模型飞机螺旋桨原理与拉力计算

合集下载

航模螺旋桨基础知识1

航模螺旋桨基础知识1

航模螺旋桨基础知识1 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、工作原理二、可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

三、空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

四、从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

五、从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:六、T=Ctρn2D4七、P=Cpρn3D5八、η=J·Ct/Cp九、式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

螺旋桨推力计算模型根据船舶原理知通过资料

螺旋桨推力计算模型根据船舶原理知通过资料

螺旋桨推力计算模型根据船舶原理知通过资料螺旋桨是船舶的主要推进器件,它的淌水特性对船舶的推力性能具有重要影响。

螺旋桨推力计算模型可以根据船舶原理和相关资料提供有效的推力计算方法。

本文将从螺旋桨的基本原理、淌水特性以及推力计算模型等方面进行详细介绍。

一、螺旋桨的基本原理螺旋桨是船舶的主要推进器件,它由一系列螺旋线形成。

当螺旋桨旋转时,水流会被螺旋桨叶片推动并产生一定的反作用力,从而推进船舶前进。

螺旋桨的推力主要来自两个方面:剪切推力和反作用推力。

剪切推力是由于螺旋桨叶片在水中剪切水流所产生的,它与螺旋桨叶片弯曲及鼓波等因素有关;反作用推力是由于螺旋桨旋转所产生的反作用力,它与螺旋桨推进转速、直径和旋转方向等因素有关。

二、螺旋桨的淌水特性1.淌水流场螺旋桨在淌水过程中,会形成一定的淌水流场。

这个流场受到螺旋桨叶片形状、转速和船舶运动速度等因素的影响,它对螺旋桨推力的大小和方向有重要影响。

2.淌水损失由于螺旋桨叶片与水之间存在一定的摩擦和阻力,螺旋桨在淌水过程中会产生一定的淌水损失。

淌水损失会降低螺旋桨的效率,因此需要通过推力计算模型来准确估计淌水损失。

3.淌水性能参数为了描述螺旋桨的推力性能,可以引入一些淌水性能参数,如推力系数、功率系数和效率等。

这些参数可以通过实验和理论模型来确定,从而有效评估螺旋桨的推力性能。

三、螺旋桨推力计算模型为了准确计算螺旋桨的推力,研究者们提出了不同的推力计算模型。

这些模型主要基于流体动力学原理和大量实验资料,可以较为准确地估计螺旋桨的淌水特性和推力性能。

推力计算模型可以通过以下几个步骤进行:1.确定船舶参数首先,需要确定船舶的一些参数,如船舶的船体形状、质量、速度和运动状态等。

这些参数将用于计算螺旋桨的推力。

2.建立淌水流场模型根据螺旋桨叶片形状和转速等参数,可以建立螺旋桨的淌水流场模型。

这个模型可以通过数值计算方法或实验测试来确定。

3.计算推力系数和淌水损失根据淌水流场模型,可以计算螺旋桨的推力系数和淌水损失。

螺旋桨拉力公式 -回复

螺旋桨拉力公式 -回复

螺旋桨拉力公式 -回复
螺旋桨拉力公式用于计算飞机或船只上螺旋桨产生的推力。

该公
式可以表示为:
拉力= (2π * 螺旋桨半径 * 推力系数 * 进气流速度) / 螺旋
桨效率
其中,螺旋桨半径表示螺旋桨的半径大小,推力系数表示螺旋桨
的设计和性能参数,进气流速度表示螺旋桨旋转时所处的空气或水流
速度,螺旋桨效率表示螺旋桨转化进气流速度为推力的效率。

螺旋桨拉力公式是航空和航海领域中的重要公式,用于计算螺旋
桨的推力大小。

在实际应用中,需要根据具体的参数和数据进行计算,以获得准确的拉力数值。

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算模型飞机螺旋桨原理与拉力计算模型飞机, 拉力, 原理, 螺旋桨一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随 J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

