∠BAP =∠CAQ.在△ABP 和△ACQ 中,⎩⎪⎨⎪⎧AB =AC ,∠BAP =∠CAC ,AP =AQ ,∴△ABP ≌△ACQ(SAS). ∴∠ACQ =∠B =∠BAC =60°. ∴AB ∥CQ.(2)如图,△ABC 为等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q ,PQ =3,PE =1.①求证:AD =BE ; ②求AD 的长.解:①证明:∵△ABC 为等边三角形, ∴AB =AC ,∠BAC =∠C =60°. 在△BAE 和△ACD 中,⎩⎪⎨⎪⎧BA =AC ,∠BAE =∠C ,AE =CD ,∴△BAE ≌△ACD(SAS). ∴AD =BE.②由ΔBAE ≌ACD ,可知∠ABE =∠PAE.∵∠BPQ =∠BAP +∠ABE =∠BAP +∠PAE =∠BAC =60°,BQ ⊥PQ , ∴∠PBQ =30°,∴PB =2PQ =6. ∴BE =PB +PE =7,∴AD =BE =7.B 组(中档题)一、填空题11.如图,在△ABC 中,AB =AC ,D ,E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°.若BE =6 cm, DE =2 cm ,则BC 的长为8_cm .12.如图,点P 是∠AOB 内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,∠AOB =30°,则△PMN 周长的最小值为5_cm .13.如图,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE =CD ;②BF =BG ;③BH 平分∠AHD ;④∠AHC =60°;⑤△BFG 是等边三角形;⑥FG ∥AD. 其中正确的有6个.二、解答题14.如图,过边长为2的等边三角形的边上一点P 作PE ⊥AC 于点E ,Q 是BC 延长线上一点,当PA =CQ 时,连接PQ 交AC 于点D ,求DE 的长.解:过点P 作PF ∥BC 交AC 于点F , ∵△ABC 为等边三角形, ∴△APF 为等边三角形. ∴PF =AP.又∵PE ⊥AF ,∴AE =EF. 又∵AP =CQ ,∴PF =CQ. ∵PF ∥BC ,∴∠FPD =∠CQD.在△PFD 和△QCD 中,⎩⎪⎨⎪⎧∠FPD =∠CQD ,∠PDF =∠QDC ,PF =QC ,∴△PFD ≌△QCD(AAS).∴FD =CD.∴DE =EF +FD =12AF +12CF =12AC.∵AC =2,∴DE =1.C 组(综合题)15.如图,△ABC 是等边三角形,E 是BC 边上任意一点,∠AEF =60°,EF 交△ABC 的外角∠ACD 的平分线于点F.求证:AE =EF.证明:在AB 上截取AG =CE ,连接EG. ∵△ABC 是等边三角形,∴AB =BC ,∠B =∠ACB =60° 又∵AG =CE ,∴BG =BE.∴△BEG 是等边三角形.∴∠BGE =60°.∴∠AGE =120°. ∵CF 平分∠ACD ,∴∠ACF =12(180°-∠ACB)=60°. ∴∠ECF =120°.∴∠AGE =∠ECF.∵∠AEC =∠B +∠GAE =∠AEF +∠CEF , 且∠AEF =∠B =60°,∴∠GAE =∠CEF.又∵AG =EC ,∴△AGE ≌△ECF(ASA). ∴AE =EF.。

人教版最全七年级数学下册全册同步练习及单元测验卷及答案

人教版最全七年级数学下册全册同步练习及单元测验卷及答案

第五章相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,/1和/2是对顶角的图形有()A.1个B.2 个C.3 个D.4 个2、如图,若/ 1=60° ,那么/ 2=3、如图是一把剪刀,其中 1 40,则24、如图三条直线AB,CD,EF相交于一点O, /AOD勺对顶角是,/AOC勺邻补角是,若/ A0C=50 ,贝U/ BOD= ./ COB= J AOE+ DOB + COF=5、如图,直线AB,CD相交于0,0评分/ AOC若/ AOD/DOB=50 ,?求/EOB勺度数.6、如图,直线a,b,c两两相交,/1=2/ 3, / 2=68° ,求/4的度数5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.()2、一条直线不可能与两条相交直线都垂直.()3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.()4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.().5、如图1,OAL OB,OCL OC,O为垂足,若/AOC=3 5,则/BOD=.6、如图2,A0± BO,O为垂足,直线CDi点O,且/ BOD=2AOC则/ BOD=.7、如图3,直线AB CD相交于点0,若/E0D=40 , /B0C=130,那么射线0E与直线AB的位置关系是C8、已知:如图,直线AB,射线0位于点的位置关系.9、如图,AC± BC,C为垂足,CD± AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6 ,那么点C 到AB 的距离是,点A 到BC 的距离是,点B 到CD 的距离是 ,A 、B 两点间的距离是.10、如图,在线段AB AG AD AE AF 中AD 最短.小明说垂线段最短,因此线段AD 的 长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30的/AOB 在边OA±任取一点P,过P 作POL OB,垂足为Q, 量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位角、内错角、同旁内角3、如图(6),直线DE 截AB, AC,构成八个角: ①、指出图中所有的同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),卜列说法不正确的是( )人./1与/2是同位角 B. / 2与/ 3是同位角C. / 1与/ 3是同位角D. / 1与/ 4不是同位角2、如图(5),直线AB CDM 直线EF 所g, / A 和一 错角,/A 班是同旁内角.^ /\ \ /--- ---------- 4 届 -------------------- R图⑷ 图⑸—是同位角,/ A 和 ________ 是内A40(3) c'②、/人与/5, /A 与/6, /A 与/8,分别是哪一条直线截哪两条直线而成的什么 角?4、如图(7),在直角 ABCt\ / C= 90 , DU AC 于 E,交 A.一 L①、指出当BG DE 被AB 所截时,/ 3的同位角、内错角和礴内他(门②、若/ 3+/ 4=180试说明/ 1 = /2=/3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有2、两条直线L 1与L 2相交点A,如果L 1//L ,那么12与L ()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必.D ./3=/4 D. /BACW ACD4、两条直线相交,交点的个数是 ,两条直线平行,交点的个数是 _____________ 个.判断题5、6、7、85、不相交的两条直线叫做平行线.()6、如果一条直线与两条平行线中的一条直线平行,那么它与另一条直线也互相平行.()7、过一点有且只有一条直线平行于已知直线.()8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB// CD 的是()DAFCA./BADh BCDB. /1 = /2;C.AD C B如图5,直线a,b 被直线c 所截,现给出下列四个条件: ?①/ 1 = /5;②/ 1=/7;③/ 2+/ 3=180 ;@Z4=Z 7.其中能说明 a // b 的条件序号为() A.①② B.①③ C.①④ D. ③④如果/ 9=,那么AD// BC;如果/ 9=,那么AB// CD.7、在同一平面内,若直线a,b,c 满足a±b,a ±c,则b 与c 的位置户系是8、如图所示,BE 是AB 的延长线,量得/ CBEh A=/ C. //.... AB E(1) 由/ CBEh A 可以判断//,根据是.⑵ 由/ CBEh C 可以判断//,根据是2、 如图2所示,如果/ D=/ EFC 那么()A.AD // BCB.EF // BC 3、 F 列说法错误的是()A.同位角不一定相等B. 内错角都相等C. 同旁内角可能相等D.同旁内角互补,两直线平行4、 5、如图5,如果/ 3=/7,那么,理由是 如果/ 5=/ 3,那么 ,理由是 如果/ 2+ /5=那么a // b,理由是6、如图4,若/ 2=/6,则,如果/3+/4+/ 5+/ 6=180 ,那么(4)C.AB // DCD.AD9、已知直线a、b被直线c所截,且/1+/ 2= 试判断直线a、b的位置关系,并说明理由.10、如图,已知AEM DG , 1 2 ,试问EF是否平行GH并说明理由.11、如图所示,已知/ 1=/ 2,AC平分/ DAB试说明DCI AB.12、如图所示,已知直线EF和AB,CM别相交于K,H,且EGL AB,/CHF=60 / E=30°试说明AB// CD.13、提高训练:如图所示,已知直线a,b,c,d,e,且/ 1=/ 2, / 3+/4=180° ,则a与c平行吗?劝什么?5.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB//CD则与/ 1相等的角(/1除外)共有()A.5 个B.4 个C.3 个D.2 个 B AA B —(4) (5) (6)5、如图5,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西(3)2、如图 2 所示,CD// AB,O 评分/ AOD,OFOE,/D=50,则/BOF 为(A.35B.30C.253、如图 3 所示,AB II CD,Z D=80CAD=, /ACD=?.4、如图 4,若 AD// BC,则/=/ D.20/ABC 廿=180 ;若 DC/ZAB,则/=/A,/ CAD:/ BAC=3:2则/56° ,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是,因为.6、河南)如图6所示,已知AB// CD直线EF分别交AB,CD于E,F,EG?平分/ B-EF,若/ 1=72 ,贝U/2=.7、如图,AB/ZCQ / 1 = 102° ,求/ 2、/3、/4、/ 5的度数,并说明根据?8、如图,ERiz\ABC勺一个顶点A,且EF// BC 如果/ B= 40° , / 2= 75° ,那么/1、/3、/G / BAO /B+ 是多少度,并说明依据?9、如图,已知:DE/ZCB,/1 = /2,求证:CD平分/ ECB.10、如图所示,把一张长方形纸片ABCD& EF折叠,若/ EFG=50 ,求/ DEG勺度数.1111、如图所示,已知:AE平分/BAC CE平分/ACD且AB//CD求证:/1+/ 2=90° . 证明:・•. AB//CD (已知)・♦/BAC/ACD180 , ()又.. AE平分/ BAC C评分/ ACD (). 1 1•• 1 - BAC , 2 万ACD,( ___________________ ) __________1 1 0 0. .1 2 -( BAC ACD) —1800 90°.2 2即Z1+Z 2=90 .结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相.推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相^5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB( ) (3)画线段AB的中点( (2)两条直线相交,只有一交点((4)若|x|=2 ,则x=2 ( )134、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1 个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a// b, b // c,那么all c ⑵ 同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式 (1)两点确定一条直线; (2)等角的补角相等;(3)内错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据(1) '.'all b,「•/ 1=/ 3( ); (2) ・// 1=/ 3, ..・all b( ); (3) '.'all b,「•/ 1=/ 2( );(4) 「a// b,「./ 1+/ 4=180o ( (5) ・// 1=/ 2, ..・all b( ); (6) •// 1+/ 4=180o,「.a// b( ). 8、已知:如图 ABL BG BCLCD 且/ 1=/ 2, 证明:.「AB!BG BCLCD (已知)= =90(5)角平分线是一条射线( 2、下列语句不是命题的是( A.两点之间,线段最短 C.x 与y 的和等于0吗? 3、下列命题中真命题是( )A.两个锐角之和为钝角)B.不平行的两条直线有一个交点 D.对顶角不相等.B.两个锐角之和为锐角D.锐角小于它的余角・ ・•/ 1 = /2 (已知)(等式性质)/ ACB=90 ()・ ••/ BCD^/ ACD 勺余角・ ・•/BCD^/B 的余角(已知) ・•・ / ACDN B ()5.4平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )B.沿射线EC 的方向移动C 冰C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长3、下列四组图形中,?有一组中的两个图形经过平移其中一个能得到 -另一个,这组图形9、已知: 求证: 证明: BE// CF (/ ACDM B・•. ACL BC (已知)2、如图所示,4FDE 经过怎样的平移可得到4A.沿射线EC 的方向移动DB 长; 如图,ACL BCC 垂足为CABC.()4、如图所示,△ DEF经过平移可以得到△ ABC那的对应角和ED的对应边分-别是()A. / F,ACB. / BOD,BA;C. / F,BAD.5、在平移过程中,对应线段()A.互相平行且相等;B.互相垂直且相等C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________ 都相同,?因-此对应线段和对应角7、如图所示,平移△ ABC可得到△ DEF,如果// C=60 ,那么/ E=?-度,/ EDF=/F= ______ 度,/DOB= .........8、将正方形ABCDg对角线AC方向平移,且平移后的图形的一个顶点恰好在AC的中点。

