2016年湖北省黄冈市中考数学试卷(含答案解析)
2016年黄冈市中考数学试题解析版
黄冈市2016年初中毕业生学业水平考试数 学 试 题(考试时间120分钟) 满分120分第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项,有且只有一个答案是正确的) 1. -2的相反数是A. 2B. -2C. -21D.21【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。
一般地,任意的一个有理数a ,它的相反数是-a 。
a 本身既可以是正数,也可以是负数,还可以是零。
本题根据相反数的定义,可得答案. 【解答】解:因为2与-2是符号不同的两个数 所以-2的相反数是2.故选B.2. 下列运算结果正确的是A. a 2+a 2=a 2B. a 2·a 3=a 6C. a 3÷a 2=aD. (a 2)3=a 5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。
【分析】根据同类项合并、同底数幂的乘法与除法、幂的乘方的运算法则计算即可. 【解答】解:A. 根据同类项合并法则,a 2+a 2=2a 2,故本选项错误;B. 根据同底数幂的乘法,a 2·a 3=a 5,故本选项错误; C .根据同底数幂的除法,a 3÷a 2=a ,故本选项正确; D .根据幂的乘方,(a 2)3=a 6,故本选项错误. 故选C .3. 如图,直线a ∥b ,∠1=55°,则∠2= 1 A. 35° B. 45° C. 55° D. 65°2(第3题) 【考点】平行线的性质、对顶角、邻补角.【分析】根据平行线的性质:两直线平行同位角相等,得出∠1=∠3;再根据对顶角相等,得出∠2=∠3;从而得出∠1=∠2=55°.【解答】解:如图,∵a ∥b , ∴∠1=∠3, ∵∠1=55°, ∴∠3=55°,∴∠2=55°. 故选:C .4. 若方程3x 2-4x-4=0的两个实数根分别为x 1, x 2,则x 1+ x 2= A. -4 B. 3 C. -34 D.34【考点】一元二次方程根与系数的关系. 若x 1, x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2= -a b ,x 1x 2=a c,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x 1+ x 2的值.【解答】解:根据题意,得x 1+ x 2= -a b =34.故选:D .5. 如下左图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是从正面看 A B C D(第5题)【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中. 【解答】解:从物体的左面看易得第一列有2层,第二列有1层.故选B .6. 在函数y=xx 4 中,自变量x 的取值范围是A.x >0B. x ≥-4C. x ≥-4且x ≠0D. x >0且≠-4 【考点】函数自变量的取值范围.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件。
2016年湖北省黄冈市中考数学试卷及解析
2016年湖北省黄冈市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2B.﹣2C.D.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a53.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4B.3C.D.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=.9.(3分)(2016•黄冈)计算:|1﹣|﹣=.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O 的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=%,n=%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=且其日销售量y(kg)与时间t(天)的关系如表:时间t(天) 1 3 6 10 20 40 …日销售量y118 114 108 100 80 40 …(kg)(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(3分)【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:C.【点评】此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相等.4.(3分)【考点】根与系数的关系.【分析】由方程的各系数结合根与系数的关系可得出“x1+x2=,x1•x2=﹣”,由此即可得出结论.【解答】解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,∴x1+x2=﹣=,x1•x2==﹣.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=﹣=,x1•x2==﹣”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.5.(3分)【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)【考点】函数自变量的取值范围.【分析】根据分母不能为零,被开方数是非负数,可得答案.【解答】解:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题:每小题3分,共24分.7.(3分)【考点】算术平方根.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故答案为.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3分)【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,再利用平方差进行分解即可.【解答】解:原式=a(4x2﹣y2)=a(2x+y)(2x﹣y),故答案为:a(2x+y)(2x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(3分)【考点】实数的运算.【分析】首先去绝对值以及化简二次根式,进而合并同类二次根式即可.【解答】解:|1﹣|﹣=﹣1﹣2=﹣1﹣.故答案为:﹣1﹣.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.10.(3分)【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=a﹣b,故答案为:a﹣b【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)【考点】圆周角定理.【分析】先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.(3分)【考点】方差;正数和负数.【分析】先求出平均数,再利用方差的计算公式解答即可.【解答】解:平均数=,方差==2.5,故答案为:2.5【点评】本题考查了方差公式,解题的关键是牢记公式并能熟练运用,此题比较简单,易于掌握.13.(3分)【考点】矩形的性质;翻折变换(折叠问题).【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF 中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.14.(3分)【考点】相似三角形的判定与性质;等腰三角形的性质.【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.三、解答题:共78分.15.(5分)【考点】解一元一次不等式.【分析】根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.【解答】解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.【点评】本题考查的是解一元一次不等式,解一元一次不等式的基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.16.(6分)【考点】一元一次方程的应用.【分析】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.17.(7分)【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,,∴△AEG≌△CFH(ASA),∴AG=CH.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.18.(6分)【考点】列表法与树状图法.【分析】(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.【解答】解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【点评】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到OC与BD平行,进而得到一对内错角相等,再由OB=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用圆周角定理得到∠ACB为直角,利用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:(1)连接OC,∵PC与圆O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;(2)连接AC,∵AB为圆O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,则BC2=AB•BD.【点评】此题考查了相似三角形的判定与性质,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.(6分)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可以求得调查的学生数和m、n的值;(2)根据(1)和扇形统计图可以求得C类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C类学生的人数.【解答】解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C类学生约有240人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.21.(8分)【考点】反比例函数与一次函数的交点问题.【分析】(1)先把A(1,a)代入反比例函数解析式求出a得到A点坐标,再解方程组得B点坐标,然后利用待定系数法求AB的解析式;(2)直线AB交x轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB≤AB (当P、A、B共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB之差达到最大,从而得到P点坐标.【解答】解:(1)把A(1,a)代入y=﹣得a=﹣3,则A(1,﹣3),解方程组得或,则B(3,﹣1),设直线AB的解析式为y=kx+b,把A(1,﹣3),B(3,﹣1)代入得,解得,所以直线AB的解析式为y=x﹣4;(2)直线AB交x轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q(4,0),因为PA﹣PB≤AB(当P、A、B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4,0).【点评】本题考查了反比例函数与一次函数的交点:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)【考点】解直角三角形的应用.【分析】利用三角形外角性质计算出∠COD=15°,则CO=CD=20,在Rt△OCA中利用含30度的直角三角形三边的关系计算出OA=OC=10,CA=OA≈17,在Rt△OBA中利用等腰直角三角形的性质计算出BA=OA=10,OB=OA≈14,则BC=7,然后根据速度公式分别计算出在三个码头装船,运抵小岛所需的时间,再比较时间的大小进行判断.【解答】解:∵∠OCA=∠D+∠COD,∴∠COD=30°﹣15°=15°,∴CO=CD=20,在Rt△OCA中,∵∠OCA=30°,∴OA=OC=10,CA=OA=10≈17,在Rt△OBA中,∵∠OBA=45°,∴BA=OA=10,OB=OA≈14,∴BC=17﹣10=7,当这批物资在C码头装船,运抵小岛O时,所用时间=+=1.2(小时);当这批物资在B码头装船,运抵小岛O时,所用时间=+=1.1(小时);当这批物资在A码头装船,运抵小岛O时,所用时间=+=1.14(小时);所以这批物资在B码头装船,最早运抵小岛O.【点评】本题考查了解直角三角形:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.(10分)【考点】二次函数的应用;一次函数的性质.【分析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量×每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示前24天中每天扣除捐赠后的日销售利润,根据函数性质求n的取值范围.【解答】解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=﹣2t+120.(2)设第x天的销售利润为w元.当1≤t≤24时,由题意w=(﹣2t+120)(t+30﹣20)=﹣(t﹣10)2+1250,∴t=10时w最大值为1250元.当25≤t≤48时,w=(﹣2t+120)((﹣t+48﹣20)=t2﹣108t+2880,∵对称轴x=54,a=1>0,∴在对称轴左侧w随x增大而减小,∴x=25时,w最大值=805,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(﹣2t+120)(t+30﹣20)﹣(﹣2t+120)n=﹣t2+(10+2n)t+1200﹣120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴﹣≥24,∴n≥7.又∵n<9,∴n的取值范围为7≤n<9.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24.(14分)【考点】二次函数综合题.【分析】(1)根据函数解析式列方程即可得到结论;(2)由点C与点D关于x轴对称,得到D(0,﹣2),解方程即可得到结论;(3)如图1所示:根据平行四边形的性质得到QM=CD,设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),列方程即可得到结论;(4)设点Q的坐标为(m,﹣m2+m+2),分两种情况:①当∠QBD=90°时,根据勾股定理列方程求得m=3,m=4(不合题意,舍去),②当∠QDB=90°时,根据勾股定理列方程求得m=8,m=﹣1,于是得到结论.【解答】解:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:﹣=0,解得:x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=.∴直线BD的解析式为y=x﹣2.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),∴﹣m2+m+2﹣(m﹣2)=4,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,﹣m2+m+2),∵△BDQ是以BD为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,解得:m=3,m=4(不合题意,舍去),∴Q(3,2);②当∠QDB=90°时,由勾股定理得:BQ2=BD2+DQ2,即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,解得:m=8,m=﹣1,∴Q(8,﹣18),(﹣1,0),综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).【点评】本题考查了二次函数综合题,涉及的知识点有:坐标轴上点的特点,待定系数法求直线的解析式,平行四边形的判定和性质,勾股定理,方程思想和分类思想的运用,综合性较强,有一定的难度.。