螺旋桨推力计算模型

螺旋桨推力计算模型

螺旋桨推力计算模型根据船舶原理知: T K T n2 D 4( K T为螺旋桨的淌水特性)通过资料查得: K T为进速系数J的二次多项式,但无具体的公式表示,只能通过图谱查得,同时 K T K T0( K T0为淌水桨在相同的转速情况下以速度为V A运动时的推力、进速系数1 tJ p V A U(1 W P))nD nD估算推力减额分数的近似公式:1.汉克歇尔公式:对于单螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.12对于单螺旋桨渔船:t=0.77Cp-0.30对于双螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.182.商赫公式对于单桨船t=KW式中: K 为系数K=0.50~0.70适用于装有流线型舵或反映舵者K=0.70~0.90适用于装有方形舵柱之双板舵者K=0.90~1.5适用于装单板舵者对于双螺旋桨船采用轴包架者:t=0.25w+0.14对于双螺旋桨船采用轴支架者:t=0.7w+0.063.哥铁保公式对于单螺旋桨标准型商船(C B=0.6~0.85 )对于双螺旋桨标准型商船(C B=0.6~0.85 )4.霍尔特洛泼公式对于单螺旋桨船C Bt 1.57 2.3 1.5C B C PCWPC Bt 1.67 2.3 1.5C BCWPt 0.001979L /( B BC P1 ) 1.0585C100.000524 0.1418D 2 /( BT )0.0015C stern 式中: C10的定义如下:当 L/B>5.2C10 B / L当 L/B<5.2C100.250.003328402/(B / L 0.134615385)对于双螺旋桨船:t C D/BT0.325B0.1885估算伴流分数的近似公式1.泰洛公式(适用于海上运输船舶)对于单螺旋桨船0.5C B0.05对于双螺旋桨船0.550.20C B式中 C B为船舶的方形系数。

螺旋桨推力计算模型

螺旋桨推力计算模型

螺旋桨推力计算模型根据船舶原理知:42D n K T T ρ=(T K 为螺旋桨的淌水特性)通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时tK K T T -=10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数nDW U nD V J P A p )1(-==) 估算推力减额分数的近似公式:1. 汉克歇尔公式:对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式对于单桨船 t=KW 式中:K 为系数K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式对于单螺旋桨标准型商船(C B =0.6~0.85) P B WPBC C C C t ⎪⎪⎭⎫ ⎝⎛+-=5.13.257.1对于双螺旋桨标准型商船(C B =0.6~0.85) B WPBC C C t 5.13.267.1+-= 4. 霍尔特洛泼公式对于单螺旋桨船sternP C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10=当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B /1885.0325.0-=估算伴流分数的近似公式1. 泰洛公式(适用于海上运输船舶)对于单螺旋桨船 05.05.0-=B C ω 对于双螺旋桨船 20.055.0-=B C ω 式中C B 为船舶的方形系数。

螺旋桨推力计算模型

螺旋桨推力计算模型

螺旋桨推力计算模型根据船舶原理知: T K T n2 D 4( K T为螺旋桨的淌水特性)通过资料查得: K T为进速系数J的二次多项式,但无具体的公式表示,只能通过图谱查得,同时 K T K T0( K T0为淌水桨在相同的转速情况下以速度为V A运动时的推力、进速系数1 tJ p V A U(1 W P))nD nD估算推力减额分数的近似公式:1.汉克歇尔公式:对于单螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.12对于单螺旋桨渔船:t=0.77Cp-0.30对于双螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.182.商赫公式对于单桨船t=KW式中: K 为系数K=0.50~0.70适用于装有流线型舵或反映舵者K=0.70~0.90适用于装有方形舵柱之双板舵者K=0.90~1.5适用于装单板舵者对于双螺旋桨船采用轴包架者:t=0.25w+0.14对于双螺旋桨船采用轴支架者:t=0.7w+0.063.哥铁保公式对于单螺旋桨标准型商船(C B=0.6~0.85 )对于双螺旋桨标准型商船(C B=0.6~0.85 )4.霍尔特洛泼公式对于单螺旋桨船C Bt 1.57 2.3 1.5C B C PCWPC Bt 1.67 2.3 1.5C BCWPt 0.001979L /( B BC P1 ) 1.0585C100.000524 0.1418D 2 /( BT )0.0015C stern 式中: C10的定义如下:当 L/B>5.2C10 B / L当 L/B<5.2C100.250.003328402/(B / L 0.134615385)对于双螺旋桨船:t C D/BT0.325B0.1885估算伴流分数的近似公式1.泰洛公式(适用于海上运输船舶)对于单螺旋桨船0.5C B0.05对于双螺旋桨船0.550.20C B式中 C B为船舶的方形系数。