人教版数学七年级下册5.3.2《 命题、定理、证明》同步练习 (含答案)

人教版数学七年级下册5.3.2《 命题、定理、证明》同步练习 (含答案)

人教版数学七下5.3.2《命题、定理、证明》同步练习一、选择题1.下列命题中是假命题的是( )A.同旁内角互补,两直线平行B.直线a⊥b,则a与b的夹角为直角C.如果两个角互补,那么这两个角一个是锐角,一个是钝角D.若a∥b,a⊥c,那么b⊥c2.命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线3.下列命题中,真命题的个数为().①在同一平面内,两条直线被第三条直线所截,同位角相等;②两条平行线被第三条直线所截,同位角的平分线平行;③两条平行线被第三条直线所截,内错角的平分线平行;④两条平行线被第三条直线所截,同旁内角的平分线平行;⑤两条直线被第三条直线所截,形成4对同位角、2对内错角和2对同旁内角.A.4B.3C.2D.14.下列命题中,属于真命题的是()A.两个锐角之和为钝角B.同位角相等C.钝角大于它的补角D.相等的两个角是对顶角5.下列说法中,正确的是()A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角。

6.有下列四个命题:①相等的角是对顶角;②同位角相等;③两点之间,直线最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个7.下列命题中,真命题是()A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线8.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行;•③相等的角是对顶角;④同位角相等,其中假命题有( )A.1个B.2个C.3个D.4个9.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行.其中假命题有( )A.1个B.2个C.3个D.4个10.下列语句不是命题的是()A.过直线外一点作直线的垂线B.三角形的外角大于内角C.邻补角互补D.两直线平行,内错角相等11.下列命题是假命题的是()A.同角的余角相等B.同旁内角互补C.对顶角相等D.在同一平面内,垂直于同一条直线的两条直线平行12.下列四个命题中:①在同一平面内,互相垂直的两条直线一定相交②有且只有一条直线垂直于已知直线③两条直线被第三条直线所截,同位角相等④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.其中真命题的个数为()A.1个B.2 个C.3个D.4个二、填空题13.下列命题中:①若∣a∣=∣b∣,则a=b;②两直线平行,同位角相等;③对顶角相等;④内错角相等,两直线平行.是真命题的是.(填写所有真命题的序号)14.把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_______________.15.把命题“同角的补角相等”改成“如果...那么....”的形式16.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:.17.命题“同位角相等,两直线平行”中,条件是,结论是18.把命题“平行于同一直线的两直线平行”写成“如果…,那么…”的形式________.三、解答题19.已知命题:“如图,点B,F,C,E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并说明理由.20.如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)________(2)________(3)________(4)________②选择结论(1),说明理由.参考答案1.答案为:C2.答案为:D.3.答案为:B4.答案为:C5.答案为:C6.答案为:A.7.答案为:D.8.答案为:C9.答案为:B10.答案为:A11.答案为:B12.答案为:A.13.答案为:②③④14.答案为:如果作两个邻补角的角平分线,那么这两条角平分线互相垂直15.答案为:如果两个角是同一个角的补角,那么这两个角相等.16.答案为:如果两条直线垂直于同一条直线,那么这两条直线平行.17.答案为:同位角相等;两直线平行.18.答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行19.解:这个命题是假命题.添加条件∠B=∠E使其成为真命题.理由:内错角相等,两直线平行.(添加条件不唯一)20.∠APC+∠PAB+∠PCD=360°;∠APC=∠PAB+∠PCD;∠PCD=∠APC+∠PAB;∠PAB=∠APC+∠PCD。

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

人教版七年级数学下册全册课堂同步练习题及答案

人教版七年级数学下册全册课堂同步练习题及答案

第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( )11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角. ( )13.如果两个角是邻补角,那么它们一定互为补角. ( )14.对顶角的角平分线在同一直线上. ( )15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. ( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE =4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( )12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为PA =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条(B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC 与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D+∠A=______.(_____________,_____________)即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D 处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD =EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个(C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C ′EF =32°(2)∠AEC =148° (3)∠BGE =64°(4)∠BFD =116° (A)1个(B)2个 (C)3个(D)4个二、填空题 11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD =(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°. 16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.第六章 实数测试1 平方根 学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2 B .0 C .81D .-638.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3 C .(-13)2的平方根是-13 D .-(-13)没有平方根 三、解答题9.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______; (3)若,492=x ,则x =______; (4)若x 2=(-2)2,则x =______. 10.要切一块面积为16cm 2的正方形钢板,它的边长是多少?综合、运用、诊断一、填空题 11.25111的平方根是______;0.0001算术平方根是______:0的平方根是______. 12.2)4(-的算术平方根是______:81的算术平方根的相反数是______.。

最新北师版初中七年级数学下册5.4《利用轴对称进行设计1》同步练习

最新北师版初中七年级数学下册5.4《利用轴对称进行设计1》同步练习

北师大版数学七年级下册第五章生活中的轴对称 5.4利用轴对称进行设计同步检测题1.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,图中各种作法中,符合要求的是( )2.如图,给出了一个轴对称图形的一半,其中虚线是这个图形的对称轴,请你猜想整个图形是( )A.三角形 B.长方形 C.五边形 D.六边形3. 过新年时,小华家的窗户上贴着如图所示的美丽的剪纸图案,它的对称轴有( )A.0条 B.4条 C.8条 D.16条4.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,图中的设计符合要求的有( )A.4个 B.3个 C.2个 D.1个5.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有( )A.3种 B.4种 C.5种 D.6种6.如图,在3×3方格图中,在其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,方法有( )A.1种 B.2种 C.3种 D.4种7. 如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有( )A.2个 B.3个 C.4个 D.5个8. 利用轴对称设计图案:对应点的连线与对称轴之间的关系为互相,对应点间的线段被对称轴,对称轴上任意一点和两个对应点之间的距离.9.求作与已知图形成轴对称的图形,先观察图形,并确定能代表已知图形的关键点,分别作出这些关键点关于对称轴的,根据已知图形连接这些对应点,即可得到与已知图形成轴对称的图形.10. 如图在2×2的正方形方格中,有一个以格点为顶点的△ABC,请你找出方格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.11. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.12.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.13. 如图,将一个等腰三角形(底角大于60°)沿对称轴对折后,剪掉一个60°的角,展开后得到如图的形状,若∠ABD=15°,则∠A=.14. 有如的8张纸条,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼出的图案(画出的两个图案不能全等).15. 明明在办手抄报的时候,他想用图形“○○、△△、=”(两个圆、两个三角形、两条平行线)为构件,构思具有一定意义的图形,他在图中左边方框中已经设计好了一个,你还能构思出其他的图形吗?请你在图中的右框中画出一个与之不同的图形,并写出一两句贴切、诙谐的解说词.16. 有如图所示的8张纸条,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,画出你拼出的图案.(画出的两个图案不能全等)17. 正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组成轴对称图形.下面是两种不同设计方案中的一部分,请把图1、图2补成轴对称图形,并画出一条对称轴(在你所设计的图案中用阴影部分和非阴影部分表示两种不同颜色的花卉).参考答案:1---7 CDCAC CC8. 垂直垂直平分相等9. 对称点10. 511. 312. 313. 30°14. 解:图1如:(答案不唯一) 图2如:(答案不唯一)15. 解:图略16. 解:图略17. 解:图略学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。