湖北省黄冈市2016年中考数学试题
黄冈市2016年初中毕业生学业水平考试数学试题(考试时间120分钟)满分120分第Ⅰ卷(选择题共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4-a。
aA. a2+a2=a2B. a2·a3=a6C. a3÷a2=aD. (a2)3=a5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。
【分析】根据同类项合并、同底数幂的乘法与除法、幂的乘方的运算法则计算即可.【解答】解:A. 根据同类项合并法则,a2+a2=2a2,故本选项错误;B. 根据同底数幂的乘法,a2·a3=a5,故本选项错误;C.根据同底数幂的除法,a3÷a2=a,故本选项正确;D.根据幂的乘方,(a2)3=a6,故本选项错误.∴∠1=∠3,∵∠1=55°,∴∠3=55°,∴∠2=55°.故选:C..从正面看 A B C D(第5题)【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中.【解答】解:从物体的左面看易得第一列有2层,第二列有1层.故选B.求函数自变量的取值范围,第Ⅱ卷(非选择题共102分)二、填空题(每小题3分,共24分)7.9的算术平方根是_______________.16【考点】算术平方根.【分析】根据算术平方根的定义(如果一个正数x的平方等于a,即 ,那么这个正数x 叫做a 的算术平方根)解答即可.【解答】解:∵169 =43, ∴169的算术平方根是43, 故答案为:43.因式分解(提公因式法、公式法分解因式), =3-1-23 = -1-3故答案为:-1-310. 计算(a-a ab b 22-)÷b a -的结果是______________________.【考点】分式的混合运算.【分析】将原式中的括号内的两项通分,分子可化为完全平方式,再将后式的分子分母掉换位置相乘,再约分即可。
湖北省黄冈市 2016年中考数学真题试卷附解析
黄冈市2016年初中毕业生学业水平考试数 学 试 题(考试时间120分钟) 满分120分第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项,有且只有一个答案是正确的)1. (2016·湖北黄冈)-2的相反数是( )A. 2B. -2C. -21D.21【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。
一般地,任意的一个有理数a ,它的相反数是-a 。
a 本身既可以是正数,也可以是负数,还可以是零。
本题根据相反数的定义,可得答案. 【解答】解:因为2与-2是符号不同的两个数 所以-2的相反数是2.故选B.2. (2016·湖北黄冈)下列运算结果正确的是( ) A. a 2+a 2=a 2 B. a 2·a 3=a 6 C. a 3÷a 2=a D. (a 2)3=a 5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。
【分析】根据同类项合并、同底数幂的乘法与除法、幂的乘方的运算法则计算即可. 【解答】解:A. 根据同类项合并法则,a 2+a 2=2a 2,故本选项错误;B. 根据同底数幂的乘法,a 2·a 3=a 5,故本选项错误;C .根据同底数幂的除法,a 3÷a 2=a ,故本选项正确;D .根据幂的乘方,(a 2)3=a 6,故本选项错误. 故选C .3. (2016·湖北黄冈)如图,直线a ∥b ,∠1=55°,则∠2= ( ) A. 35° B. 45° C. 55° D. 65°【考点】平行线的性质、对顶角、邻补角.【分析】根据平行线的性质:两直线平行同位角相等,得出∠1=∠3;再根据对顶角相等,得出∠2=∠3;从而得出∠1=∠2=55°. 【解答】解:如图,∵a ∥b , ∴∠1=∠3, ∵∠1=55°, ∴∠3=55°, ∴∠2=55°. 故选:C .4. (2016·湖北黄冈)若方程3x 2-4x-4=0的两个实数根分别为x 1, x 2,则x 1+ x 2= ( ) A. -4 B. 3 C. -34 D.34【考点】一元二次方程根与系数的关系. 若x 1, x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2= -a b ,x 1x 2=a c,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x 1+ x 2的值.【解答】解:根据题意,得x 1+ x 2= -a b =34.故选:D .5. (2016·湖北黄冈)如下左图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是( )从正面看 A B C D(第5题)【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中. 【解答】解:从物体的左面看易得第一列有2层,第二列有1层.故选B .6. (2016·湖北黄冈)在函数y=xx 4 中,自变量x 的取值范围是( )A.x >0B. x ≥-4C. x ≥-4且x ≠0D. x >0且≠-4 【考点】函数自变量的取值范围.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件。
湖北黄冈2016中考试题数学卷(解析版)
一、选择题(共6小题) 1.﹣2的相反数是( )A .2B .﹣2C .12-D .12【答案】A . 【解析】试题分析:﹣2的相反数是:﹣(﹣2)=2,故选A . 考点:相反数.2.下列运算结果正确的是( )A .235a a a +=B .236a a a ⋅=C .32a a a ÷=D .235()a a =【答案】C .考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 3.如图,直线a∥b,∠1=55°,则∠2=( )A .35°B .45°C .55°D .65° 【答案】C . 【解析】试题分析:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选C .考点:平行线的性质.4.若方程23440x x --=的两个实数根分别为1x ,2x ,则12x x +=( )A .﹣4B .3C .43-D .43【答案】D . 【解析】试题分析:∵方程23440x x --=的两个实数根分别为1x ,2x ,∴1243x x +=,1243x x =-.故选D .考点:根与系数的关系.5.如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是( )A .B .C .D . 【答案】B . 【解析】试题分析:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选B . 考点:简单组合体的三视图.6.在函数y =中,自变量x 的取值范围是( )A .x >0B .x≥﹣4C .x≥﹣4且x≠0D .x >0且x≠﹣1 【答案】C . 【解析】试题分析:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选C . 考点:函数自变量的取值范围. 二、填空题(共8小题)7.916的算术平方根是 .【答案】34.【解析】试题分析:∵34的平方为,∴的算术平方根为34.故答案为:34.考点:算术平方根.8.分解因式:224ax ay -= .【答案】a (2x+y )(2x ﹣y ).【解析】试题分析:原式=22(4)a x y -=a (2x+y )(2x ﹣y ),故答案为:a (2x+y )(2x ﹣y ).考点:提公因式法与公式法的综合运用.9.计算:1.【答案】1-考点:实数的运算.10.计算22()ab b a baa a---÷的结果是.【答案】a﹣b.【解析】试题分析:原式=222.a ab b aa a b-+-=2().a b aa a b--=a﹣b,故答案为:a﹣b.考点:分式的混合运算.11.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= .【答案】35°.【解析】试题分析:∵∠AOB=70°,∴∠C=12∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.考点:圆周角定理.12.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.【答案】2.5.考点:方差;正数和负数.13.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= .【答案】23a.【解析】试题分析:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=MFFP,∴FP=sin60MF=3=23a;故答案为:23a.考点:矩形的性质;翻折变换(折叠问题).14.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一条直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=_____________.【答案】43.考点:相似三角形的判定和性质、勾股定理、等腰三角形的性质.三、解答题(共10小题)15.解不等式13(1)42xx+≥--.【答案】x≤3.【解析】试题分析:根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.试题解析:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.考点:解一元一次不等式.16.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【答案】38.答:七年级收到的征文有38篇.考点:运用一元一次方程解决实际问题.17.如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.试题解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=12AD,CF=BF=12BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,∵∠EAG=∠FCH,AE=CF,∠AEG=∠CFH,∴△AEG≌△CFH(ASA),∴AG=CH.考点:平行四边形的性质.18.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.【答案】(1)答案见解析;(2)1 3.考点:列表法与树状图法.19.如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)2BC=AB•BD.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,考点:相似三角形的判定与性质;切线的性质.20.望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A 类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m= %,n= %,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?【答案】(1)26,14,50;(2)作图见解析;(3)240.【解析】试题分析:(1)根据条形统计图和扇形统计图可以求得调查的学生数和m、n的值;(人),即该校C 类学生约有240人.考点:条形统计图;用样本估计总体;扇形统计图;统计与概率.21.如图,已知点A (1,a )是反比例函数3y x =-的图象上一点,直线1122y x =-+与反比例函数3y x =-的图象在第四象限的交点为点B .(1)求直线AB 的解析式;(2)动点P (x ,0)在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.【答案】(1)y=x ﹣4;(2)P (4,0). 【解析】 试题分析:(1)先把A (1,a )代入反比例函数解析式求出a 得到A 点坐标,再解方程组11223y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,得B 点坐标,然后利用待定系数法求AB 的解析式;(2)直线AB 交x 轴于点Q ,如图,利用x 轴上点的坐标特征得到Q 点坐标,则PA ﹣PB≤AB (当P 、A 、(2)直线AB交x轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q(4,0),因为PA ﹣PB≤AB(当P、A、B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4,0).考点:反比例函数与一次函数的交点问题.22.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:2≈1.4,3≈1.7).【答案】这批物资在B码头装船,最早运抵小岛O.