飞机螺旋桨推力计算公式 -回复

飞机螺旋桨推力计算公式 -回复

很高兴接到你的任务,我会尽力撰写一篇优质的文章来帮助你更好地理解飞机螺旋桨推力计算公式。

我会根据你提供的内容和主题进行全面评估,然后按照由浅入深的方式来探讨这个主题,以便你能更深入地理解。

在文章中,我会多次提及飞机螺旋桨推力计算公式,并包含总结和回顾性的内容,以便你全面、深刻和灵活地理解这个概念。

接下来,我会开始写作,然后共享我的个人观点和理解,希望能够帮助你更好地掌握这个主题。

1. 飞机螺旋桨推力计算公式飞机螺旋桨推力是飞机发动机产生的推力,它足以克服飞机的阻力并使其飞行。

根据牛顿定律,推力可以通过以下公式进行计算:推力 = 飞机速度 * 飞机阻力其中,飞机速度是指飞机在空气中前进的速度,飞机阻力是指在飞行过程中飞机所受到的阻力。

推力的计算公式需要考虑到多个因素,包括飞机的质量、空气密度、飞机速度、螺旋桨叶片的旋转速度等。

2. 飞机速度和螺旋桨推力飞机速度是计算推力时的重要参数,它直接影响飞机的动力性能。

在飞机设计中,工程师通常会根据飞机的使用需求和性能要求来确定最佳的飞行速度。

螺旋桨推力与飞机速度之间存在一定的关系,一般来说,飞机速度越大,螺旋桨产生的推力也会相应增加。

3. 飞机阻力与推力平衡飞机在飞行过程中受到的阻力包括气动阻力、重力阻力、推力和升力等因素的影响。

飞机螺旋桨推力的计算需要考虑到这些阻力因素,并通过合理的设计和调整来实现推力与阻力的平衡。

只有在推力和阻力平衡的情况下,飞机才能保持稳定的飞行状态。

4. 个人观点和理解在我看来,飞机螺旋桨推力计算公式是飞机设计和航空工程中的重要内容,它涉及到飞机的动力性能与运行安全。

理解和掌握这个公式对于航空专业人士来说是至关重要的,因为它直接关系到飞机的飞行稳定性和安全性。

通过深入学习和研究这个公式,我们可以更好地理解飞机的动力学原理,为飞机设计和飞行操作提供有力的支持。

在飞机设计和运行过程中,我们需要综合考虑飞机速度、阻力、推力等因素,通过合理的计算和调整来实现飞机的优化性能。

航模螺旋桨基础知识

航模螺旋桨基础知识

航模螺旋桨基础知识1(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J =V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

螺旋桨推力计算模型根据船舶原理知(为螺旋桨的淌水特性)通过资料

螺旋桨推力计算模型根据船舶原理知(为螺旋桨的淌水特性)通过资料

螺旋桨推力计算模型根据船舶原理知:42D n K T T ρ=(T K 为螺旋桨的淌水特性)通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时tK K T T -=10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数nDW U nD V J P A p )1(-==) 估算推力减额分数的近似公式:1. 汉克歇尔公式:对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式对于单桨船 t=KW 式中:K 为系数K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式对于单螺旋桨标准型商船(C B =0.6~0.85) P B WPBC C C C t ⎪⎪⎭⎫ ⎝⎛+-=5.13.257.1对于双螺旋桨标准型商船(C B =0.6~0.85) B WPBC C C t 5.13.267.1+-= 4. 霍尔特洛泼公式对于单螺旋桨船sternP C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10=当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B /1885.0325.0-=估算伴流分数的近似公式1. 泰洛公式(适用于海上运输船舶)对于单螺旋桨船 05.05.0-=B C ω 对于双螺旋桨船 20.055.0-=B C ω 式中C B 为船舶的方形系数。

螺旋桨及其拉力计算.doc

螺旋桨及其拉力计算.doc

用螺距规制作螺旋桨如图(H——螺距,r——螺旋桨半径,α——桨叶角,h——木料厚度,b——木料宽度)桨叶角、螺距和螺旋桨半径的关系:tanα=H/(2π*r);桨叶角、木料厚度和木料厚度的关系:tanα=h/b;根据上面关系得:b=2π*h*r/H。