2021-2022学年浙教版初中数学七年级下册第五章分式同步练习试题(含解析)

2021-2022学年浙教版初中数学七年级下册第五章分式同步练习试题(含解析)

初中数学七年级下册第五章分式同步练习(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分) 1、下列计算中,正确的是( )A .633422a a a ÷=B .326a a a ⋅=C .1133-⎛⎫=- ⎪⎝⎭D .224a a a +=2、下列各式与1(2)--相等的是( ) A .12B .-2C .2D .12-3、在研制新冠肺炎疫苗过程中,某细菌的直径大小为0.000000000072米,用科学记数法表示这一数字,正确的是( ) A .120.7210-⨯ B .127.210-⨯ C .117.210-⨯D .107.210-⨯4、下列计算结果正确的是( ) A .55623a a a +=B .()256a a a -⋅=-C .2124-=D .()021-=-5、空气的密度是1.293×10﹣3g /cm 3,用小数把它表示出来是( )g /cm 3. A .0.0001293B .0.001293C .0.01293D .0.12936、研究发现新冠肺炎病毒大小约为0.000000125米,数0.000000125用科学记数法表示为( ) A .125×10﹣9B .12.5×10﹣8C .1.25×10﹣7D .1.25×10﹣67、若22224n n n n +++=,则n 的值为( ) A .0 B .1C .2D .38、若41x +表示一个整数,则整数x 可取值共有( ) A .3个 B .4个 C .5个 D .6个9、已知30x y -=(0x ≠),则分式22232xy y x xy+-的值为( )A .2B .-2C .3D .-310、已知实数,,x y z 满足x y xy z +==,则下列结论:①若0z ≠,则412723x xy y x xy y -+=-++;②若3x =,则6y z +=;③若0z ≠,则()()1111x y x y--=+;④若6z =,则2224x y +=,其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(5小题,每小题4分,共计20分) 1、202020218(0.125)⋅-=______;()0220213--⨯=___________.2、计算201(20212019)3-⎛⎫-+-= ⎪⎝⎭__________.3、当x _______时,分式293x x --的值为零.4、有一工程需在x 天内完成.如果甲单独工作,刚好能够按期完成:如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,则依题意列出的方程是________.5、若分式2xx -有意义,则x 的取值范围是 ___. 三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:224114422a a a a a a ⎛⎫-+-÷⎪-+-+⎝⎭,其中a =﹣1.2、(1)计算:()10213820162π-⎛⎫--+--- ⎪⎝⎭;(2)先化简,再求值.()()()222352x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中2x =-,12y =. 3、计算:234()()23ba aabb ÷-⨯. 4、已知13x -=-,求代数式22()(22)11x x x x x-÷-+--的值.5、(1)计算:)22--;(2)化简:()()5311a a a a +--÷---------参考答案----------- 一、单选题 1、A 【分析】根据单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项可进行排除选项. 【详解】解:A 、633422a a a ÷=,正确,故符合题意; B 、325a a a ⋅=,原计算错误,故不符合题意;C 、1133-⎛⎫= ⎪⎝⎭,原计算错误,故不符合题意;D 、2222a a a +=,原计算错误,故不符合题意; 故选A . 【点睛】本题主要考查单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项,熟练掌握单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项是解题的关键. 2、D 【分析】根据负指数幂()1,0nna a a -=≠可直接进行求解. 【详解】解:由题意得:11(2)2--=-;故选D . 【点睛】本题主要考查负指数幂,熟练掌握负指数幂的算法是解题的关键. 3、C 【分析】用科学记数法表示较小的数,一般形式为a ×10−n,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】110.0000000000727.210-=⨯故选C 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键. 4、C 【分析】根据运算的法则逐一运算判断即可.【详解】解:A :55523a a a +=,故此选项错误;B :()257a a a-⋅=,故此选项错误;C :2124-=,故此选项正确;D :()021-=,故此选项错误;故答案为:C 【点睛】本题主要考查了同类型的合并,同底数幂的乘法,负指数幂,零指数幂,熟悉掌握运算的法则是解题的关键. 5、B 【分析】把1.293的小数点向左移3位即可. 【详解】解:30.001291.103293=⨯﹣ 故选B 【点睛】本题考查了还原科学记数法表示的小数,熟练掌握科学记数法的意义是解题的关键. 6、C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000000125=1.25×10-7, 故选:C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 7、A 【分析】由题意可得:244n ⨯=,通过整理得:21n =,则可求得0n =. 【详解】解:22224n n n n +++=,244n ⨯=,21n =,0n =.故选:A . 【点睛】本题主要考查了零指数幂法则,解答的关键是明确非0实数的0次方等于1. 8、D 【分析】 由x 是整数,41x +也表示一个整数,可知x +1为4的约数,即x +1=±1,±2,±4,从而得出结果. 【详解】 解:∵x 是整数,41x +也表示一个整数, ∴x +1为4的约数, 即x +1=±1,±2,±4,∴x =-2,0,-3,1,-5,3. 则整数x 可取值共有6个. 故选:D . 【点睛】本题考查了此题首先要根据分式值是整数的条件,能够根据已知条件分析出x +1为4的约数,是解决本题的关键. 9、C 【分析】由题意可知x =3y ,然后根据因式分解法进行化简,再将x =3y 代入原式即可求出答案. 【详解】 解:∵x -3y =0, ∴x =3y ,原式= (23)(2)+-y x y x x y(63)3(32)+=-y y y y y y3=故选:C 【点睛】本题考查分式的运算,解题的关键是熟练运用因式分解法将分式化简,再把x 换成3y . 10、D 【分析】①4272x xy y x xy y -+++转化为()()442727x y xy z z x y xy z z+--=+++,即可求解;②先求出y ,再求出z ,即可得到答案;③将()()11x y --变形求出值为1,再将11x y +变形求出值也为1,即可得到答案;④将2224x y +=进行变形为()2222x y x y xy +=+-,再将x y xy z +==整体代入,即可得到答案.【详解】解:①因为x y xy z +==,0z ≠所以,()()4441=27227273x y xy x xy y z z x xy y x y xy z z +--+-==-+++++,故此项正确;②因为,3x =,则x y xy +=. 所以,33y y +=解得:32y =;所以,313+422z x y =+==所以,31+4=622y z +=,故此项正确; ③因为0z ≠,x y xy z +==所以,()()()1111+=11x y y x xy x y xy z z --=--+=-+-+=;11=1y x x y z x y xy xy xy z+++===; 所以,()()1111x y x y--=+,故此项正确; ④因为6z =,x y xy z +==所以,()222222361224x y x y xy z z +=+-=-=-=,故此项正确; 故选D . 【点睛】本题考查完全平方公式、分式的加法以及整体代入方法,解答本题的关键是明确题意,求出学会整体代入. 二、填空题1、-0.125 1 9【分析】根据积的乘方逆运算、零指数幂与负指数幂的性质即可求解.【详解】[]202020202021202020208(0.125)8(0.125)(0.125)8(0.125)(0.125)0.125⋅-=⋅-⨯-=⨯-⨯-=-;()02 20213--⨯=11 199⨯=故答案为:-0.125;19.【点睛】此题主要考查实数的运算,解题的关键是熟知幂的运算公式及零指数幂与负指数幂的性质.2、10【分析】利用负整数指数幂,零指数幂的法则,即可求解.【详解】解:2211(20212019)19110 313-⎛⎫-+-=+=+=⎪⎝⎭⎛⎫-⎪⎝⎭.故答案为:10.【点睛】本题主要考查了负整数指数幂,零指数幂的法则,熟练掌握负整数指数幂,零指数幂的法则是解题的关键.3、= -3【分析】根据分母为0是分式无意义,分式值为零的条件是分子等于零且分母不等于零列式计算即可. 【详解】 解:根据题意,∵分式293x x --的值为零,∴29030x x ⎧-=⎨-≠⎩,∴3x =-; 故答案为:3=-. 【点睛】本题考查的是分式为0的条件、分式有意义的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4、1112(2)133x xx x ⎛⎫++-⋅= ⎪++⎝⎭ 【分析】有一工程需在x 天内完成,则甲的工作效率为1x,乙的工作效率为13x + ,则前两天完成的工作量为1123x x ⎛⎫+ ⎪+⎝⎭,乙单独做的工作量为()123x x -+,由此求解即可. 【详解】解:有一工程需在x 天内完成,则甲的工作效率为1x,乙的工作效率为13x + , 由题意得:()11122133x xx x ⎛⎫++-= ⎪++⎝⎭ , 故答案为:()11122133x x x x ⎛⎫++-= ⎪++⎝⎭.【点睛】本题主要考查了分式方程的实际应用,解题的关键在于能够准确找到等量关系列出方程. 5、2x ≠【分析】根据分母不等于零分式有意义,可得答案.【详解】 解:∵分式2x x -有意义, ∴20x -≠解得,2x ≠故答案为:2x ≠【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.三、解答题1、22a a +-,13-【分析】先计算括号内的异分母分式减法,再计算除法,最后将a =-1代入计算即可.【详解】 解:224114422a a a a a a ⎛⎫-+-÷ ⎪-+-+⎝⎭ 212221++⎛⎫=-⋅ ⎪--+⎝⎭a a a a a 1221a a a a ++=⋅-+22a a +=-, 当1a =-时,原式121123-+==---. 【点睛】此题考查分式的化简求值,正确掌握分式的混合运算是解题的关键.2、(1)4;(2)-+x y ,122【分析】(1)根据有理数的乘方、绝对值、零指数幂和负整数指数幂的计算方法可以解答本题;(2)根据完全平方公式、多项式乘多项式、多项式除以单项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】(1)解:原式9812=-++4=;(2)解:原式()22222443352x xy y x xy xy y y x =++-+-+-÷ ()2222x xy x =-+÷x y =-+.当2x =-,12y =时,原式122=.【点睛】本题考查整式的混合运算、实数的运算、零指数幂和负整数指数幂,解答本题的关键是明确它们各自计算方法,求出所求式子的值.3、23a -根据分式的乘除法进行计算,注意进行约分.【详解】 解:原式223344b b a a a b=-⋅⋅ 23a =-.【点睛】本题考查了分式的乘除法,解决本题的关键是遇到除法,变为乘法计算,并注意约分.. 4、32【分析】根据题意首先对代数式进行化简,然后将13x -=-代入求解即可.【详解】 解:原式2222222211x x x x x x x x----+-=÷-- 2211x x x x =-÷-- 2112x x x x -=-⋅- 12x=-, 当1133x -=-=-时,原式13122()3=-=⨯-. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.5、(1)1;(2)-1(1)根据绝对值的意义及零次幂的性质进行计算即可;(2)分别运用平方差公式及同底数幂的除法法则进行计算,再合并同类项即可.【详解】解:(1))022--21=-1=;(2)()()5311a a a a +--÷ 221a a =--1=-.【点睛】本题考查了实数及整式的混合运算,熟练掌握相关运算法则及性质是解题的关键.。

