2015年湖北省黄冈市中考数学试卷及答案解析(Word版)
2015年黄冈市中考数学标准样卷(有答案)
2015年黄冈市中考数学标准样卷(有答案)一、选择题(下列各组A 、B 、C 、D 四个选项中, 有且只有一个是正确的, 每小题3分, 共24分)1.化简-32的结果是( )A.6 B .―6 C.9 D.-92.如图, 直线l 1∥l 2, ∠A =75°, ∠B =135°, 则∠1+∠2=() A. 35° B. 36° C. 37° D. 30° 3.下列计算正确的是( )A.a 2+a 2=2a 4B.235(2)6a a -=- C.322(2)21a a a a -÷=- D.a 6÷a 3=a 2 4.如图是一个圆锥形漏斗, 则它的主视图是( )A.B.C . D.5.若2y =-, 则()y x y +的值是( )A.19 B.9 C .-6 D. 166.已知α, β是一元一次方程2x 2+ax -c =0的两个实根, 则α+β-2αβ等于( ) A.2a c + B. 2a c -+ C . 2ac - D. 2a c --7.下列命题:①平分弦的直径垂直于弦;②在平面直角坐标系中有一条直线l , 则l 的解析式为y =kx +b (k ≠0);③若a a =, 则a >0;④正方形的对角线互相垂直平分且相等.其中错误的个数有( )个.A.4B.3 C . 2 D. 1A BDl 21 2l 1第2题图第4题图O x8.定义新运算m ※n =(0)(0)mn nm n n⎧>⎪⎪⎨⎪-<⎪⎩, 例如3※2=23, 5※(-7)=55()77-=-, 则函数y=2※x (x ≠0)的图像是( )A . B. C . D.二、填空题(共7小题, 每小题3分, 共21分) 9.比较大小:12-______-0.7 10.分解因式:2x (x -3)-8=___________________. 11.__________.12.如图, 菱形A B CD 对角线交于点O , E 是AD 的中点, OE =3.5, 则菱形ABCD 的周长为_________.13.计算2212(1)121x x x x x -+-÷=--+_________________. 14.⊙O 与AB 、BC 、CD 均相切, 圆心O 在AD 上, AD ∥BC , AB =6, CD =9, 则AD =__________.15. ⊙O 的半径为1米, 沿折线ABC 滚动. AB =15米, BC =20米, ∠ABC =120°, 则⊙O 从A 滚到C , 圆心O 所走过的路径长是___________米.OxyO O EB AC D 12题图AB C ·DO14题图A O ·CB15题图三、解答题.(本大题共10个小题, 满分共75分) 16.(5分)解方程x 2-6x +1=0.17.(6分)在△ABC 中, AB =AC , ∠ABC =120°, EF 是AB 的垂直平分线, EF 交BC 于点F , 交AB 于点E , 求证:FC =2BF .18. (6分)一次函数y =(6+3a )x +(a -5)不经过第二象限, 求a 的取值范围.19. (6分)如图, 电路图中有四个开关A 、B 、C 、D 和一个灯泡, 闭合开关D 或同时闭合A 、B 、C 都可使小灯泡发光.⑴任意闭合一个开关, 则小灯泡的发光的概率等于__________; ⑵任意闭合两个开关, 请用画树状图(或列表)的方法求出 小灯泡发光的概率.20.如图, AD 为⊙O 的直径, AB 、AC 分别交⊙O 于E 、F , 点D 在BC 上, ∠BAD =∠BDE . ⑴求证:BC 是⊙O 的切线. ⑵求证:AE ·AB =AF ·AC .21. (7分)我市某中学对“献爱心”的捐款活动进行抽样调查, 被调查的学生捐款 如图所示: ⑴该校共调查了_________名学生; ⑵捐款15元以上的学生频率是_________.⑶若该校共有2800名学生, AB DFE·OCBEFCA22. (9分)数学家帕普斯借助反比例函数解决了“三等分角”这一尺规作图不能问题. 方法是将锐角AOB 放置在平面直角坐标系中, OA 与x 轴正半轴重合, OB 与双曲线1y x交于点P . 以P 为圆心, 以2PO 为半径作弧交双曲线于R , 以PR 为对角线作矩形PQRM , 使PM ∥QR . 连OM . ⑴设P (a ,1a ), R (b , 1b), 用a , b 表示点Q 的坐标. ⑵在⑴的条件下, 求直线OM 的解析式, 并说明Q 点在OM 上. ⑶证明∠MOA =13∠A OB.23. (分)台风中心位于点P , 并沿西北方向移动. 受台风影响的区域的半径为200千米, B 市位于北偏西75°方向上, 距离点P 320千米处. ⑴说明本次台风影响B 市的理由.⑵受台风B 市影响8小时, 求台风中心的移动速度.24. (9分)某工厂生产某种产品牌按质量分为10个档次, 生产第一档次(即最低档次)的产品一天能生产76件, 每件利润10元.