【解析】试题分析:利用三角形外角性质计算出∠COD=15°,则CO=CD=20,在Rt△OCA中利用含30度的直角三角形三边的关系计算出OA=12OC=10,3在Rt△OBA中利用等腰直角三角形的性质计算出当这批物资在A 码头装船,运抵小岛O 时,所用时间=2017105025++=1.14(小时);所以这批物资在B 码头装船,最早运抵小岛O .考点:解直角三角形的应用;应用题.23.东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为:130(14)4148(2548)2t t t p t t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩,为整数,为整数,且其日销售量y (kg )与时间t (天)的关系如(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少? (2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围. 【答案】(1)y=120-2t ,60;(2)在第10天的销售利润最大,最大利润为1250元;(3)7≤n <9. 【解析】 试题分析:(1)根据日销售量y (kg )与时间t (天)的关系表,设y=kt+b ,将表中对应数值代入即可求出k ,b ,从而求出一次函数关系式,再将t=30代入所求的一次函数关系式中,即可求出第30天的日销售量.∴日销售量y (kg )与时间t (天)的关系 y=120-2t .当t=30时,y=120-60=60. 答:在第30天的日销售量为60千克.(2)设日销售利润为W 元,则W=(p-20)y .当1≤t ≤24时,W=(t+30-20)(120-t )=2101200t t -++ =2(10)1250t --+当t=10时,W 最大=1250. 当25≤t ≤48时,W=(-t+48-20)(120-2t )=21165760t t -+ =2(58)4t -- 由二次函数的图像及性质知:当t=25时,W 最大=1085.∵1250>1085,∴在第10天的销售利润最大,最大利润为1250元.(3)依题意,得:W=(t+30-20-n )(120-2t )= 22(5)1200t n t n -+++- ,其对称轴为y=2n+10,要使W 随t 的增大而增大,由二次函数的图像及性质知:2n+10≥24,解得n ≥7.又∵n <0,∴7≤n <9.考点:一次函数的应用;二次函数的最值;最值问题;分段函数;二次函数的应用. 24.如图,抛物线213222y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、点B 、点C 的坐标;(2)求直线BD 的解析式;(3)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形;(4)在点P 的运动过程中,是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)A (﹣1,0),B (4,0),C (0,2);(2)122y x =-;(3)m=2;(4)Q 的坐标为(3,2),(8,﹣18),(﹣1,0).到结论.试题解析:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:2132022x x-++=,解得:11x=-,24x=,∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=12,∴直线BD的解析式为122y x=-.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,213222m m-++),则M(m,122m-),∴21312(2)4222m m m-++--=,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,213222m m-++),∵△BDQ是以BD为直角边的直角三角形,∴分两考点:二次函数综合题;分类讨论;动点型;存在型;压轴题.。
2016年湖北省黄冈市中考数学试卷-答案
湖北省黄冈市 2016 年初中毕业生学业水平考试数学答案分析第Ⅰ 卷一、选择题1.【答案】 A【分析】 2 的相反数是:( 2) 2 ,应选A。
【提示】一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数, 0 的相反数是0。
不要把相反数的意义与倒数的意义混杂。
【考点】实数的相反数2.【答案】C【分析】 a2 与 a3是加,不是乘,不可以运算,应选项A错误;a2a3 a2 3 a5,应选项B错误;a3 a2 a3 2 a ,应选项 C 正确;(a2)3 a2 3 a6 ,应选项 D 错误。
应选 C。
【提示】依据归并同类项法例,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项剖析判断即可得解。
娴熟掌握运算性质和法例是解题的重点。
【考点】整式的运算3.【答案】 C【分析】以下列图,由于 a∥b ,因此1 3。
由于 1 55 ,因此 3 55 。
又23 ,因此 2 55,应选 C。
【提示】重点是掌握:两直线平行,同位角相等。
【考点】平行线的性质4.【答案】 D【分析】由于方程3x 2 4x 4 0 的两个实数根分别为x 1, x 2,因此 x1 x 2 b 4 , x1 x 2 c 4 。
a 3 a 3 应选 D。
【提示】由方程的各系数联合根与系数的关系,解题的重点是找出x1 x 2 b 4, x1 x 2 c4。
本a 3 a 3 题属于基础题,难度不大,解决该题型题目时,依据根与系数的关系找出两根之和与两根之积是重点。
【考点】一元二次方程根与系数的关系5.【答案】 B【分析】从左边看第一层是两个小正方形,第二层左边一个小正方形,应选 B 。
【提示】依据从左边看获得的图形是左视图,可得答案。
【考点】简单组合体的三视图6.【答案】 C【分析】由题意,得x 4 0 且 x 0 ,解得x 4 且x0 。
应选C。
【提示】利用分母不可以为零,被开方数是非负数得出不等式是解题重点。
2016年湖北省黄冈市中考数学试卷
2016年湖北省黄冈市中考数学试卷总分:120一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.-2的相反数是( )A .2B .-2C .−21D .21考点:相反数.分析:根据一个数的相反数就是在这个数前面添上“-”号,求解即可.解答:解:-2的相反数是:-(-2)=2,故选A点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.下列运算结果正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.解答:解:A 、a 2与a 3是加,不是乘,不能运算,故本选项错误;B 、a 2•a 3=a 2+3=a 5,故本选项错误;C 、a 3÷a 2=a 3-2=a ,故本选项正确;D 、(a 2)3=a 2×3=a 6,故本选项错误.故选C .点评:本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.如图,直线a ∥b ,∠1=55°,则∠2=( )A .35°B .45°C .55°D .65°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.解答:解:∵a ∥b ,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:C .点评:此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相等.4.若方程3x 2-4x-4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( )A .-4B .3C .−34D .34考点:根与系数的关系.分析:由方程的各系数结合根与系数的关系可得出“x 1+x 2=34,x 1•x 2=34-”,由此即可得出结论.解答:解:∵方程3x 2-4x-4=0的两个实数根分别为x 1,x 2,∴x 1+x 2=34a b -=,x 1•x 2=34a c -=. 故选D .点评:本题考查了根与系数的关系,解题的关键是找出“x 1+x 2=34a b -=,x 1•x 2=34a c -=”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.5.如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是( )A .B .C .D .考点:简单组合体的三视图. 分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B .点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.在函数x4+x y =中,自变量x 的取值范围是( ) A .x >0 B .x ≥-4 C .x ≥-4且x ≠0 D .x >0且x ≠-1考点:函数自变量的取值范围.分析:根据分母不能为零,被开方数是非负数,可得答案.解答:解:由题意,得x+4≥0且x ≠0,解得x ≥-4且x ≠0,故选:C .点评:本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题:每小题3分,共24分.7.169的算术平方根是 __________.考点:算术平方根.专题:计算题.分析:算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.解答:解:∵43的平方为169, ∴169的算术平方根为43. 故答案为43.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.分解因式:4ax 2-ay 2= __________.考点:提公因式法与公式法的综合运用.分析:首先提取公因式a ,再利用平方差进行分解即可.解答:解:原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为:a (2x+y )(2x-y ).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.计算:|1-3|-12= __________.考点:实数的运算.分析:首先去绝对值以及化简二次根式,进而合并同类二次根式即可.解答:解:3132131231--=--=--.故答案为:-1-3.点评:此题主要考查了实数运算,正确化简二次根式是解题关键.10.计算(a-a b -2ab 2)÷a b -a 的结果是 ______. 考点:分式的混合运算.专题:计算题;分式.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=()b -a b -a a a b -a b -a a a b +2ab -a 222=⋅=⋅, 故答案为:a-b点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= ______.考点:圆周角定理.分析:先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.解答:解:∵∠AOB=70°,∴∠C=21∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是 ______.考点:方差;正数和负数.分析:先求出平均数,再利用方差的计算公式解答即可.解答:解:平均数=81++3-2++1+2-1=0,方差=81[3(1−0)2+(2−0)2+(−2−0)2+(−3−0)2]=2.5,故答案为:2.5点评:本题考查了方差公式,解题的关键是牢记公式并能熟练运用,此题比较简单,易于掌握.13.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= ______.考点:矩形的性质;翻折变换(折叠问题).分析:作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.解答:解:作FM⊥AD于M,如图所示:则MF=DC=3a ,∵四边形ABCD 是矩形,∴∠C=∠D=90°.∵DC=3DE=3a ,∴CE=2a ,由折叠的性质得:PE=CE=2a=2DE ,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°-90°-30°=60°,在Rt △MPF 中,∵sin ∠MPF=FPMF ,∴FP=a 32233a sin60?MF ==; 故答案为:a 32.点评:本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.14.如图,已知△ABC 、△DCE 、△FEG 、△HGI 是4个全等的等腰三角形,底边BC 、CE 、EG 、GI 在同一直线上,且AB=2,BC=1,连接AI ,交FG 于点Q ,则QI= ______.考点:相似三角形的判定与性质;等腰三角形的性质.分析:由题意得出BC=1,BI=4,则ABBC BI AB =,再由∠ABI=∠ABC ,得△ABI ∽△CBA ,根据相似三角形的性质得BI AB AI AC =,求出AI ,根据全等三角形性质得到∠ACB=∠FGE ,于是得到AC ∥FG ,得到比例式31CI GI AI QI ==,即可得到结果.解答:解:∵△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4, ∴2142BI AB ==,21AB BC =, ∴ABBC BI AB =,∵∠ABI=∠ABC ,∴△ABI ∽△CBA ; ∴BIAB AI AC =,∵AB=AC ,∴AI=BI=4;∵∠ACB=∠FGE ,∴AC ∥FG , ∴31CI GI AI QI ==,∴QI=31AI=34. 故答案为:34.点评:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB ∥CD ∥EF ,AC ∥DE ∥FG 是解题的关键.三、解答题:共78分.15.解不等式21+x ≥3(x −1)−4. 考点:解一元一次不等式.分析:根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.解答:解:去分母得,x+1≥6(x-1)-8,去括号得,x+1≥6x-6-8,移项得,x-6x ≥-6-8-1,合并同类项得,-5x ≥-15.系数化为1,得x ≤3.点评:本题考查的是解一元一次不等式,解一元一次不等式的基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.16.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇? 考点:一元一次方程的应用.