(完整版)七年级数学下册_5.1同步练习及答案

(完整版)七年级数学下册_5.1同步练习及答案

5.1.1 相交线姓名_____________一、选择题:1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( )A.62°B.118°C.72°D.59°5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:1. 如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A OED CBA(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD =•______.5.对顶角的性质是______________________.6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA(7) (8) (9)7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________. 8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、解答题:1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.OF EDCBA 122,如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.cba3412答案:一、1.A 2.B 3.B 4.A 5.D 二、1.∠2和∠4 ∠3 2.155° 25° 155° 4.35° 5.对顶角相等 •6 .125° 55° 7.147.5° 8.42°三、1.∠2=60° 2.∠4=36°四、1.∠BOD=120°,∠AOE=30° 2.∠BOD=72° 3.∠4=32.5° 五、1.4条不同的直线相交于一点,图中共有12对对顶角(平角除外),n 条不同的直线相交于一点,图中共有(n 2-n)对对顶角(平角除外).2.6条直线最多可以把平面分成22个部分,n 条直线最多可以把平面分成(1)12n n +⎡⎤+⎢⎥⎣⎦个部分.六、∠AOC 与∠BOD 不一定是对顶角.如图1所示,当射线OC,OD 位于直线AB 的一侧 时,不是对顶角;如图2所示,当射线OC,OD 位于直线AB 的两侧时,是对顶角.(1)O D C BA21(2)O DCBA七、140°.5.1.3同位角、内错角、同旁内角同步练习姓名_____________一、填空题1.如图1,直线a 、b 被直线c 所截,∠1和∠2是 ,∠3和∠4是 ,∠3和∠2是 。

初中数学人教版七年级下册 第五章同步练习:5.4 平移

初中数学人教版七年级下册 第五章同步练习:5.4 平移

2020年春季人教版七年级下册同步练习:5.4 平移一.选择题(共8小题)1.下列现象中是平移的是()A.将一张纸沿它的中线折叠B.电梯的上下移动C.飞碟的快速转动D.翻开书中的每一页纸张2.下列现象中,不属于平移的是()A.滑雪运动员在平坦的雪地上滑行B.钟摆的摆动C.大楼上上下下迎送来客的电梯D.火车在笔直的铁轨上飞驰而过3.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.4.如图,直线L1是由直线L2平移得到的,若∠1=56°,则∠2的度数为()A.∠2=56°B.∠2=124°C.∠2=134°D.∠2=114°5.如图,俄罗斯方块游戏中,图形A经过平移使其填补空位,则正确的平移方式是()A.先向右平移5格,再向下平移3格B.先向右平移4格,再向下平移5格C.先向右平移4格,再向下平移4格D.先向右平移3格,再向下平移5格6.如图,△ABC沿着BC方向平移到△DEF,已知BC=6、EC=2,那么平移的距离为()A.2 B.4 C.6 D.87.如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同8.将△ABC沿BC方向平移3个单位得△DEF.若△ABC的周长等于8,则四边形ABFD 的周长为()A.14 B.12 C.10 D.8二.填空题(共4小题)9.把图形上的所有点都按照作的位置移动,叫作图形的平移.10.如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格红色地毯,其侧面如图所示,则至少需要购买地毯米.11.如图,将周长为18cm的△ABC沿BC平移1cm得到△DEF.则AD=cm.12.如图,面积为6cm2的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ABED的面积为cm2.三.解答题(共6小题)13.如图所示是9个全等三角形,其中有没有经过平移可以与另一个重合的?如果有,把它们找出来.14.先将方格纸中的图形向右平移3格,然后再向下平移2格.15.如图,在平面直角坐标系中,点A(0,﹣1),B(﹣3,﹣3),C(1,﹣3),将三角形ABC平移,使点A的对应点A'的坐标为(2,3).(1)画出平移后的三角形A'B'C';(2)点B'的坐标是.16.根据图中标示的数据,计算图形的周长(单位:mm)17.一座楼梯的示意图如图所示,现要在楼梯上铺一条地毯.(1)地毯至少需要多长?(2)如果楼梯的宽为b,那么地毯的面积为多少?18.如图,将三角形ABC沿AB方向平移AD距离得到三角形DEF,已知:AB=16,BE=6,EF=8,CG=1,求图中阴影部分的面积.参考答案一.选择题(共8小题)1.【解答】解:A、将一张纸沿它的中线折叠,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、飞蝶的快速转动,不符合平移定义,故本选项错误;D、翻开书中的每一页纸张,不符合平移的定义,故本选项错误.故选:B.2.【解答】解:A、滑雪运动员在平坦的雪地上滑雪,属于平移得到,故本选项不合题意;B、钟摆的摆动,不属于平移得到,故本选项符合题意;C、大楼上上下下迎送来客的电梯,属于平移得到,故本选项不合题意;D、火车在笔直的铁轨上飞驰而过,属于平移得到,故本选项不合题意.故选:B.3.【解答】解:A、由图中所示的图案通过旋转而成,故本选项错误;B、由图中所示的图案通过翻折而成,故本选项错误C、由图中所示的图案通过旋转而成,故本选项错误;D、由图中所示的图案通过平移而成,故本选项正确.故选:D.4.【解答】解:∵直线L1是由直线L2平移得到的,∴L1∥L2,∴∠3=∠1=56°,∵∠3+∠2=180°,∴∠2=180°﹣56°=124°.故选:B.5.【解答】解:图形A经过平移使其填补空位,则正确的平移方式是先向右平移4格,再向下平移4格.故选:C.6.【解答】解:由题意平移的距离为BE=BC﹣EC=6﹣2=4,故选:B.7.【解答】解:由图和平移可得:三角板平移的方向不同,距离不同,故选:B.8.【解答】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3cm,AC=DF,∵△ABC的周长等于8,∴AB+BC+AC=8,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=8+3+3=14(cm).故选:A.二.填空题(共4小题)9.【解答】解:把图形上的所有点都按照同一方向作平行的位置移动,叫作图形的平移.故答案为:同一方向,平行.10.【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5.8米,2.6米,∴地毯的长度为2.6+5.8=8.4米.故答案为:8.411.【解答】解:∵△ABC沿BC平移1cm得到△DEF.∴AD=1cm.故答案为1.12.【解答】解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ABED的面积=6×(1+3)=24cm2.故答案为:24.三.解答题(共6小题)13.【解答】解:如图所示:只有①和⑧经过平移可以与另一个重合.14.【解答】解:如图•,15.【解答】解:(1)如图,△A'B'C'为所作;(2)点B'的坐标为(﹣1,1).故答案为(﹣1,1).16.【解答】解:如图形的周长=(29+14+10+11+2)×2=132mm.17.【解答】解:(1)由题意得,地毯的长度为:a+h;(2)地毯的面积为:(a+h)b.18.【解答】解:∵将三角形ABC沿AB方向平移AD距离得到三角形DEF,AB=16,BE =6,EF=8,CG=1,∴AB=DE=16,EF=BC=8,∴BD=16﹣8=8,BG=8﹣1=7,∴图中阴影部分的面积为:×8×7=28.。