当选定了木料厚度h和螺旋桨螺距H后,则木料宽度b 与螺旋桨半径r 成正比关系。

根据螺旋桨半径r 的取值,就可以确定距离转轴r 处的宽度b。

由此作得下图,锉削螺旋桨时,保持OA边的高度为h,OB边的高度为零,锉出的斜面角就等于螺旋桨的桨叶角α。

螺距大则浆叶角就大, 高速飞机用小浆大浆叶角低速飞机用大浆小浆叶角螺距比(螺距/直径)在0.8以下注意,在此公式中:G的单位为克力,如模型飞机质量为700克,则G为700克力;S的单位为分米2,比如机翼面积为30dm2;那么 G/S 就是翼载荷了,各位模友可以根据自己的飞机计算出来;Cy在0.2—1.2之间大概选择一下;此时的V就是要这架模型飞机离地起飞必须达到的最低速度(相对气流的速度)了,单位仍为米/秒。

螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速²(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速²(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。

1000米以下基本可以取1。

例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50²×1×0.00025=31.25公斤。

螺旋桨拉力计算公式

螺旋桨拉力计算公式

螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。

1000米以下基本可以取1。

例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50平方×1×0.00025=31.25公斤。

如果转速达到6000转/分,那么拉力等于:100×50×10×100平方×1×0.00025=125公斤机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算)机翼升力计算公式升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。

对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力滑翔比与升阻比升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。

滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。

如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。

模型飞机飞行原理讲解

模型飞机飞行原理讲解

帖是关于遥控飞机制作原理方面的知识,如果您需要模型飞机图纸及制作资料,可以在本版块(模型图纸)查找,这里向您提供上万张的遥控飞机制作图纸及大量的制作资料。

第一章基础物理本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了或没兴趣学,请跳过这一章直接往下看。

第一节速度与加速度速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞加速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度是负数,则代表减速。

第二节牛顿三大运动定律第一定律:除非受到外来的作用力,否则物体的速度(v)会保持不变。

没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力仍是零,升力并未减少,否则飞机会越掉越快。

第二定律:某质量为m的物体的动量(p = mv)变化率是正比于外加力 F 并且发生在力的方向上。

此即著名的 F=ma 公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。

第三定律:作用力与反作用力是数值相等且方向相反。

你踢门一脚,你的脚也会痛,因为门也对你施了一个相同大小的力第三节力的平衡作用于飞机的力要刚好平衡,如果不平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我们把力分为X、Y、Z三个轴力的平衡及绕X、Y、Z三个轴弯矩的平衡。

轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x 方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。

螺旋桨拉力计算式

螺旋桨拉力计算式

螺旋桨拉力计算式————————————————————————————————作者:————————————————————————————————日期:螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。

1000米以下基本可以取1。

例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50平方×1×0.00025=31.25公斤。

如果转速达到6000转/分,那么拉力等于:100×50×10×100平方×1×0.00025=125公斤机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算)机翼升力计算公式升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。

对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力滑翔比与升阻比升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。

滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。

航模螺旋桨基础知识

航模螺旋桨基础知识

一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

直升机螺旋桨提升力计算

直升机螺旋桨提升力计算

直升机螺旋桨的提升力(升力)是直升机能够垂直起降和飞行的关键。

以下是对直升机螺旋桨提升力的详细计算和分析:一、螺旋桨提升力的基本原理直升机螺旋桨的提升力来源于桨叶在空气中旋转时产生的动力。

当螺旋桨旋转时,桨叶会切割空气,产生向下的推力,根据牛顿第三定律,直升机就会获得向上的提升力。

二、螺旋桨提升力的计算公式直升机螺旋桨的提升力可以通过以下公式进行估算:拉力(或提升力)T = 升力系数CL ×π× (旋翼直径D/2)2其中:升力系数CL:是一个与螺旋桨设计和空气动力学特性有关的系数,通常通过实验或计算流体动力学(CFD)分析获得。