分析:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x )篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x 的一元一次方程,解方程即可得出结论.解答:解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x )篇,依题意得:(x+2)×2=118-x ,解得:x=38.答:七年级收到的征文有38篇.点评:本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118-x .本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.17.如图,在▱ABCD 中,E 、F 分别为边AD 、BC 的中点,对角线AC 分别交BE ,DF 于点G 、H .求证:AG=CH .考点:平行四边形的性质.专题:证明题.分析:根据平行四边形的性质得到AD ∥BC ,得出∠ADF=∠CFH ,∠EAG=∠FCH ,证出四边形BFDE 是平行四边形,得出BE ∥DF ,证出∠AEG=∠CFH ,由ASA 证明△AEG ≌△CFH ,得出对应边相等即可.解答:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF=∠CFH ,∠EAG=∠FCH ,∵E 、F 分别为AD 、BC 边的中点,∴AE=DE=21AD ,CF=BF=21BC , ∴DE ∥BF ,DE=BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG=∠ADF ,∴∠AEG=∠CFH ,在△AEG 和△CFH 中,∠EAG =∠FCHAE =CF∠AEG =∠CFH∴△AEG ≌△CFH (ASA ),∴AG=CH .点评:本题考查了平行四边形的性质和判定,全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.18.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A 、B 、C 三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.考点:列表法与树状图法.分析:(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.解答:解:(1)画树状图如下:由树形图可知所以可能的结果为AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC ;(2)由(1)可知两人再次成为同班同学的概率3193 .点评:本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.19.如图,AB 是半圆O 的直径,点P 是BA 延长线上一点,PC 是⊙O 的切线,切点为C ,过点B 作BD ⊥PC 交PC 的延长线于点D ,连接BC .求证:(1)∠PBC=∠CBD ;(2)BC 2=AB •BD .考点:相似三角形的判定与性质;切线的性质.专题:证明题;图形的相似.分析:(1)连接OC ,由PC 为圆O 的切线,利用切线的性质得到OC 垂直于PC ,再由BD 垂直于PD ,得到一对直角相等,利用同位角相等两直线平行得到OC 与BD 平行,进而得到一对内错角相等,再由OB=OC ,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC ,由AB 为圆O 的直径,利用圆周角定理得到∠ACB 为直角,利用两对角相等的三角形相似得到三角形ABC 与三角形CBD 相似,利用相似三角形对应边成比例,变形即可得证.解答:证明:(1)连接OC ,∵PC 与圆O 相切,∴OC ⊥PC ,即∠OCP=90°,∵BD ⊥PD ,∴∠BDP=90°,∴∠OCP=∠PDB ,∴OC ∥BD ,∴∠BCO=∠CBD ,∵OB=OC ,∴∠PBC=∠BCO ,∴∠PBC=∠CBD ;(2)连接AC ,∵AB 为圆O 的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD ,∴△ABC ∽△CBD , ∴BCAB BD BC ,则BC 2=AB •BD .点评:此题考查了相似三角形的判定与性质,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t ≤20分钟的学生记为A 类,20分钟<t ≤40分钟的学生记为B 类,40分钟<t ≤60分钟的学生记为C 类,t >60分钟的学生记为D 类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m= ______%,n= ______%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C 类学生约有多少人?考点:条形统计图;用样本估计总体;扇形统计图.专题:统计与概率.分析:(1)根据条形统计图和扇形统计图可以求得调查的学生数和m 、n 的值;(2)根据(1)和扇形统计图可以求得C 类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C 类学生的人数.解答:解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C 类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C 类学生约有240人.点评:本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.21.如图,已知点A (1,a )是反比例函数x 3y -=的图象上一点,直线21x 21y +-=与反比例函数x3y -=的图象在第四象限的交点为点B .(1)求直线AB 的解析式;(2)动点P (x ,0)在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先把A (1,a )代入反比例函数解析式求出a 得到A 点坐标,再解方程组21x 21y +-= 得B 点坐标,然后利用待定系数法x3y -=求AB 的解析式;(2)直线AB 交x 轴于点Q ,如图,利用x 轴上点的坐标特征得到Q 点坐标,则PA-PB ≤AB (当P 、A 、B 共线时取等号),于是可判断当P 点运动到Q 点时,线段PA 与线段PB 之差达到最大,从而得到P 点坐标.解答:解:(1)把A (1,a )代入x3y -=得a=-3,则A (1,-3), 解方程组:21x 21y +-=x3y -=得:x =3 或 x =−2y =−1 y =23,则B (3,-1),设直线AB 的解析式为y=kx+b ,把A (1,-3),B (3,-1)代入得:k+b =−33k+b =−1解得:k =1b =−4所以直线AB 的解析式为y=x-4;(2)直线AB 交x 轴于点Q ,如图,当y=0时,x-4=0,解得x=4,则Q (4,0),因为PA-PB ≤AB (当P 、A 、B 共线时取等号),。
2016年湖北省黄冈市中考数学试卷(含详细答案)
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前湖北省黄冈市2016年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的相反数是( ) A .2B .2-C .12- D .122.下列运算结果正确的是( ) A .235a a a +=B .236a a a ⋅=C .32a a a ÷=D .235()a a =3.如图,直线a b ∥,155∠=︒,则2∠=( )A .35 B .45 C .55D .654.若方程23440x x --=的两个实数根分别为1x ,2x ,则12x x +=( ) A .4-B .3C .43-D .435.如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是( )ABC D 6.在函数y =,自变量x 的取值范围是( ) A .0x >B .4x -≥C .4x -≥且0x ≠D .0x >且4x ≠-第Ⅱ卷(非选择题 共102分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 7.916的算术平方根是 . 8.分解因式:224ax ay -= . 9.计算:|1 .10.计算22()ab b a ba a a---÷的结果是 . 11.如图,O 是ABC △的外接圆,70AOB ∠=︒,AB AC =,则ABC ∠= .12.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数.现抽取8个排球,通过检测所得数据如下(单位:克):1+,2-,1+,0,2+,3-,0,1+,则这组数据的方差是 .13.如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且33DC DE a ==,将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP = .14.如图,已知ABC △,DCE △,FEG △,HGI △是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一条直线上,且2AB =,1BC =.连接AI ,交FG 于点Q .则QI = .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分5分)解不等式13(1)4 2xx+--≥.16.(本小题满分6分)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?17.(本小题满分7分)如图,在□ABCD中,E,F分别为边AD,BC的中点,对角线AC分别交BE,DF 于点G,H.求证:AG CH=.18.(本小题满分6分)小明、小林是三河中学九年级的同班同学.在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A,B,C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.19.(本小题满分8分)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是O的切线,切点为C.过点B作BD PC⊥交PC的延长线于点D,连接BC.求证:(1)PBC CBD∠=∠;(2)2BC AB BD=.20.(本小题满分6分)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间20t≤分钟的学生记为A类,20分钟40t<≤分钟的学生记为B类,40分钟60t<≤分钟的学生记为C类, 60t>分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:数学试卷第3页(共20页)数学试卷第4页(共20页)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)(1)m = %,n = %,这次共抽查了 名学生进行调查统计; (2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C 类学生约有多少人?21.(本小题满分8分)如图,已知点(1,)A a 是反比例函数3y x =-的图象上一点,直线1122y x =-+与反比例函数3y x=-的图象在第四象限的交点为点B .(1)求直线AB 的解析式;(2)动点(,0)P x 在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.22.(本小题满分8分)“一号龙卷风”给小岛O 造成了较大的破坏,救灾部门迅速组织力量,从仓储D 处调集救援物资,计划先用汽车运到与D 在同一直线上的C ,B ,A 三个码头中的一处,再用货船运到小岛O .已知:OA AD ⊥,15ODA ∠=,30OCA ∠=,45OBA ∠=,20km CD =.若汽车行驶的速度为50km/时,货船航行的速度为25km /时,问这批物资在哪个码头装船,最早运抵小岛O ?(在物资搬运能力上每个码头工作效率相同;1.4≈1.7).23.(本小题满分10分)东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价(/kg)p 元与时间t (天)之间的函数关系式为130(124,),4148(2548,),t t t P t t t ⎧+⎪⎪=⎨⎪-+⎪≤≤为整数≤≤为整数且其日销售量(kg)y 与时间()t 天的关系如下表:(1)已知y 与t 之间的变化规律符合一次函数关系.试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(9)n <给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.24.(本小题满分14分) 如图,抛物线213222y x x =-++与x 轴交于点A 、点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点.设点P 的坐标为(,0)m ,过点P 作x 轴的毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;△是以BD为直角边的直角三角形?(4)在点P的运动过程中,是否存在点Q,使BDQ若存在,求出点Q的坐标;若不存在,请说明理由.数学试卷第7页(共20页)数学试卷第8页(共20页)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)湖北省黄冈市2016年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2-的相反数是:(2)2--=,故选A 。
湖北省黄冈市2016年中考数学试题(解析版)
黄冈市2016年初中毕业生学业水平考试数 学 试 题(考试时间120分钟) 满分120分第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项,有且只有一个答案是正确的) 1. -2的相反数是A. 2B. -2C. -21D.21【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。
一般地,任意的一个有理数a ,它的相反数是-a 。
a 本身既可以是正数,也可以是负数,还可以是零。
本题根据相反数的定义,可得答案. 【解答】解:因为2与-2是符号不同的两个数 所以-2的相反数是2.故选B.2. 下列运算结果正确的是A. a 2+a 2=a 2B. a 2·a 3=a 6C. a 3÷a 2=aD. (a 2)3=a 5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。