北师大版七年级数学下册第五章 5.3.7简单的轴对称图形(七) 同步练习题

北师大版七年级数学下册第五章 5.3.7简单的轴对称图形(七) 同步练习题

2020-2021学年北师大版七年级数学下册第五章 5.3.7简单的轴对称图形(七) 同步练习题A组(基础题)一、填空题1.如图,点M在∠ABC内,ME⊥AB于点E,MF⊥BC于点F,且ME=MF,∠ABC=60°,则∠BME=_______.2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是_______.3.如图,已知PA⊥ON于点A,PB⊥OM于点B,且PA=PB,∠MON=48°,∠OPC=26°,则∠PCA=_______.4.在正方形网格中,∠AOB的位置如图所示,到其两边距离相等的点应是_______.二、选择题5.在三角形内,到三条边距离相等的点是这个三角形( )A.三条角平分线的交点B.三条高线的交点C.三条中线的交点D.三边垂直平分线的交点6.如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F,则下列结论正确的是( ) A.点F在BC边的垂直平分线上B.点F在∠BAC的平分线上C.△BCF是等腰三角形D.△BCF是直角三角形7.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC;②△ACE≌△BDE;③点E在∠O的平分线上.其中正确的结论个数是( )A.0 B.1 C.2 D.38.如图,∠AOB和一条定长线段m,在∠AOB内找一点P,使P到OA,OB的距离都等于m,作法如下:①作OB的垂线NH,使NH=m,H为垂足;②过点N作NM∥OB;③作∠AOB的平分线OP,与NM交于点P;④点P即为所求.其中③的作图的依据是( )A.平行线之间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边的距离相等D.到线段两个端点距离相等的点在线段的垂直平分线上三、解答题9.(1)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠EAC的平分线.(2)如图,BE是△ABC的角平分线,过点E作ED⊥BC于点D,若AB=4,DE=2,求△ABE的面积.10.我们把两组邻边相等的四边形叫作“筝形”.如图,四边形ABCD是一个筝形,其中AB =CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE =OF.B组(中档题)一、填空题11.如图,在Rt△ABC 中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角的平分线交于点E,则∠AEB=_______.12.如图所示,△ABC的角平分线AD将BC边分成2∶1两部分.若AC=3 cm,则AB=_______.13.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,则以下结论:①PM=PN恒成立;②OM+ON的值不变;③四边形PMON的面积不变;④MN的长不变,其中正确的为_______(填序号).二、解答题14.如图,AP ,CP 分别是△ABC 的外角∠MAC 和∠NCA 的平分线,它们交于点P.求证:BP 为∠MBN 的平分线.C 组(综合题)15.如图,在△ABC 中,∠BAC 和∠ABC 的平分线相交于点O ,过点O 作EF ∥AB 交BC 于点F ,交AC 于点E ,过点O 作OD ⊥BC 于点D. (1)求证:∠AOB =90°+12∠C ;(2)求证:AE +BF =EF ;(3)若OD =a ,CE +CF =2b ,则S △CEF =ab (用含a ,b 的代数式表示).参考答案2020-2021学年北师大版七年级数学下册第五章 5.3.7简单的轴对称图形(七) 同步练习题A组(基础题)一、填空题1.如图,点M在∠ABC内,ME⊥AB于点E,MF⊥BC于点F,且ME=MF,∠ABC=60°,则∠BME=60°.2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是4.3.如图,已知PA⊥ON于点A,PB⊥OM于点B,且PA=PB,∠MON=48°,∠OPC=26°,则∠PCA=50°.4.在正方形网格中,∠AOB的位置如图所示,到其两边距离相等的点应是点Q.二、选择题5.在三角形内,到三条边距离相等的点是这个三角形(A)A.三条角平分线的交点B.三条高线的交点C.三条中线的交点D.三边垂直平分线的交点6.如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F,则下列结论正确的是(B)A.点F在BC边的垂直平分线上B.点F在∠BAC的平分线上C.△BCF是等腰三角形D.△BCF是直角三角形7.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC;②△ACE≌△BDE;③点E在∠O的平分线上.其中正确的结论个数是(D)A.0 B.1 C.2 D.38.如图,∠AOB和一条定长线段m,在∠AOB内找一点P,使P到OA,OB的距离都等于m,作法如下:①作OB的垂线NH,使NH=m,H为垂足;②过点N作NM∥OB;③作∠AOB的平分线OP,与NM交于点P;④点P即为所求.其中③的作图的依据是(B)A.平行线之间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边的距离相等D.到线段两个端点距离相等的点在线段的垂直平分线上三、解答题9.(1)如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠EAC 的平分线.证明:∵DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F , ∴∠BED =∠CFD =90°. ∴△BDE 与△CDE 是直角三角形. 在Rt △BDE 和Rt △CDF 中,⎩⎪⎨⎪⎧EB =FC ,BD =CD , ∴Rt △BDE ≌Rt △CDF(HL). ∴DE =DF.∵DE ⊥AB ,DF ⊥AC , ∴AD 是∠EAC 的平分线.(2)如图,BE 是△ABC 的角平分线,过点E 作ED ⊥BC 于点D ,若AB =4,DE =2,求△ABE 的面积.解:过点E 作EF ⊥BA 的延长线于点F. ∵ED ⊥BC, BE 是△ABC 的角平分线, ∴ED =EF =2.∴S △ABE =12AB ·EF =12×4×2=4.10.我们把两组邻边相等的四边形叫作“筝形”.如图,四边形ABCD 是一个筝形,其中AB =CB ,AD =CD ,对角线AC ,BD 相交于点O ,OE ⊥AB ,OF ⊥CB ,垂足分别是E ,F.求证:OE =OF.证明:在△ABD 和△CBD 中, ⎩⎪⎨⎪⎧AB =CB ,AD =CD ,BD =BD ,∴△ABD ≌△CBD(SSS).∴∠ABD =∠CBD ,即BD 平分∠ABC. 又∵OE ⊥AB ,OF ⊥CB , ∴OE =OF.B 组(中档题)一、填空题11.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,∠ACB 的平分线与∠ABC 的外角的平分线交于点E ,则∠AEB =45°.12.如图所示,△ABC 的角平分线AD 将BC 边分成2∶1两部分.若AC =3 cm ,则AB =6_cm .13.如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M ,N 两点,则以下结论:①PM =PN 恒成立;②OM +ON 的值不变;③四边形PMON 的面积不变;④MN 的长不变,其中正确的为①②③(填序号).二、解答题14.如图,AP ,CP 分别是△ABC 的外角∠MAC 和∠NCA 的平分线,它们交于点P.求证:BP 为∠MBN 的平分线.证明:过点P 分别作三边AB ,AC ,BC 的垂线段PD ,PF ,PE. ∵AP 是∠MAC 的平分线,PD ⊥AM ,PF ⊥AC , ∴PD =PF.∵CP 是∠NCA 的平分线,PE ⊥CN ,PF ⊥AC , ∴PE =PF. ∴PD =PE.又∵PD ⊥BM ,PE ⊥BN. ∴AP 为∠MBN 的平分线.C 组(综合题)15.如图,在△ABC 中,∠BAC 和∠ABC 的平分线相交于点O ,过点O 作EF ∥AB 交BC 于点F ,交AC 于点E ,过点O 作OD ⊥BC 于点D. (1)求证:∠AOB =90°+12∠C ;(2)求证:AE +BF =EF ;(3)若OD =a ,CE +CF =2b ,则S △CEF =ab (用含a ,b 的代数式表示).证明:(1)∵AO ,BO 平分∠BAC 和∠ABC ,∴∠OAB =∠OAE =12∠BAC ,∠OBA =∠OBF =12∠ABC. ∴∠AOB =180°-∠OAB -∠OBA =180°-12∠COB -12∠ABC =180°-12(∠COB +∠ABC)=180°-12(180°-∠C)=90°+12∠C. (2)∵EF ∥AB ,∴∠OAB =∠AOE ,∠ABO =∠BOF.又∵∠OAB =∠EAO ,∠OBA =∠OBF ,∴∠AOE =∠EAO ,∠BOF =∠OBF.∴AE =OE ,BF =OF.∴EF =OE +OF =AE +BF.。

人教版七年级数学下册 5.4 平移 同步练习 试题 含答案

人教版七年级数学下册  5.4 平移  同步练习 试题 含答案

5.4 平移一.选择题(共8小题)1.下列现象中是平移的是()A.将一张纸沿它的中线折叠B.电梯的上下移动C.飞碟的快速转动D.翻开书中的每一页纸张2.在下图所示的四个三角形中,能由△ABC经过平移得到的是()A.B.C.D.3.下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤4.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格5.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.6.下列四组图形中,平移其中一个三角形可以得到另一个三角形的一组图形是()A.B.C.D.7.下列平移作图错误的是()A.B.C.D.8.下列平移作图不正确的是()A.B.C.D.二.填空题(共6小题)9.如图,将△ABC沿BC方向平移到△DEF,若A、D间的距离为1,CE=2,则BF=.10.如图,将周长为8的△ABC沿BC方向向右平移1.5个单位得到△DEF,则四边形ABFD的周长为.11.如图,△ABC平移后的图形是△A′B′C′,其中C与C′是对应点,请画出平移后的三角形△A′B′C′.(作图题)12.如图,在一块长为20m,为10m的长方形草地上,修建两条宽为2m的长方形小路,则这块草地的绿地面积(图中空白部分)为m213.如图,在△ABC中,∠B=90°,BC=5cm,AB=12cm,则图中4个小直角三角形周长的和为.14.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.三.解答题(共6小题)15.如图,将三角形ABC水平向右平移得到三角形DEF,A,D两点的距离为1,CE=2,∠A=70°.根据题意完成下列各题:(1)AC和DF的数量关系为;AC和DF的位置关系为;(2)∠1=度(3)BF=.16.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出∠ADB;若不存在,请说明理由.17.如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6cm,则BE=cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.18.如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(3,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移3个单位长度,再向上平移1个单位长度,画出平移后的△A1B1C1;(3)求△ABC的面积.19.如图,在正方形网格中有一个△ABC,按要求进行下列作图(只借助网格,需要写出结论).(1)过点B画出AC的平行线;(2)画出三角形ABC向右平移5格,在向上平移2格后的△DEF;(3)若每一个网格的单位长度为a,求三角形ABC的面积.20.如图,凯瑞酒店准备进行装修,把楼梯铺上地毯.已知楼梯的宽度是2米,楼梯的总长度为8米,总高度为6米,已知这种地毯每平方米的售价是60元.请你帮老板算下,购买地毯多少钱?参考答案一.选择题(共8小题)1.B.2.C.3.D.4.C.5.D.6.A.7.C.8.C.二.填空题(共6小题)9.BF=BE+EC+CF=4.10.11.11.作法:(1)连接CC′,过点C作A′C′∥AC,且相等,再过点A′,作A′B′∥AB且相等,连接A′、B′、C′,△A′B′C′就是所画的三角形.12.144.13.3014.(ab﹣a﹣2b+2).三.解答题(共6小题)15.解:(1)AC和DF的关系式为AC=DF,AC∥DF.(2)∵三角形ABC水平向右平移得到三角形DEF,∴AB∥DE,∵∠A=70°,∴∠1=110(度);(3)BF=BE+CE+CF=2+1+1=4.故答案为:AC=DF,AC∥DF;110;4;16.解:(1)直线AD与BC互相平行,理由:∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°;(3)存在.设∠ABD=∠DBF=∠BDC=x°.∵AB∥CD,∴∠BEC=∠ABE=x°+40°;∵AB∥CD,∴∠ADC=180°﹣∠A=80°,∴∠ADB=80°﹣x°.若∠BEC=∠ADB,则x°+40°=80°﹣x°,得x°=20°.∴存在∠BEC=∠ADB=60°.17.解:(1)∵将△ABC沿直线AB向右平移得到△BDE,∴△ABC≌△BDE,∴BE=AC=6cm,故答案为:6;(2)由(1)知△ABC≌△BDE,∴∠DBE=∠CAB=50°、∠BDE=∠ABC=100°,∴∠CBE=180°﹣∠ABC﹣∠DBE=30°.18.解:(1)点A的坐标是:(4,﹣1),点B的坐标是:(5,3);故答案为:(4,﹣1),(5,3);(2)如图所示:△A1B1C1,即为所求;(3).19.解:(1)如图,直线BP为所作.(2)如图,△DEF为所作;(3)三角形ABC的面积=×3a×2a=3a2.20.解:如图,利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为8米,6米,即可得地毯的长度为6+8=14(米),地毯的面积为14×2=28(平方米),故买地毯至少需要28×60=1680(元).购买地毯需要1680元.。