π:圆周率,取值3.14159。

旋翼直径D:螺旋桨桨叶的直径,单位通常为米。

空气密度ρ:空气在标准大气压和温度下的密度,一般取值为1.225 kg/m³(在20摄氏度,海平面处)。

旋翼转速ω:螺旋桨的旋转速度,单位通常为弧度/秒(rad/s),可以通过将转速(转/分,rpm)转换为弧度/秒来计算,即ω = 2πn/60,其中n为转速(转/分)。

三、影响螺旋桨提升力的因素旋翼直径:旋翼直径越大,螺旋桨切割空气的面积就越大,产生的提升力也就越大。

旋翼转速:旋翼转速越高,桨叶切割空气的速度就越快,产生的提升力也就越大。

但需要注意的是,过高的转速可能会导致桨叶失速或产生过大的振动和噪音。

升力系数:升力系数与螺旋桨的设计、材料和空气动力学特性有关。

优化螺旋桨设计可以提高升力系数,从而增加提升力。

空气密度:空气密度越大,螺旋桨切割空气时受到的阻力就越大,产生的提升力也就越大。

但需要注意的是,空气密度随海拔和温度的变化而变化,因此在实际应用中需要考虑这些因素。

四、实际应用中的注意事项安全性:在计算螺旋桨提升力时,需要确保直升机在飞行过程中的安全性。

因此,需要综合考虑螺旋桨的设计、材料、转速和空气动力学特性等因素,以确保直升机在飞行过程中具有足够的稳定性和安全性。

旋翼拉力系数公式

旋翼拉力系数公式

旋翼拉力系数公式旋翼拉力系数公式,这可是个在航空领域相当重要的概念啊!咱先来说说啥是旋翼拉力系数。

简单来讲,它就是用来衡量旋翼产生拉力大小的一个指标。

就好像你去菜市场买菜,摊主用秤来衡量菜的重量,而旋翼拉力系数就是那个“秤”,用来衡量旋翼拉力的“重量”。

举个例子吧,我之前有一次去参观一个小型的航空模型展览。

在那里,我看到了各种各样的模型飞机,其中就有那种依靠旋翼飞行的。

当时有个小朋友好奇地问工作人员:“为啥这个旋翼转起来就能让飞机飞起来呢?”工作人员就开始耐心解释,说这就涉及到旋翼拉力系数啦。

这旋翼拉力系数的公式呢,通常和好多因素有关。

比如说旋翼的转速、桨叶的形状和尺寸、空气的密度等等。

就拿旋翼的转速来说,转得越快,一般产生的拉力就越大。

但也不是无限制地快就行,太快了可能会出问题,就像你骑自行车,拼命蹬得太快,自己先累得不行,车子也可能受不了。

再说说桨叶的形状和尺寸。

桨叶如果又宽又长,就像一把大扇子,可能产生的拉力会大一些,但同时也会带来更大的阻力和重量。

要是桨叶又细又短,可能就没那么大力气把飞机拉起来啦。

空气的密度也很关键。

在高海拔地区,空气稀薄,这时候旋翼产生的拉力就会变小。

想象一下,在空气稀薄的山顶上,你想吹个气球都比在平地上费劲,旋翼也是一样的道理。

在实际应用中,计算旋翼拉力系数可不是个简单的事儿。

工程师们得考虑各种各样的情况,做大量的实验和计算。

有时候为了得到更准确的数据,他们会在风洞里对旋翼进行测试。

就像有一次我在电视上看到的一个纪录片,讲的是一家航空企业研发新型直升机。

那些工程师们为了确定最合适的旋翼参数,在风洞里反复试验,不断调整和计算旋翼拉力系数。

看着他们专注的神情,我就知道这工作可不轻松。

总之,旋翼拉力系数公式虽然看起来只是一堆复杂的数学符号和参数,但它背后可是关系着飞行器能否安全稳定地飞行。

从小小的模型飞机到大型的直升机,都离不开对这个公式的准确理解和运用。

所以啊,别小看这旋翼拉力系数公式,它可是航空领域里的一个重要“法宝”呢!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型飞机螺旋桨原理与拉力计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