【分析】根据同类项合并、同底数幂的乘法与除法、幂的乘方的运算法则计算即可. 【解答】解:A. 根据同类项合并法则,a 2+a 2=2a 2,故本选项错误;B. 根据同底数幂的乘法,a 2·a 3=a 5,故本选项错误; C .根据同底数幂的除法,a 3÷a 2=a ,故本选项正确; D .根据幂的乘方,(a 2)3=a 6,故本选项错误. 故选C .3. 如图,直线a ∥b ,∠1=55°,则∠2= 1 A. 35° B. 45° C. 55° D. 65°2(第3题) 【考点】平行线的性质、对顶角、邻补角.【分析】根据平行线的性质:两直线平行同位角相等,得出∠1=∠3;再根据对顶角相等,得出∠2=∠3;从而得出∠1=∠2=55°.【解答】解:如图,∵a ∥b , ∴∠1=∠3, ∵∠1=55°, ∴∠3=55°,∴∠2=55°. 故选:C .4. 若方程3x 2-4x-4=0的两个实数根分别为x 1, x 2,则x 1+ x 2= A. -4 B. 3 C. -34 D.34【考点】一元二次方程根与系数的关系. 若x 1, x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2= -a b ,x 1x 2=a c,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x 1+ x 2的值.【解答】解:根据题意,得x 1+ x 2= -a b =34.故选:D .5. 如下左图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是从正面看 A B C D(第5题)【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中. 【解答】解:从物体的左面看易得第一列有2层,第二列有1层.故选B .6. 在函数y=xx 4 中,自变量x 的取值范围是A.x >0B. x ≥-4C. x ≥-4且x ≠0D. x >0且≠-4 【考点】函数自变量的取值范围.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件。
湖北省黄冈市中考数学真题试题(含解析)
黄冈市2016年初中毕业生学业水平考试数 学 试 题(考试时间120分钟) 满分120分第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项,有且只有一个答案是正确的) 1. -2的相反数是A. 2B. -2C. -21D. 21【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。
一般地,任意的一个有理数a ,它的相反数是-a 。
a 本身既可以是正数,也可以是负数,还可以是零。
本题根据相反数的定义,可得答案. 【解答】解:因为2与-2是符号不同的两个数 所以-2的相反数是2.故选B.2. 下列运算结果正确的是A. a 2+a 2=a 2B. a 2·a 3=a 6C. a 3÷a 2=aD. (a 2)3=a 5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。
【分析】根据同类项合并、同底数幂的乘法与除法、幂的乘方的运算法则计算即可.【解答】解:A. 根据同类项合并法则,a 2+a 2=2a 2,故本选项错误;B. 根据同底数幂的乘法,a 2·a 3=a 5,故本选项错误;C .根据同底数幂的除法,a 3÷a 2=a ,故本选项正确;D .根据幂的乘方,(a 2)3=a 6,故本选项错误. 故选C .3. 如图,直线a ∥b ,∠1=55°,则∠2= 1 A. 35° B. 45° C. 55° D. 65°2(第3题) 【考点】平行线的性质、对顶角、邻补角.【分析】根据平行线的性质:两直线平行同位角相等,得出∠1=∠3;再根据对顶角相等,得出∠2=∠3;从而得出∠1=∠2=55°. 【解答】解:如图,∵a ∥b , ∴∠1=∠3, ∵∠1=55°, ∴∠3=55°, ∴∠2=55°. 故选:C .4. 若方程3x 2-4x-4=0的两个实数根分别为x 1, x 2,则x 1+ x 2=A. -4B. 3C. -34D. 34【考点】一元二次方程根与系数的关系. 若x 1, x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2= -a b ,x 1x 2=a c ,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x 1+ x 2的值.【解答】解:根据题意,得x 1+ x 2= -a b =34.故选:D .5. 如下左图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是从正面看 A B C D (第5题)【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中.【解答】解:从物体的左面看易得第一列有2层,第二列有1层.故选B .6. 在函数y=xx 4 中,自变量x 的取值范围是A.x >0B. x ≥-4C. x ≥-4且x ≠0D. x >0且≠-4 【考点】函数自变量的取值范围.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件。
2016年湖北省黄冈市中考数学试题(含解析)-精校.doc
黄冈市2016年初中毕业生学业水平考试数 学 试 题(考试时间120分钟) 满分120分第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项,有且只有一个答案是正确的) 1. -2的相反数是A. 2B. -2C. -21D.21【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。
一般地,任意的一个有理数a ,它的相反数是-a 。
a 本身既可以是正数,也可以是负数,还可以是零。
本题根据相反数的定义,可得答案.【解答】解:因为2与-2是符号不同的两个数 所以-2的相反数是2.故选B.2. 下列运算结果正确的是A. a 2+a 2=a 2B. a 2·a 3=a 6C. a 3÷a 2=aD. (a 2)3=a 5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。
【分析】根据同类项合并、同底数幂的乘法与除法、幂的乘方的运算法则计算即可. 【解答】解:A. 根据同类项合并法则,a 2+a 2=2a 2,故本选项错误;B. 根据同底数幂的乘法,a 2·a 3=a 5,故本选项错误; C .根据同底数幂的除法,a 3÷a 2=a ,故本选项正确; D .根据幂的乘方,(a 2)3=a 6,故本选项错误. 故选C .3. 如图,直线a ∥b ,∠1=55°,则∠2= 1 A. 35° B. 45° C. 55° D. 65°2(第3题) 【考点】平行线的性质、对顶角、邻补角.【分析】根据平行线的性质:两直线平行同位角相等,得出∠1=∠3;再根据对顶角相等,得出∠2=∠3;从而得出∠1=∠2=55°.【解答】解:如图,∵a ∥b , ∴∠1=∠3, ∵∠1=55°, ∴∠3=55°, ∴∠2=55°. 故选:C .4. 若方程3x 2-4x-4=0的两个实数根分别为x 1, x 2,则x 1+ x 2=A. -4B. 3C. -34D. 34【考点】一元二次方程根与系数的关系. 若x 1, x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=-a b ,x 1x 2=a c,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x 1+ x 2的值.【解答】解:根据题意,得x 1+ x 2= -a b =34. 故选:D .5. 如下左图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是从正面看 A B C D(第5题)【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中.【解答】解:从物体的左面看易得第一列有2层,第二列有1层.故选B .6. 在函数y=x x 4 中,自变量x 的取值范围是A.x >0B. x ≥-4C. x ≥-4且x ≠0D. x >0且≠-4 【考点】函数自变量的取值范围.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件。
历年湖北省黄冈市中考数学试题(含答案)
2016年湖北省黄冈市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2 B.﹣2 C.D.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a53.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=.9.(3分)(2016•黄冈)计算:|1﹣|﹣=.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=%,n=%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天) 1 3 6 10 20 40 …日销售量y118 114 108 100 80 40 …(kg)(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2 B.﹣2 C.D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a5【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°【分析】根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:C.【点评】此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相等.4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.【分析】由方程的各系数结合根与系数的关系可得出“x1+x2=,x1•x2=﹣”,由此即可得出结论.【解答】解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,∴x1+x2=﹣=,x1•x2==﹣.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=﹣=,x1•x2==﹣”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1【分析】根据分母不能为零,被开方数是非负数,可得答案.【解答】解:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故答案为.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=a(2x+y)(2x﹣y).【分析】首先提取公因式a,再利用平方差进行分解即可.【解答】解:原式=a(4x2﹣y2)=a(2x+y)(2x﹣y),故答案为:a(2x+y)(2x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(3分)(2016•黄冈)计算:|1﹣|﹣=﹣1﹣.【分析】首先去绝对值以及化简二次根式,进而合并同类二次根式即可.【解答】解:|1﹣|﹣=﹣1﹣2=﹣1﹣.故答案为:﹣1﹣.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是a﹣b.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=a﹣b,故答案为:a﹣b【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= 35°.【分析】先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是 2.5.【分析】先求出平均数,再利用方差的计算公式解答即可.【解答】解:平均数=,方差==2.5,故答案为:2.5【点评】本题考查了方差公式,解题的关键是牢记公式并能熟练运用,此题比较简单,易于掌握.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF 中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD ∥EF,AC∥DE∥FG是解题的关键.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.【分析】根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.【解答】解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.【点评】本题考查的是解一元一次不等式,解一元一次不等式的基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【分析】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.【分析】根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG ≌△CFH,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,,∴△AEG≌△CFH(ASA),∴AG=CH.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.【分析】(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.【解答】解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【点评】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.【分析】(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到OC与BD平行,进而得到一对内错角相等,再由OB=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用圆周角定理得到∠ACB为直角,利用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:(1)连接OC,∵PC与圆O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;(2)连接AC,∵AB为圆O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,则BC2=AB•BD.