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册第五章相交线与平行线 5.1 相交线同步练习一、单选题(共10题;共30分)1.如图所示,∠1和∠2是对顶角的图形有( )A. 1个B. 2个C. 3个D. 4个2.如图,下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角3.如图所示,∠1和∠2是对顶角的是()A. B. C. D.4.下列说法中正确的个数为()①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A. 1B. 2C. 3D. 45.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°6.如图所示,下列说法错误的是()A. ∠A和∠B是同旁内角B. ∠A和∠3是内错角C. ∠1和∠3是内错角D. ∠C和∠3是同位角7.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A. 30°B. 34°C. 45°D. 56°8.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10题;共30分)11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________12.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.13.如图,∠1和∠2是________角,∠2和∠3 是________角。

人教版数学七年级下全册同步练习(答案全)

人教版数学七年级下全册同步练习(答案全)

第五章相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF(D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60° (B)∠1=∠3=90°,∠2=∠4=30° (C)∠1=∠3=90°,∠2=∠4=60° (D)∠1=∠3=90°,∠2=60°,∠4=30° 三、判断正误10.如果两个角相等,那么这两个角是对顶角.( )11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( )12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角. ( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a ,b ,c 两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB外一点有且只有一条直线与AB垂直.( ) 13.连接直线l外一点到直线l上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( )16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒(D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm(B)小于3cm(C)不大于3cm(D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m(D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ). (A)0(B)1(C)2(D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条(D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a ,b 被直线c 所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______; (3)∠1与∠5是_______;(4)∠5与∠3是______; (5)∠5与∠4是_______;(6)∠8与∠4是______; (7)∠4与∠6是_______;(8)∠6与∠3是______; (9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B 和∠ECD 可看成是直线AB 、CE 被直线______所截得的_______角; (2)∠A 和∠ACE 可看成是直线_______、______被直线_______所截得的______角. 4.如图4所示,(1)∠AED 和∠ABC 可看成是直线______、______被直线______所截得的_______角;图2 图3 图4(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3. 求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( ) ∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________) 即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。

数学人教版七年级下册同步训练:第五章5.2---5.4练习题含答案

数学人教版七年级下册同步训练:第五章5.2---5.4练习题含答案

5.2 平行线及其判定一、单选题1.下列说法正确的有( )①同位角相等;②两点之间的所有连线中,线段最短;③过一点有且只有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤已知同一平面内70AOB ∠=︒,30BOC ∠=︒,则100AOC ∠=︒;A. 1个B. 2个C. 3个D. 4个2.如图,已知,AB CD BC DA ==,下列结论:①BAC DCA ∠=∠;②ACB CAD ∠=∠;③//AB CD .其中正确的结论有( )A. 0个B.1个C. 2个D.3个3.如图,在下列四个条件中,可得CE AB ∥的条件是( )A.23∠∠=B.4180ACD ∠∠︒+=C.14∠∠=D.2180BCE ∠∠︒+=4.如图所示,一个零件ABCD 只需要满足AB 边与CD 边平行就合格,现只有一个量角器,测得拐角120ABC ∠︒=,60BCD ∠︒=,那么这个零件是否合格( )A.合格B.不合格C.不一定D.无法判断5.下列说法不正确的是( )A.100米跑道的跑道线所在的直线是平行线B.马路的斑马线所在的直线是平行线C.若//a b ,//b d ,则a d ⊥D.过直线外一点有且只有一条直线与已知直线平行6.如图,12∠∠=,则直线AB CD ∥的是( )A. B.C. D.7.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度是( )A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°8.如图,点E 在BC 的延长线上,下列条件中不能判定AB CD ∥的是( )A.12∠∠=B.34∠∠=C.B DCE ∠∠=D.180D DAB ∠∠︒+=二、填空题9.在同一平面内有三条直线,如果其中有且只有两条直线平行,那么这三条直线有且只有 个交点.10.如图所示,木工师傅用角尺画出工件边缘的两条垂线,则这两条垂线 .11.如图,要使CF BG ∥,你认为应该添加的一个条件是 .12.如图,70A ∠︒=,O 是AB 上一点,直线OD 与AB 所夹角82BOD ∠︒=,要使OD AC ∥,直线OD 绕点O 按逆时针方向旋转 度.13.已知,如图,ABC ADC ∠∠=,BF DE ,分别平分ABC ∠与ADC ∠,且13∠∠=.试说明:AB CD ∥.请根据条件进行推理,得出结论,并在括号内注明理由.解:BF DE ,分别平分ABC ∠与ADC ∠, 112ABC ∴∠∠=,122ADC ∠∠=( ) ABC ADC ∠∠=,∴∠ ∠= .13∠∠=,2∴∠= (等量代换)∴ ∥ ( )三、解答题14.已知,如图,AD 是一条直线,160∠︒=,2120∠︒=.试说明//BE CF .参考答案1.答案:A①同位角不一定相等,错误;②两点之间的所有连线中,线段最短,正确;③过直线外一点有且只有一条直线与已知直线平行,错误;④两点之间的距离是两点间的线段的长度,错误;⑤已知同一平面内70,30AOB BOC ∠=︒∠=︒,则100AOC ∠=︒或40︒,错误。