是设计选择螺旋桨和计算飞机性能的主要依据之一。

从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。

对飞行速度较低而发动机转速较高的轻型飞机极为不利。

例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。

因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

二、几何参数直径(D):影响螺旋桨性能重要参数之一。

一般情况下,直径增大拉力随之增大,效率随之提高。

所以在结构允许的情况下尽量选直径较大的螺旋桨。

此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。

桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。

超轻型飞机一般采用结构简单的双叶桨。

只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。

实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。

它的影响与桨叶数目的影响相似。

随实度增加拉力系数和功率系数增大。

桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。

习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。

螺距:它是桨叶角的另一种表示方法。

图1—1—22是各种意义的螺矩与桨叶角的关系。

几何螺距(H):桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。

它反映了桨叶角的大小,更直接指出螺旋桨的工作特性。

桨叶各剖面的几何螺矩可能是不相等的。

习惯上以70%直径处的几何螺矩做名称值。

国外可按照直径和螺距订购螺旋桨。

如64/34,表示该桨直径为60英寸,几何螺矩为34英寸。

实际螺距(Hg):桨叶旋转一周飞机所前进的距离。

可用Hg=v/n计算螺旋桨的实际螺矩值。

可按H=1.1~1.3Hg粗略估计该机所用螺旋桨几何螺矩的数值。

理论螺矩(HT):设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度大于飞行速度。

因而螺旋桨相对空气而言所前进的距离一理论螺矩将大于实际螺矩。

三、螺旋桨拉力在飞行中的变化1.桨叶迎角随转速的变化在飞行速度不变的情况下,转速增加,则切向速度(U)增大,进距比减小桨叶迎角增大,螺旋桨拉力系数增大(图1—1—20所示)。

又由于拉力与转速平方成正比,所以增大油门时,可增大拉力。

2.桨叶迎角随飞行速度的变化:在转速不变的情况下,飞行速度增大,进距比加大,桨叶迎角减小,螺旋桨拉力系数减小。

如图1—1—20所示,拉力随之降低。

当飞行速度等于零时,切向速度就是合速度,桨叶迎角等于桨叶角。

飞机在地面试车时,飞行速度(V)等于零,桨叶迎角最大,一些剖面由于迎角过大超过失速迎角气动性能变坏,因而螺旋桨产生的拉力不一定最大。

3.螺旋桨拉力曲线:根据螺旋桨拉力随飞行速度增大而减小的规律,可绘出螺旋桨可用拉力曲线。

4.螺旋桨拉力随转速、飞行速度变化的综合情况:在飞行中,加大油门后固定。

螺旋桨的拉力随转速和飞行速度的变化过程如下:由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉力增加。

飞行速度增加,由于飞行速度增大,致使桨叶迎角又开始逐渐减小,拉力也随之逐渐降低,飞机阻力逐渐增大,从而速度的增加趋势也逐渐减慢。

当拉力降低到一定程度(即拉力等于阻力)后,飞机的速度则不再增加。

此时,飞行速度、转速、桨叶迎角及螺旋桨拉力都不变,飞机即保持在一个新的速度上飞行。

四、螺旋桨的自转:当发动机空中停车后,螺旋桨会象风车一样继续沿着原来的方向旋转,这种现象,叫螺旋桨自转。

螺旋桨自转,不是发动机带动的,而是被桨叶的迎面气流“推着”转的。

它不但不能产生拉力,反而增加了飞机的阻力。

从图1—1—24中看出,螺旋桨发生自转时,由于形成了较大的负迎角。

桨叶的总空气动力方向及作用发生了质的变化。

它的一个分力(Q)与切向速度(U)的方向相同,成为推动桨叶自动旋转的动力,迫使桨叶沿原来方向续继旋转:另一个分力(-P)与速度方向相反,对飞行起着阻力作用。

一些超轻型飞机的发动机空中停车后由于飞行速度较小,产生自旋力矩不能克服螺旋桨的阻旋力矩时螺旋桨不会出现自转。

此时,桨叶阻力较大,飞机的升阻比(或称滑翔比)将大大降低。

五、螺旋桨的有效功率:1.定义:螺旋桨产生拉力,拉着飞机前进,对飞机作功。

螺旋桨单位时间所作功,即为螺旋桨的有效功率。

公式:N桨=PV式中:N桨—螺旋桨的有效功率;P—螺旋桨的拉力;V—飞行速度2.螺旋桨有效功率随飞行速度的变化:(1)地面试车时,飞机没有前进速度(V=0),拉力没有对飞机作功,故螺旋桨的有效功率为“零”。