【点评】此题考查了相似三角形的判定与性质,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=26%,n=14%,这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?【分析】(1)根据条形统计图和扇形统计图可以求得调查的学生数和m、n的值;(2)根据(1)和扇形统计图可以求得C类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C类学生的人数.【解答】解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C类学生约有240人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【分析】(1)先把A(1,a)代入反比例函数解析式求出a得到A点坐标,再解方程组得B点坐标,然后利用待定系数法求AB的解析式;(2)直线AB交x轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB ≤AB(当P、A、B共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB 之差达到最大,从而得到P点坐标.【解答】解:(1)把A(1,a)代入y=﹣得a=﹣3,则A(1,﹣3),解方程组得或,则B(3,﹣1),设直线AB的解析式为y=kx+b,把A(1,﹣3),B(3,﹣1)代入得,解得,所以直线AB的解析式为y=x﹣4;(2)直线AB交x轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q(4,0),因为PA﹣PB≤AB(当P、A、B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4,0).【点评】本题考查了反比例函数与一次函数的交点:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).【分析】利用三角形外角性质计算出∠COD=15°,则CO=CD=20,在Rt△OCA中利用含30度的直角三角形三边的关系计算出OA=OC=10,CA=OA≈17,在Rt△OBA中利用等腰直角三角形的性质计算出BA=OA=10,OB=OA≈14,则BC=7,然后根据速度公式分别计算出在三个码头装船,运抵小岛所需的时间,再比较时间的大小进行判断.【解答】解:∵∠OCA=∠D+∠COD,∴∠COD=30°﹣15°=15°,∴CO=CD=20,在Rt△OCA中,∵∠OCA=30°,∴OA=OC=10,CA=OA=10≈17,在Rt△OBA中,∵∠OBA=45°,∴BA=OA=10,OB=OA≈14,∴BC=17﹣10=7,当这批物资在C码头装船,运抵小岛O时,所用时间=+=1.2(小时);当这批物资在B码头装船,运抵小岛O时,所用时间=+=1.1(小时);当这批物资在A码头装船,运抵小岛O时,所用时间=+=1.14(小时);所以这批物资在B码头装船,最早运抵小岛O.【点评】本题考查了解直角三角形:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天) 1 3 6 10 20 40 …日销售量y118 114 108 100 80 40 …(kg)(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.【分析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量×每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示前24天中每天扣除捐赠后的日销售利润,根据函数性质求n的取值范围.【解答】解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=﹣2t+120.将t=30代入上式,得:y=﹣2×30+120=60.所以在第30天的日销售量是60kg.(2)设第x天的销售利润为w元.当1≤t≤24时,由题意w=(﹣2t+120)(t+30﹣20)=﹣(t﹣10)2+1250,∴t=10时w最大值为1250元.当25≤t≤48时,w=(﹣2t+120)((﹣t+48﹣20)=t2﹣116t+3360,∵对称轴x=58,a=1>0,∴在对称轴左侧w随x增大而减小,∴x=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(﹣2t+120)(t+30﹣20)﹣(﹣2t+120)n=﹣t2+(10+2n)t+1200﹣120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴﹣≥24,∴n≥7.又∵n<9,∴n的取值范围为7≤n<9.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据函数解析式列方程即可得到结论;(2)由点C与点D关于x轴对称,得到D(0,﹣2),解方程即可得到结论;(3)如图1所示:根据平行四边形的性质得到QM=CD,设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),列方程即可得到结论;(4)设点Q的坐标为(m,﹣m2+m+2),分两种情况:①当∠QBD=90°时,根据勾股定理列方程求得m=3,m=4(不合题意,舍去),②当∠QDB=90°时,根据勾股定理列方程求得m=8,m=﹣1,于是得到结论.【解答】解:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:﹣=0,解得:x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=.∴直线BD的解析式为y=x﹣2.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),∴﹣m2+m+2﹣(m﹣2)=4,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,﹣m2+m+2),∵△BDQ是以BD为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,解得:m=3,m=4(不合题意,舍去),∴Q(3,2);②当∠QDB=90°时,由勾股定理得:BQ2=BD2+DQ2,即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,解得:m=8,m=﹣1,∴Q(8,﹣18),(﹣1,0),综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).【点评】本题考查了二次函数综合题,涉及的知识点有:坐标轴上点的特点,待定系数法求直线的解析式,平行四边形的判定和性质,勾股定理,方程思想和分类思想的运用,综合性较强,有一定的难度.。
2016年湖北省黄冈市中考数学试卷
2016年湖北省黄冈市中考数学试卷总分:120一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.-2的相反数是( )A .2B .-2C .−21D .21考点:相反数.分析:根据一个数的相反数就是在这个数前面添上“-”号,求解即可.解答:解:-2的相反数是:-(-2)=2,故选A点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.下列运算结果正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.解答:解:A 、a 2与a 3是加,不是乘,不能运算,故本选项错误;B 、a 2•a 3=a 2+3=a 5,故本选项错误;C 、a 3÷a 2=a 3-2=a ,故本选项正确;D 、(a 2)3=a 2×3=a 6,故本选项错误.故选C .点评:本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.如图,直线a ∥b ,∠1=55°,则∠2=( )A .35°B .45°C .55°D .65°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.解答:解:∵a ∥b ,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:C .点评:此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相等.4.若方程3x 2-4x-4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( )A .-4B .3C .−34D .34考点:根与系数的关系.分析:由方程的各系数结合根与系数的关系可得出“x 1+x 2=34,x 1•x 2=34-”,由此即可得出结论.解答:解:∵方程3x 2-4x-4=0的两个实数根分别为x 1,x 2,∴x 1+x 2=34a b -=,x 1•x 2=34a c -=. 故选D .点评:本题考查了根与系数的关系,解题的关键是找出“x 1+x 2=34a b -=,x 1•x 2=34a c -=”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.5.如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是( )A .B .C .D .考点:简单组合体的三视图. 分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B .点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.在函数x4+x y =中,自变量x 的取值范围是( ) A .x >0 B .x ≥-4 C .x ≥-4且x ≠0 D .x >0且x ≠-1考点:函数自变量的取值范围.分析:根据分母不能为零,被开方数是非负数,可得答案.解答:解:由题意,得x+4≥0且x ≠0,解得x ≥-4且x ≠0,故选:C .点评:本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题:每小题3分,共24分.7.169的算术平方根是 __________.考点:算术平方根.专题:计算题.分析:算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.解答:解:∵43的平方为169, ∴169的算术平方根为43. 故答案为43.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.分解因式:4ax 2-ay 2= __________.考点:提公因式法与公式法的综合运用.分析:首先提取公因式a ,再利用平方差进行分解即可.解答:解:原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为:a (2x+y )(2x-y ).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.计算:|1-3|-12= __________.考点:实数的运算.分析:首先去绝对值以及化简二次根式,进而合并同类二次根式即可.解答:解:3132131231--=--=--.故答案为:-1-3.点评:此题主要考查了实数运算,正确化简二次根式是解题关键.10.计算(a-a b -2ab 2)÷a b -a 的结果是 ______. 考点:分式的混合运算.专题:计算题;分式.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=()b -a b -a a a b -a b -a a a b +2ab -a 222=⋅=⋅, 故答案为:a-b点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= ______.考点:圆周角定理.分析:先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.解答:解:∵∠AOB=70°,∴∠C=21∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是 ______.考点:方差;正数和负数.分析:先求出平均数,再利用方差的计算公式解答即可.解答:解:平均数=81++3-2++1+2-1=0,方差=81[3(1−0)2+(2−0)2+(−2−0)2+(−3−0)2]=2.5,故答案为:2.5点评:本题考查了方差公式,解题的关键是牢记公式并能熟练运用,此题比较简单,易于掌握.13.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= ______.考点:矩形的性质;翻折变换(折叠问题).分析:作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.解答:解:作FM⊥AD于M,如图所示:则MF=DC=3a ,∵四边形ABCD 是矩形,∴∠C=∠D=90°.∵DC=3DE=3a ,∴CE=2a ,由折叠的性质得:PE=CE=2a=2DE ,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°-90°-30°=60°,在Rt △MPF 中,∵sin ∠MPF=FPMF ,∴FP=a 32233a sin60?MF ==; 故答案为:a 32.点评:本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.14.如图,已知△ABC 、△DCE 、△FEG 、△HGI 是4个全等的等腰三角形,底边BC 、CE 、EG 、GI 在同一直线上,且AB=2,BC=1,连接AI ,交FG 于点Q ,则QI= ______.考点:相似三角形的判定与性质;等腰三角形的性质.分析:由题意得出BC=1,BI=4,则ABBC BI AB =,再由∠ABI=∠ABC ,得△ABI ∽△CBA ,根据相似三角形的性质得BI AB AI AC =,求出AI ,根据全等三角形性质得到∠ACB=∠FGE ,于是得到AC ∥FG ,得到比例式31CI GI AI QI ==,即可得到结果.解答:解:∵△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4, ∴2142BI AB ==,21AB BC =, ∴ABBC BI AB =,∵∠ABI=∠ABC ,∴△ABI ∽△CBA ; ∴BIAB AI AC =,∵AB=AC ,∴AI=BI=4;∵∠ACB=∠FGE ,∴AC ∥FG , ∴31CI GI AI QI ==,∴QI=31AI=34. 故答案为:34.点评:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB ∥CD ∥EF ,AC ∥DE ∥FG 是解题的关键.三、解答题:共78分.15.