2020-2021学年北师大版七年级数学下册第五章 生活中的轴对称 单元同步练习题

2020-2021学年北师大版七年级数学下册第五章 生活中的轴对称 单元同步练习题

2020-2021学年北师大版七年级数学下册第五章生活中的轴对称单元同步练习题A组(基础题)一、填空题1.(1)如图,在2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有______个.(2)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,且AB=8 cm,则△DEB的周长为______cm.2.(1)如图,在△ABC中,点D,E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是______.(2)如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为______cm.3.如图,△ABC的三边AB,BC,CA的长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S △BCO∶S△CAO=______.4.如图,点M是∠AOB平分线上一点,∠AOB=60°,ME⊥OA于点E,OE= 3.如果P是OB上一动点,则线段MP 的取值范围是______.二、选择题5.下列图形中,是轴对称图形的是( )A B C D6.如图,在Rt △ABC 中,∠ACB =90°,∠A =50°,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ,则∠ACD 的度数是( ) A .50°B .40°C .30°D .20°7.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D.若CD =6,AB =16,则△ABD的面积为( ) A .16B .32C .48D .608.如图,已知D ,E 是BC 边上的点,且BD =CE ,下列条件不能判定△ABE ≌△ACD 的是(C) A .AB =ACB .AD =AEC .BE =CDD .∠BDA =∠CEA三、解答题9.(1)如图,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC ,求证:∠A +∠C =180°.(2)如图,在Rt△ABC中,已知∠ACB=90°,AC=BC,D是斜边的中点,经过点C引一条直线l(不与AC,BC重合并且不经过点D),经过点A作AE⊥l,经过点B作BF⊥l,连接DE,DF,猜想△DEF的形状并证明.10.(1)如图,在△ABC中,AB=AC,D是BC的中点,过点A的直线EF∥BC,且AE=AF,连接DE,DF,求证:DE =DF.证明:如图,连接AD,∵AB=AC,D是BC的中点,(2)在△ABC中,∠ACB=90 ,AC=BC,点D为线段AC上的一点(不和点A,C重合)点E在线段BD的延长线上,点F在线段BD上,连接CE,CF,AE,且∠ECF=90°,CE=CF,过点F作FG⊥BD,分别交线段BC、线段AC的延长线于点P,G.①如图1,求证:AC=CG;②如图2,延长线段GF交线段AB于点H,连接DH,当AH=BH时,求证:∠BHG=∠AHD.图1 图2B 组(中档题)一、填空题11.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,△ABC 的面积是28 cm 2,AB =16 cm ,AC =12 cm ,则DE 的长为_____cm.12.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO.若∠CDO +∠CFO =88°,则∠C =______.13.如图,在△ABC 中,点D 为AC 的中点,∠ABC 的平分线与AC 的垂直平分线交于点E ,连接DE ,过点E 分别作AB ,BC 所在直线的垂线,垂足分别为M ,N.若AM =2 cm ,AB =3.2 cm ,则BC 的长为______cm.二、解答题14.如图,O 为△ABC 内部一点,OB =312,P ,R 为点O 分别以直线AB 、直线BC 为对称轴的对称点.(1)请指出当∠ABC 为多少度时,会使得PR 的长度等于7?并说明PR 的长度在此时会等于7的理由. (2)在(1)的情况下,当∠ABC 不是你指出的角度时,PR 的长度是小于7还是大于7?说明你判断的理由.C组(综合题)15.已知:在四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC, ∠ABC=120°,∠MBN=60°,将∠MBN绕点B旋转.(1)当∠MBN旋转到图1的位置,此时∠MBN的两边分别交AD,DC于点E,F,且AE=CF.求证:①BE=BF;②AE+CF=EF.(2)当∠MBN旋转到图2的位置,此时∠MBN的两边分别交AD,DC于点E,F,且AE≠CF,小颖猜想(1)中的AE+CF =EF仍然成立,并尝试作出了延长DC至点K,使CK=AE,连接BK,请你证明小颖的猜想;(3)当∠MBN旋转到图3的位置,此时∠MBN的两边分别交AD,DC于点E,F,请你猜想线段AE,CF,EF之间的数量关系,并证明你的猜想.参考答案2020-2021学年北师大版七年级数学下册第五章生活中的轴对称单元同步练习题A组(基础题)一、填空题1.(1)如图,在2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有3个.(2)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,且AB=8 cm,则△DEB的周长为8cm.2.(1)如图,在△ABC中,点D,E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是120°.(2)如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为2cm.3.如图,△ABC的三边AB,BC,CA的长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S △BCO∶S△CAO=2∶3∶4.4.如图,点M是∠AOB平分线上一点,∠AOB=60°,ME⊥OA于点E,OE= 3.如果P是OB上一动点,则线段MP 的取值范围是MP≥1.二、选择题5.下列图形中,是轴对称图形的是(C)A B C D6.如图,在Rt △ABC 中,∠ACB =90°,∠A =50°,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ,则∠ACD 的度数是(D) A .50°B .40°C .30°D .20°7.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D.若CD =6,AB =16,则△ABD的面积为(C) A .16B .32C .48D .608.如图,已知D ,E 是BC 边上的点,且BD =CE ,下列条件不能判定△ABE ≌△ACD 的是(C) A .AB =ACB .AD =AEC .BE =CDD .∠BDA =∠CEA三、解答题9.(1)如图,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC ,求证:∠A +∠C =180°.证明:过点D 作DE ⊥BC 于点E ,过点D 作DF ⊥AB 交BA 的延长线于点F. ∵BD 平分∠ABC ,∴DE =DF ,∠DEC =∠F =90°. 在Rt △CDE 和Rt △ADF 中,⎩⎪⎨⎪⎧CD =AD ,DE =DF , ∴Rt △CDE ≌Rt △ADF(HL). ∴∠C =∠FAD.∴∠BAD +∠C =∠BAD +∠FAD =180°.(2)如图,在Rt △ABC 中,已知∠ACB =90° ,AC =BC ,D 是斜边的中点,经过点C 引一条直线l(不与AC ,BC 重合并且不经过点D),经过点A 作AE ⊥l ,经过点B 作BF ⊥l ,连接DE ,DF ,猜想△DEF 的形状并证明.解:△DEF 为等腰直角三角形. 证明:连接CD. ∵AE ⊥CE ,BF ⊥CE , ∴∠AEC =∠BFC =90°.∵∠ACE +∠BCF =90°,∠BCF +∠CBF =90°, ∴∠ACE =∠CBF. 在△ACE 和△CBF 中, ⎩⎪⎨⎪⎧∠AEC =∠CFB =90°,∠ACE =∠CBF ,AC =CB ,∴△ACE ≌△CBF(AAS). ∴AE =CF ,∠CAE =∠BCF. ∵∠CAB =∠DCB =45°, ∴∠DAE =∠DCF. 又∵AD =CD ,∴△AED≌△CFD(SAS).∴ED=FD,∠ADE=∠CDF.∴∠EDF=∠ADE+∠ADF=∠CDF+∠ADF=90°.∴△DEF为等腰直角三角形.10.(1)如图,在△ABC中,AB=AC,D是BC的中点,过点A的直线EF∥BC,且AE=AF,连接DE,DF,求证:DE =DF.证明:如图,连接AD,∵AB=AC,D是BC的中点,∴AD⊥BC.∵EF∥BC,∴AD⊥EF.又∵AE=AF,∴AD是EF的垂直平分线.∴DE=DF.(2)在△ABC中,∠ACB=90 ,AC=BC,点D为线段AC上的一点(不和点A,C重合)点E在线段BD的延长线上,点F在线段BD上,连接CE,CF,AE,且∠ECF=90°,CE=CF,过点F作FG⊥BD,分别交线段BC、线段AC的延长线于点P,G.①如图1,求证:AC=CG;②如图2,延长线段GF交线段AB于点H,连接DH,当AH=BH时,求证:∠BHG=∠AHD.图1 图2证明:①∵∠BCG=180°-∠ACB=90°=∠ECF,∴∠BCG+∠BCF=∠ECF+∠BCF,即∠FCG=∠ECB.∵FG⊥BD,∴∠DFG=90°,∴∠DBC+∠BDG=90°.又∵∠DGF+∠BDG=90°,∴∠DBC=∠DGF.在△BCE 和△GCF 中, ⎩⎪⎨⎪⎧∠ECB =∠FCG ,∠EBC =∠FGC ,CE =CF ,∴△BCE ≌△GCF(AAS).∴CB =CG. 又∵AC =CB ,∴AC =CG. ②在△BDC 和△GPC 中, ⎩⎪⎨⎪⎧∠DCB =∠PCG ,CB =CG ,∠DBC =∠PGC ,∴△BDC ≌△GPC(ASA).∴CD =CP. ∵AC =BC ,∴AD =BP. ∵AC =BC ,∴∠BAC =∠ABC. 在△AHD 和△BHP 中, ⎩⎪⎨⎪⎧AH =BH ,∠HAD =∠HBP ,AD =BP ,∴△AHD ≌△BHP(SAS). ∴∠BHG =∠AHD.B 组(中档题)一、填空题11.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,△ABC 的面积是28 cm 2,AB =16 cm ,AC =12 cm ,则DE 的长为2cm.12.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO.若∠CDO +∠CFO =88°,则∠C =46°.13.如图,在△ABC 中,点D 为AC 的中点,∠ABC 的平分线与AC 的垂直平分线交于点E ,连接DE ,过点E 分别作AB ,BC 所在直线的垂线,垂足分别为M ,N.若AM =2 cm ,AB =3.2 cm ,则BC 的长为7.2cm.二、解答题 14.如图,O 为△ABC 内部一点,OB =312,P ,R 为点O 分别以直线AB 、直线BC 为对称轴的对称点. (1)请指出当∠ABC 为多少度时,会使得PR 的长度等于7?并说明PR 的长度在此时会等于7的理由.(2)在(1)的情况下,当∠ABC 不是你指出的角度时,PR 的长度是小于7还是大于7?说明你判断的理由.解:(1)∠ABC =90°时,PR =7.理由如下:连接PB ,RB ,∵点P ,R 为点O 分别以直线AB 、直线BC 为对称轴的对称点,∴PB =OB =312,RB =OB =312,∠ABP =∠ABD ,∠CBR =∠CBO. ∵∠ABC =90°,∴∠ABP +∠CBR +∠ABO +∠CBO =2∠ABC =180°.∴P ,B ,R 三点共线.∴PR =PB +BR =7.(2)PR 的长度小于7.理由如下:当∠ABC ≠90°时,则点P ,B ,R 三点不在同一直线上,连接PR ,∴PB +BR >PR.∵PB +BR =2OB =2×312=7,∴PR <7. C 组(综合题)15.已知:在四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB =BC, ∠ABC =120°,∠MBN =60°,将∠MBN 绕点B 旋转.(1)当∠MBN 旋转到图1的位置,此时∠MBN 的两边分别交AD ,DC 于点E ,F ,且AE =CF.求证:①BE =BF ;②AE +CF =EF.(2)当∠MBN 旋转到图2的位置,此时∠MBN 的两边分别交AD ,DC 于点E ,F ,且AE ≠CF ,小颖猜想(1)中的AE +CF =EF 仍然成立,并尝试作出了延长DC 至点K ,使CK =AE ,连接BK ,请你证明小颖的猜想;(3)当∠MBN 旋转到图3的位置,此时∠MBN 的两边分别交AD ,DC 于点E ,F ,请你猜想线段AE ,CF ,EF 之间的数量关系,并证明你的猜想.解:(1)证明:①在△ABE 和△CBF 中,⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCF ,AE =CF ,∴△ABE ≌△CBF(SAS).∴BE =BF.②由①知△ABE ≌△CBF ,∴∠ABE =∠CBF =12(∠ABC -∠MBN)=12(120°-60°)=30°. ∴AE =12BE ,CF =12BF. ∵BE =BF ,∠MBN =60°,∴△BEF 是等边三角形.∴BE =BF =EF.∴AE +CF =12BE +12BF =EF. (2)证明:延长DC 至点K ,使得CK =AE ,连接BK.在△ABE 和△CBK 中,⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCK ,AE =CK ,∴△ABE ≌△CBK(SAS).∴BE =BK ,∠ABE =∠KBC.∵∠ABE +∠CBE =120°,∴∠KBC +∠CBE =120°,即∠KBE =120°.∵∠EBF =60°,∴∠KBF =∠EBF =60°.在△EBF 和△KBF 中,⎩⎪⎨⎪⎧BK =BE ,∠KBF =∠EBF ,BF =BF ,∴△EBF ≌△KBF(SAS).∴EF =KF.∵KF =CK +CF ,∴AE +CF =EF.(3)猜想:AE -CF =EF.证明:在DC 的延长线上取点K ,使CK =AE ,连接BK. 在△ABE 和△CBK 中,⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCK ,AE =CK ,∴△ABE ≌△CBK(SAS).∴BE =BK ,∠ABE =∠KBC.∵∠ABE +∠CBE =120°,∴∠KBC +∠CBE =120°,即∠KBE =120°. ∵∠EBF =60°,∴∠KBF =∠EBF =60°.在△EBF 和△KBF 中,⎩⎪⎨⎪⎧BE =BK ,∠KBF =∠KBF ,BF =BF ,∴△EBF ≌△KBF(SAS).∴EF =KF.∵KF =CK -CF ,∴AE -CF =EF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.1 相交线姓名_____________一、选择题:1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( )A.62°B.118°C.72°D.59°5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:1. 如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A OED CBA(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD =•______.5.对顶角的性质是______________________.6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA(7) (8) (9)7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________. 8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、解答题:1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.OF EDCBA 122,如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.cba3412答案:一、1.A 2.B 3.B 4.A 5.D 二、1.∠2和∠4 ∠3 2.155° 25° 155° 4.35° 5.对顶角相等 •6 .125° 55° 7.147.5° 8.42°三、1.∠2=60° 2.∠4=36°四、1.∠BOD=120°,∠AOE=30° 2.∠BOD=72° 3.∠4=32.5° 五、1.4条不同的直线相交于一点,图中共有12对对顶角(平角除外),n 条不同的直线相交于一点,图中共有(n 2-n)对对顶角(平角除外).2.6条直线最多可以把平面分成22个部分,n 条直线最多可以把平面分成(1)12n n +⎡⎤+⎢⎥⎣⎦个部分.六、∠AOC 与∠BOD 不一定是对顶角.如图1所示,当射线OC,OD 位于直线AB 的一侧 时,不是对顶角;如图2所示,当射线OC,OD 位于直线AB 的两侧时,是对顶角.(1)O D C BA21(2)O DCBA七、140°.5.1.3同位角、内错角、同旁内角同步练习姓名_____________一、填空题1.如图1,直线a 、b 被直线c 所截,∠1和∠2是 ,∠3和∠4是 ,∠3和∠2是 。