(2)飞行速度增大时,从实际测得的螺旋桨有效功率曲线:在OA 速度范围内,螺旋桨的效功率随飞行速度的增大而增大;在大于该速度范围后螺旋桨有效功率则随飞行速度的增大而减小。

在OA速度范围内,当飞行速度增大时,拉力减小较慢,随速度的增大,螺旋桨有效功率逐渐提高。

当飞行速度增大到A时,螺旋桨的有效功率最大。

当飞行速度再增大时,由于拉力迅速减小,因此随着飞行速度的增加而螺旋桨有效功率反会降低。

螺旋桨是发动机带动旋转的,螺旋桨的作用是把发动机的功率转变为拉着飞机前进的有效功率。

螺旋桨有效功率与发动机输出功率之比,叫螺旋桨效率。

η=N桨/N有效你的飞机竣工了,工艺品一般的招人喜爱。

可要让她顺利飞起来,发动机是不可或缺的。

但,多大马力能飞起来呢?我们先温习一下马力的定义:1马力=735N/M,约等于75公斤/米/秒,也就是1马力可以把75公斤在1秒钟提升1米。

接着看看你的飞机的升阻比,一般一战时期的飞机可以做到15。

带螺旋桨整流罩,采用梯形机翼的二战飞机由于速度的提高,也在15左右。

现代的歼击机亚音速时可以达到10(速度越高时升阻比变的越差)。

自制飞机的技术含量和外形,差不多和一战飞机类似,一般可达到15,那么,假设你的飞机最大起飞重量是280公斤(飞机110公斤,不超过国家有关超轻型飞机规定,载2个胖子170公斤),那么,在升阻比为15的情况下,需要18.67公斤拉力,合0.249马力。

当然,0.249马力只能拉动飞机以每秒1米速度前进,是绝对飞不起来的,要根据翼型表查你的翼型和面积在多高速度能产生280公斤升力。

比如最低离地速度60公里可以产生280公斤升力,那么合17米/秒,也就是最低需要4.233马力的拉力才能保证飞机起飞。

计算进螺旋桨效率,合理的手工浆在效率70%以上,保守取0.6左右那么4.233÷0.6=7.05马力,也就是你的飞机7.05马力可以载170公斤顺利起飞。

如果你体重70公斤,加上飞机110公斤,总重180公斤,那么4.7马力就足够起飞了。

当然,马力越大越好,你不能把7.05马力的发动机在最高油门长时间运转,发动机绝对受不了,一般经验是,在一半马力可以起飞,在四分之三马力较长时间快速巡航。

全马力是冲刺的。

那么,这样算来,90公斤单人乘坐在10马力比较合适,这个数据在蟋蟀机上得到验证。

那么90公斤双人乘坐的15马力比较合适。

以上估算比较保守,反过来如果命题为最小马力起飞,那么可以这么做:飞机做的比较流线,升阻比达到20,乘客体重75公斤,取大翼面的满足40公里起飞,螺旋桨做的效率达到80%,那么185÷20=9.25公斤,9.25÷75=0.123马力,起飞速度11米/秒,那么0.123×11=1.35马力拉力,考虑螺旋桨效率0.8,1.35÷0.8=1.68,也就是1.68马力发动机开足油门,就可以飞起来,3马力小马就能流畅飞行。

减小动力可以从以下途径挖掘:1减小阻力。

2减轻总重。

3加大翼面积。

其中1、2条是有限度的,不可能把飞机造成锥子,更不可能硬把体重减到50公斤,在功率有限的情况下,只有增大翼面积,降低飞行速度来提高升力,理论上讲,这个途径是无限大的。

事实上莱特兄弟就是这么巧妙做到的,那时,莱特兄弟的飞机总重接近900公斤,动力却只有12马力,那么只有增大机翼面积这一条途径——因为速度越低,升阻比越好,这也是慢速大直径浆效率更高的原因,因为线速度更低。

人力飞机在这方面做的较好,采用碳纤维材料和塑料薄膜等轻质材料,流线外形,特别是采用大面积薄膜机翼,以满足极慢速起飞和飞行所需升力。

人的长时间功率只有0.4马力,人力飞机总重不超过100公斤(含人),所以飞行速度只有每秒几米。

相关文档
最新文档