解不等式21+x ≥3(x −1)−4. 考点:解一元一次不等式.分析:根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.解答:解:去分母得,x+1≥6(x-1)-8,去括号得,x+1≥6x-6-8,移项得,x-6x ≥-6-8-1,合并同类项得,-5x ≥-15.系数化为1,得x ≤3.点评:本题考查的是解一元一次不等式,解一元一次不等式的基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.16.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇? 考点:一元一次方程的应用.分析:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x )篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x 的一元一次方程,解方程即可得出结论.解答:解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x )篇,依题意得:(x+2)×2=118-x ,解得:x=38.答:七年级收到的征文有38篇.点评:本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118-x .本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.17.如图,在▱ABCD 中,E 、F 分别为边AD 、BC 的中点,对角线AC 分别交BE ,DF 于点G 、H .求证:AG=CH .考点:平行四边形的性质.专题:证明题.分析:根据平行四边形的性质得到AD ∥BC ,得出∠ADF=∠CFH ,∠EAG=∠FCH ,证出四边形BFDE 是平行四边形,得出BE ∥DF ,证出∠AEG=∠CFH ,由ASA 证明△AEG ≌△CFH ,得出对应边相等即可.解答:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF=∠CFH ,∠EAG=∠FCH ,∵E 、F 分别为AD 、BC 边的中点,∴AE=DE=21AD ,CF=BF=21BC , ∴DE ∥BF ,DE=BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG=∠ADF ,∴∠AEG=∠CFH ,在△AEG 和△CFH 中,∠EAG =∠FCHAE =CF∠AEG =∠CFH∴△AEG ≌△CFH (ASA ),∴AG=CH .点评:本题考查了平行四边形的性质和判定,全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.18.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A 、B 、C 三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.考点:列表法与树状图法.分析:(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.解答:解:(1)画树状图如下:由树形图可知所以可能的结果为AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC ;(2)由(1)可知两人再次成为同班同学的概率3193 .点评:本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.19.如图,AB 是半圆O 的直径,点P 是BA 延长线上一点,PC 是⊙O 的切线,切点为C ,过点B 作BD ⊥PC 交PC 的延长线于点D ,连接BC .求证:(1)∠PBC=∠CBD ;(2)BC 2=AB •BD .考点:相似三角形的判定与性质;切线的性质.专题:证明题;图形的相似.分析:(1)连接OC ,由PC 为圆O 的切线,利用切线的性质得到OC 垂直于PC ,再由BD 垂直于PD ,得到一对直角相等,利用同位角相等两直线平行得到OC 与BD 平行,进而得到一对内错角相等,再由OB=OC ,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC ,由AB 为圆O 的直径,利用圆周角定理得到∠ACB 为直角,利用两对角相等的三角形相似得到三角形ABC 与三角形CBD 相似,利用相似三角形对应边成比例,变形即可得证.解答:证明:(1)连接OC ,∵PC 与圆O 相切,∴OC ⊥PC ,即∠OCP=90°,∵BD ⊥PD ,∴∠BDP=90°,∴∠OCP=∠PDB ,∴OC ∥BD ,∴∠BCO=∠CBD ,∵OB=OC ,∴∠PBC=∠BCO ,∴∠PBC=∠CBD ;(2)连接AC ,∵AB 为圆O 的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD ,∴△ABC ∽△CBD , ∴BCAB BD BC ,则BC 2=AB •BD .点评:此题考查了相似三角形的判定与性质,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t ≤20分钟的学生记为A 类,20分钟<t ≤40分钟的学生记为B 类,40分钟<t ≤60分钟的学生记为C 类,t >60分钟的学生记为D 类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m= ______%,n= ______%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C 类学生约有多少人?考点:条形统计图;用样本估计总体;扇形统计图.专题:统计与概率.分析:(1)根据条形统计图和扇形统计图可以求得调查的学生数和m 、n 的值;(2)根据(1)和扇形统计图可以求得C 类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C 类学生的人数.解答:解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C 类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C 类学生约有240人.点评:本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.21.如图,已知点A (1,a )是反比例函数x 3y -=的图象上一点,直线21x 21y +-=与反比例函数x3y -=的图象在第四象限的交点为点B .(1)求直线AB 的解析式;(2)动点P (x ,0)在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先把A (1,a )代入反比例函数解析式求出a 得到A 点坐标,再解方程组21x 21y +-= 得B 点坐标,然后利用待定系数法x3y -=求AB 的解析式;(2)直线AB 交x 轴于点Q ,如图,利用x 轴上点的坐标特征得到Q 点坐标,则PA-PB ≤AB (当P 、A 、B 共线时取等号),于是可判断当P 点运动到Q 点时,线段PA 与线段PB 之差达到最大,从而得到P 点坐标.解答:解:(1)把A (1,a )代入x3y -=得a=-3,则A (1,-3), 解方程组:21x 21y +-=x3y -=得:x =3 或 x =−2y =−1 y =23,则B (3,-1),设直线AB 的解析式为y=kx+b ,把A (1,-3),B (3,-1)代入得:k+b =−33k+b =−1解得:k =1b =−4所以直线AB 的解析式为y=x-4;(2)直线AB 交x 轴于点Q ,如图,当y=0时,x-4=0,解得x=4,则Q (4,0),因为PA-PB ≤AB (当P 、A 、B 共线时取等号),所以当P 点运动到Q 点时,线段PA 与线段PB 之差达到最大,此时P 点坐标为(4,0).点评:本题考查了反比例函数与一次函数的交点:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.“一号龙卷风”给小岛O 造成了较大的破坏,救灾部门迅速组织力量,从仓储D 处调集救援物资,计划先用汽车运到与D 在同一直线上的C 、B 、A 三个码头中的一处,再用货船运到小岛O .已知:OA ⊥AD ,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km .若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O ?(在物资搬运能力上每个码头工作效率相同,参考数据:2≈1.4,3≈1.7).考点:解直角三角形的应用.专题:应用题.分析:利用三角形外角性质计算出∠COD=15°,则CO=CD=20,在Rt △OCA 中利用含30度的直角三角形三边的关系计算出OA=21OC=10,CA=3OA ≈17,在Rt △OBA 中利用等腰直角三角形的性质计算出BA=OA=10,OB=2OA ≈14,则BC=7,然后根据速度公式分别计算出在三个码头装船,运抵小岛所需的时间,再比较时间的大小进行判断.解答:解:∵∠OCA=∠D+∠COD ,∴∠COD=30°-15°=15°,∴CO=CD=20,在Rt △OCA 中,∵∠OCA=30°,∴OA=21OC=10,CA=3OA=103≈17,在Rt △OBA 中,∵∠OBA=45°,∴BA=OA=10,OB=2OA ≈14,∴BC=17-10=7,当这批物资在C 码头装船,运抵小岛O 时,所用时间=2520+5020=1.2(小时);当这批物资在B 码头装船,运抵小岛O 时,所用时间=2514+507+20=1.1(小时);当这批物资在A 码头装船,运抵小岛O 时,所用时间=2510+5017+20=1.14(小时);所以这批物资在B 码头装船,最早运抵小岛O .点评:本题考查了解直角三角形:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为p= 41t+30(1≤t ≤24,t 为整数) ,且其日销售量y (kg )与时间t (天)的关系如表: −21t+48(25≤t ≤48,t 为整数)(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.考点:二次函数的应用;一次函数的性质.分析:(1)设y=kt+b ,利用待定系数法即可解决问题.(2)日利润=日销售量×每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示前24天中每天扣除捐赠后的日销售利润,根据函数性质求n 的取值范围.解答:解:(1)设y=kt+b ,把t=1,y=118;t=3,y=114代入得到:k+b =1183k+b =114解得: k =−2b =120∴y=-2t+120.将t=30代入上式,得:y=-2×30+120=60.所以在第30天的日销售量是60kg .(2)设第x 天的销售利润为w 元.当1≤t ≤24时,由题意w=(-2t+120)(41t+30-20)=-21(t-10)2+1250,∴t=10时 w 最大值为1250元.当25≤t ≤48时,w=(-2t+120)(-21t+48-20)=t 2-116t+3360,∵对称轴x=58,a=1>0,∴在对称轴左侧w 随x 增大而减小,∴x=25时,w 最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m 元.由题意m=(-2t+120)(41t+30-20)-(-2t+120)n=-21t 2+(10+2n )t+1200-120n ,∵在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大, ∴ )21(×22n +10--≥24, ∴n ≥7.又∵n <9,∴n 的取值范围为7≤n <9.点评:此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24.如图,抛物线2x 23+x 21y 2+-=与x 轴交于点A ,点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、点B 、点C 的坐标;(2)求直线BD 的解析式;(3)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形;(4)在点P 的运动过程中,是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据函数解析式列方程即可得到结论;(2)由点C 与点D 关于x 轴对称,得到D (0,-2),解方程即可得到结论;(3)如图1所示:根据平行四边形的性质得到QM=CD ,设点Q 的坐标为(m ,2m 23+m 212+-),则M (m ,21m-2),列方程即可得到结论;(4)设点Q 的坐标为(m ,2m 23+m 212+-),分两种情况:①当∠QBD=90°时,根据勾股定理列方程求得m=3,m=4(不合题意,舍去),②当∠QDB=90°时,根据勾股定理列方程求得m=8,m=-1,于是得到结论.解答:解:(1)∵令x=0得;y=2,∴C (0,2).∵令y=0得:02x 23+x 212=+-,解得:x 1=-1,x 2=4.∴A (-1,0),B (4,0).(2)∵点C 与点D 关于x 轴对称,∴D (0,-2).设直线BD 的解析式为y=kx-2.∵将(4,0)代入得:4k-2=0,∴k=21.∴直线BD 的解析式为y=21x-2.(3)如图1所示:∵QM ∥DC ,∴当QM=CD 时,四边形CQMD 是平行四边形.设点Q 的坐标为(m ,2m 23+m 212+-),则M (m ,21-m-2), ∴42m 212m 23+m 212=⎪⎭⎫ ⎝⎛--+-,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD 是平行四边形;(4)存在,设点Q 的坐标为(m ,2m 23+m 212+-),∵△BDQ 是以BD 为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m-4)2+(2m 23+m 212+-)2+20=m 2+(2m 23+m 212+-+2)2, 解得:m=3,m=4(不合题意,舍去),∴Q (3,2);②当∠QDB=90°时,由勾股定理得:BQ 2=BD 2+DQ 2,即(m-4)2+(2m 23+m 212+-)2=20+m 2+(2m 23+m 212+-+2)2, 解得:m=8,m=-1,∴Q (8,-18),(-1,0),综上所述:点Q 的坐标为(3,2),(8,-18),(-1,0).点评:本题考查了二次函数综合题,涉及的知识点有:坐标轴上点的特点,待定系数法求直线的解析式,平行四边形的判定和性质,勾股定理,方程思想和分类思想的运用,综合性较强,有一定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
B.