2.如图2,∠1和∠2是直线 和直线 被直线 所截得的 角。

3.如图3,∠1的内错角是 ,∠A 的同位角是 ,∠B 的同旁内角是 。

4.如图4,和∠1构成内错角的角有个;和∠1构成同位角的角有个;和∠1构成同旁内角的角有个。

5.如图5,指出同位角是,内错角是,同旁内角是。

二、选择题6.如图6,和∠1互为同位角的是( )(A)∠2; (B)∠3;(C)∠4; (D)∠5。

7.如图7,已知∠1与∠2是内错角,则下列表达正确的是( )(A)由直线AD、AC被CE所截而得到的;(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。

8.在图8中1和2是同位角的有( )(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。

9.如图9,在指明的角中,下列说法不正确的是( )(A)同位角有2对; (B)同旁内角有5对;(C)内错角有4对; (D)∠1和∠4不是内错角。

10.如图10,则图中共有( )对内错角(A)3; (B)4; (C)5; (D)6。

三、简答题11.如图11(1)说出∠1与∠2互为什么角?(2)写出与∠1成同位角的角;(3)写出与∠1成内错角的角。

12.如图12(1)说出∠A与∠1互为什么角?(2) ∠B与∠2是否是同位角;(3)写出与∠2成内错角的角。

(B卷)一、填空题1.如图1,∠1和∠2可以看作直线和直线被直线所截得的角。

2.如图2,∠1和∠2是直线和直线被直线被直线所截得的角。

3.如图3,直线DE、BC被直线AC所截得的内错角是;∠B与∠C可以看作直线、被直线所截得的角。

4.如图4,与∠EFC构成内错角的是;与∠EFC构成同旁内角的是。

5.如图5,与∠1构成内错角的角有个;与∠1构成同位角的角有个;与∠1构成同旁内角的角有个。

二、选择题6.如图6,与∠C互为同位角的是( )(A) ∠1; (B) ∠2; (C) ∠3; (D) ∠4。

7.在图7,∠1和2是对顶角的是( )8.如图8,(1) ∠1与∠4是内错角; (2) ∠1与∠2是同位角;(3) ∠2与∠4是内错角; (4) ∠4与∠5是同旁内角;(5) ∠3与∠4是同位角; (6) ∠2与∠5是内错角。

其中正确的共有( )(A)1个; (B)2个; (C)3个; (D)4个。

9.如图9,下列说法错误的是( )(A) ∠3与∠A是同位角; (B) ∠B是∠A是同旁内角;(C) ∠2与∠3是内错角; (D) ∠2与∠B是内错角。

10.如图10,AB、CD、EF三条直线两两相交,则图中共有( )同位角。

(A)12对 (B)8对; (C)4对; (D)以上都不对。

三、简答题11.如图11,(1)说出∠1与∠2互为什么角?(2)写出与∠1成同位角的角;(3)写出与∠1成同旁内角的角。

12.如图12,(1)说出∠1与∠2互为什么角?(2)写出与∠2成同位角的角;(3)写出与∠2成内错角的角。

13.如图13,指出同位角、内错角、同旁内角。

参考答案A卷一、1.同位角、同旁内角、内错角 2.EF、CD、AB、同位角 3.∠3、∠1、∠1或∠2 4.3、3、3 5. ∠1与∠5,∠2与∠4、∠1与∠4,∠2与∠5、∠1与∠3,∠2与∠3,∠1与∠2 二、6.C 7.B 8.B 9.C 10.B 三、11.(1)内错角 (2) ∠MEB (3) ∠2,∠AEF 12.(1)同位角 (2)不是 (3) ∠DOB,∠DEA,∠1 13.同位角:∠2与∠6,∠1与∠4,∠1与∠5,∠3与∠7;内错角:∠2与∠4,∠3与∠5;同旁内角:∠1与∠2,∠1与∠3,∠2与∠3,∠5与∠4,∠5与∠6,∠4与∠7,∠6与∠7,∠1与∠7,∠1与∠6B卷一、1.AB,BC,CD,内错角 2.AB,AC,BC,同位角 3. ∠C与∠EAC;AB,AC,BC,同旁内角4. ∠FCB,∠DEF,∠AEF、∠ECF,∠FEC 5.2,4,2 二、6.A 7.D 8.D 9.D 10.A 三、11.(1)同位角 (2) ∠2,∠MEB (3) ∠H,∠FEB,∠FEH 12.(1)内错角 (2) ∠F,∠BCA,∠DMC (3) ∠1,∠BDE 13.同位角;∠1与∠8,∠3与∠9;内错角:∠2与∠4,∠3与∠5,∠4与∠7,∠6与∠8,同旁内角:∠1与∠2, ∠1与∠3,∠2与∠3,∠4与∠5,∠4与∠6,∠5与∠6,∠7与∠8,∠7与∠9,∠8与∠9,∠1与∠95.1.2垂线姓名_______________一、选择题:1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、解答题1.如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.G OF EDCBA2.如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.3.如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.NBA5.2.1 平行线 (同步练习) •姓名_______________一、选择题:1.在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交;C.垂直或平行D.平行、垂直或相交 2.下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行3.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( ) A.0个 B.1个 C.2个 D.3个4.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;lA③若线段AB 与CD 没有交点,则AB ∥CD;④若a ∥b,b ∥c,则a 与c 不相交. A.1个 B.2个 C.3个 D.4个 5.过一点画已知直线的平行线,则( )A.有且只有一条B.有两条;C.不存在D.不存在或只有一条 二、填空题:1.在同一平面内,____________________________________叫做平行线.2.若AB ∥CD,AB ∥EF,则_____∥______,理由是__________________.3.在同一平面内,若两条直线相交,则公共点的个数是________;•若两条直线平行,则公共点的个数是_________.4.同一平面内的三条直线,其交点的个数可能为________.5.直线L 同侧有A,B,C 三点,若过A,B 的直线L 1和过B,C 的直线L 2都与L 平行,则A,•B,C 三点________,理论根据是___________________________. 三、解答题:1. 已知直线a ∥b,b ∥c,c ∥d,则a 与d 的关系是什么?为什么?2.如图所示,梯形ABCD 中,AD ∥BC,P 是AB 的中点,过P 点作AD 的平行线交DC 于Q 点. (1)PQ 与BC 平行吗?为什么?(2)测量PQ 与CQ 的长,DQ 与CQ 是否相等?Q P DCBA3.如图所示,a ∥b,a 与c 相交,那么b 与c 相交吗?为什么?c ba4.根据下列要求画图.(1)如图(1)所示,过点A 画MN ∥BC;(2)如图(2)所示,过点P 画PE ∥OA,交OB 于点E,过点P 画PH ∥OB,交OA 于点H;(3)如图(3)所示,过点C 画CE ∥DA,与AB 交于点E,过点C 画CF ∥DB,与AB•的延长线交于点F.C BABD CBA(1) (2) (3)5.平面内有10条直线,无任何三条交于一点,欲使它们有31个交点,怎样才能办到?答案:一、1.A 2.D 3.C 4.B 5.D 二、1.不相交的两条直线2.CD EF 平行于同一条直线的两条直线平行3.1个 0个4.0个或1个或2个或3个5.在一条直线上 •过直线外一点有且只有一条直线与已知直 线平行 三、1.a 与d 平行,理由是平行具有传递性. 1. 解:(1)平行.∵PQ ∥AD,AD ∥BC, ∴PQ ∥BC. (2)DQ=CQ.四、1.解:b 与c 相交,假设b 与c 不相交, 则b ∥c, ∵a ∥b∴a ∥c,与已知a 与c•相交矛盾. 2. 解:如图5所示.N MCBA(1) (2)FEDCBA(3)5.2.2 平行线 的判定(同步练习) •姓名一.填空题:1.如图③ ∵∠1=∠2,∴_______∥________( )。

相关文档
最新文档