C.
D.
6.(3 分)在函数 y= 中,自变量 x 的取值范围是( )
18.(6 分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招 生考试中,他俩都被同一所高中提前录取,并将被编入 A、B、C 三个班,他俩 希望能再次成为同班同学. (1)请你用画树状图法或列举法,列出所有可能的结果; (2)求两人再次成为同班同学的概率. 19.(8 分)如图,AB 是半圆 O 的直径,点 P 是 BA 延长线上一点,PC 是⊙O 的 切线,切点为 C,过点 B 作 BD⊥PC 交 PC 的延长线于点 D,连接 BC.求证: (1)∠PBC=∠CBD; (2)BC2=AB•BD.
【分析】先根据圆周角定理求出∠C 的度数,再由等腰三角形的性质即可得出结 论. 【解答】解:∵∠AOB=70°, ∴∠C= ∠AOB=35°.
第 5 页(共 26 页)
第 6 页(共 26 页)
2016 年湖北省黄冈市中考数学试卷
参考答案与试题解析
一、选择题:本题共 6 小题,每小题 3 分,共 18 分.每小题给出的 4 个选项中, 有且只有一个答案是正确的. 1.(3 分)﹣2 的相反数是( ) A.2 B.﹣2 C. D.
A.x>0
B.x≥﹣4 C.x≥﹣4 且 x≠0 D.x>0 且 x≠﹣1
二、填空题:每小题 3 分,共 24 分.
第 1 页(共 26 页)
7.(3 分) 的算术平方根是 .
8.(3 分)分解因式:4ax2﹣ay2= . 9.(3 分)计算:|1﹣ |﹣ = .
10.(3 分)计算(a﹣
第 3 页(共 26 页)
(1)m= %,n= %,这次共抽查了 名学生进行调查统计; (2)请补全上面的条形图; (3)如果该校共有 1200 名学生,请你估计该校 C 类学生约有多少人? 21.(8 分)如图,已知点 A(1,a)是反比例函数 y=﹣ 的图象上一点,直线 y=﹣
与反比例函数 y=﹣ 的图象在第四象限的交点为点 B. (1)求直线 AB 的解析式; (2)动点 P(x,0)在 x 轴的正半轴上运动,当线段 PA 与线段 PB 之差达到最 大时,求点 P 的坐标.
20.(6 分)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随 机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间 t≤20 分钟的学生记为 A 类,20 分钟<t≤40 分钟的学生记为 B 类,40 分钟<t≤60 分 钟的学生记为 C 类,t>60 分钟的学生记为 D 类四种.将收集的数据绘制成如下 两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可. 【解答】解:﹣2 的相反数是:﹣(﹣2)=2, 故选 A 【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣” 号:一个正数的相反数是负数,一个负数的相反数是正数,0 的相反数是 0.不 要把相反数的意义与倒数的意义混淆. 2.(3 分)下列运算结果正确的是( ) A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a5 【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相 除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得 解. 【解答】解:A、a2 与 a3 是加,不是乘,不能运算,故本选项错误; B、a2•a3=a2+3=a5,故本选项错误; C、a3÷a2=a3﹣2=a,故本选项正确; D、(a2)3=a2×3=a6,故本选项错误. 故选 C. 【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法, 熟练掌握运算性质和法则是解题的关键. 3.(3 分)如图,直线 a∥b,∠1=55°,则∠2=( )
22.(8 分)“一号龙卷风”给小岛 O 造成了较大的破坏,救灾部门迅速组织力量, 从仓储 D 处调集救援物资,计划先用汽车运到与 D 在同一直线上的 C、B、A 三 个码头中的一处,再用货船运到小岛 O.已知:OA⊥AD,∠ODA=15°,∠ OCA=30°,∠OBA=45°,CD=20km.若汽车行驶的速度为 50km/时,货船航行的速 度为 25km/时,问这批物资在哪个码头装船,最早运抵小岛 O?(在物资搬运能 力上每个码头工作效率相同,参考数据: ≈1.4, ≈1.7).
第 9 页(共 26 页)
7.(3 分) 的算术平方根是 . 【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方 根,由此即可求出结果. 【解答】解:∵ 的平方为 ,
∴ 的算术平方根为 .
故答案为 .
【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概 念混淆而导致错误. 8.(3 分)分解因式:4ax2﹣ay2= a(2x+y)(2x﹣y) . 【分析】首先提取公因式 a,再利用平方差进行分解即可. 【解答】解:原式=a(4x2﹣y2) =a(2x+y)(2x﹣y), 故答案为:a(2x+y)(2x﹣y). 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式 首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到 不能分解为止. 9.(3 分)计算:|1﹣ |﹣ = ﹣1﹣ . 【分析】首先去绝对值以及化简二次根式,进而合并同类二次根式即可. 【解答】解:|1﹣ |﹣ = ﹣1﹣2 =﹣1﹣ . 故答案为:﹣1﹣ . 【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.
时间 t 的增大而增大,求 n 的取值范围.
24.(14 分)如图,抛物线 y=﹣
与 x 轴交于点 A,点 B,与 y 轴交于点
C,点 D 与点 C 关于 x 轴对称,点 P 是 x 轴上的一个动点,设点 P 的坐标为(m, 0),过点 P 作 x 轴的垂线 l 交抛物线于点 Q. (1)求点 A、点 B、点 C 的坐标; (2)求直线 BD 的解析式; (3)当点 P 在线段 OB 上运动时,直线 l 交 BD 于点 M,试探究 m 为何值时,四 边形 CQMD 是平行四边形; (4)在点 P 的运动过程中,是否存在点 Q,使△BDQ 是以 BD 为直角边的直角 三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由.
B.
C.
D.
【分析】根据从左边看得到的图形是左视图,可得答案.
【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,
故选:B.
【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
6.(3 分)在函数 y= 中,自变量 x 的取值范围是( )
A.x>0 B.x≥﹣4 C.x≥﹣4 且 x≠0 D.x>0 且 x≠﹣1 【分析】根据分母不能为零,被开方数是非负数,可得答案. 【解答】解:由题意,得 x+4≥0 且 x≠0, 解得 x≥﹣4 且 x≠0, 故选:C. 【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非 负数得出不等式是解题关键. 二、填空题:每小题 3 分,共 24 分.
)÷ 的结果是 .
11 .( 3 分 ) 如 图 , ⊙ O 是 △ ABC 的 外 接 圆 , ∠ AOB=70° , AB=AC , 则 ∠ ABC= .
12.(3 分)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准 的克数记为正数,不足标准的克数记为负数,现抽取 8 个排球,通过检测所得数 据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差 是 . 13 .( 3 分 ) 如 图 , 在 矩 形 ABCD 中 , 点 E 、 F 分 别 在 边 CD 、 BC 上 , 且 DC=3DE=3a.将矩形沿直线 EF 折叠,使点 C 恰好落在 AD 边上的点 P 处,则 FP= .
第 7 页(共 26 页)
A.35° B.45° C.55° D.65° 【分析】根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2 的度数. 【解答】解:∵a∥b, ∴∠1=∠3, ∵∠1=55°, ∴∠3=55°, 又∵∠2=∠3, ∴∠2=55°, 故选:C.
【点评】此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相 等. 4.(3 分)若方程 3x2﹣4x﹣4=0 的两个实数根分别为 x1,x2,则 x1+x2=( ) A.﹣4 B.3 C. D. 【分析】由方程的各系数结合根与系数的关系可得出“x1+x2= ”,由此即可得出 结论. 【解答】解:∵方程 3x2﹣4x﹣4=0 的两个实数根分别为 x1,x2, ∴x1+x2=﹣ = 故选 D.
第 8 页(共 26 页)
【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=﹣ = ”.本题属 于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与 两根之积是关键. 5.(3 分)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的 左视图是( )
A.
14.(3 分)如图,已知△ABC、△DCE、△FEG、△HGI 是 4 个全等的等腰三角形, 底边 BC、CE、EG、GI 在同一直线上,且 AB=2,BC=1,连接 AI,交 FG 于点 Q, 则 QI= .
第 2 页(共 26 页)
三、解答题:共 78 分. 15.(5 分)解不等式 ≥3(x﹣1)﹣4.. 16.(6 分)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征 文 118 篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少 2 篇, 求七年级收到的征文有多少篇? 17.(7 分)如图,在▱ABCD 中,E、F 分别为边 AD、BC 的中点,对角线 AC 分 别交 BE,DF 于点 G、H.求证:AG=CH.