每提高一个档次, 利润每件增加2元. ⑴每件利润为16元, 此时产品质量在第几档次?⑵由于生产工序的原因, 此产品每提高一个档次一天产量减少4件. 若生产第x 档的产品一天的总利润为y 元(1≤x ≤10且x 为正整数), 求出y 关于x 的函数关系式;⑶在⑵的条件下, 问生产何档次的产品使日利润y 最大, 最大日利润是多少?25.(13分)矩形OABC 在平面直角坐标系中的位置如图, A (6, 0), C (0, 3). 直线3y x 与BC 边交于点D . ⑴求点D 的坐标;⑵若过原点的抛物线经过D , A , 求此抛物线的解析式. ⑶P 为x 轴上方⑵中抛物线上的一点, 求△POA 面积的最大值. ⑷设⑵中的抛物线的对称轴与直线OD 相交于点M , 点Q 为对 称轴上的一动点, 以Q 、O 、M 为顶点的三角形与△OCD 相似, 求符合条件的Q 点的坐标.、 答案与提示1.D2.D3.C4.D5.A6.B7.B8.D9.> 10.2(x -4)(x +1)11.12.28 13.x -1 14.15 15.35+3π16.13x =13x =17.连AF 18.630,50.a a +>⎧⎨-≤⎩ 25a -<≤ 19.⑴14 ⑵P (发光)=14.20. ⑴证AD ⊥BC ; ⑵连DF , △ADE ∽△ABD ⇒AD 2=AE ·AB , 同理, AD 2=AF ·AC . ∴AE ·AB =AF ·AC . 21. ⑴40;⑵0.6;⑶_1(7.5412.51217.51622.58)1640x =⨯+⨯+⨯+⨯=, 16×2800=44800(元) 22. ⑴Q (a ,1b );⑵OM : 1y x ab =, Q (a , 1b )适合1y x ab=, 故Q 在OM 上;⑶∵QR ∥x 轴, ∴∠MQR =∠MOA =∠NRQ .可证∠PNQ =2∠NQR =2∠MOA , 又可证∠PQN =∠PNQ . ∴∠MOA =13∠A OB 23. ⑴作BA ⊥PQ 于A , BA =12PB =160;⑵30km /h. 24. ⑴第4档次;⑵y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640. (1≤x ≤10且x 为正整数); ⑶y =-8(x -8)2+1152. 生产第8档产品, 日利润最大为1152元. 25. ⑴D (4, 3);⑵23984y x x =-+;⑶当P 在抛物线顶点时, S △POA 最大=818;⑷Q 1(3, 0), Q 2(3, -4)。
2015学年湖北省黄冈中考数学年试题答案
2x 2
解法三:如图 4,过点 E 作 EF BC ,垂足为点 F
8 / 16
EFB EFC 90
1 3 ,A BDC ,△ABE ∽△DCE
AC 为直径 ,ABC 90
BD 平分 ABC ,1 2 45
在 RtBFE 中, sin 2 EF ,BE EF
△ABE ∽△DCE
S△ABE =( AB )2 ( x )2 1
S△DCE DC
2x 2
解法二:如图 3,连接 AD ,设 AB x , 1 3 ,BAC BDC ,△ABE ∽△DCE AC 为直径 ,ABC ADC 90 , BD 平分 ABC ,1 2 45
BE
sin 45
在 RtEFC 中, sin ACB EF ,CE EF
CE
sin 30
△ABE ∽△DCE ,
EF 2
S△ABE S△DCE
BE CE
2
sin 45 EF
sin 30 sin 45
2
AD DC
2015年湖北省黄冈市中考数学模拟试题及答案
(2)设⊙P的半径为3,当m=______▲____时,⊙P与直线AC、直线BC中的一条相切。
三、认真答一答:(本题7个小题,共66分)
17、(原创)(本小题满分6分)计算:
18、(原创)(本小题满分8分)(1)解不等式:8-5(x-2)<4(x-1)+13;
23.(改编)(本小题满分12分)
如图,已知直线 交坐标轴于A,B两点,以线段AB为边向上作矩形ABCD,AB:AD=1:2,过点A,D,C的抛物线与直线另一个交点为E.
阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
对于任意正实数a、b,可作如下变形a+b= = - + = + ,
又∵ ≥0,∴ + ≥0+ ,即 ≥ .
(1)根据上述内容,回答下列问题:在 ≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,当且仅当a、b满足▲时,a+b有最小值 .
8、(原创)关于分式 ,有下列说法,错误的有( )个:
(1)当x取1时,这个分式有意义,则a≠3;(2)当x=5时,分式的值一定为零;(3)若这个分式的值为零,则a≠-5;(4)当x取任何值时,这个分式一定有意义,则二次函数y=x2-4x+a与x轴没有交点。
A.0B.1C.2D.3
9、(改编)如图,设三角形ABC为一等腰直角三角形,角ABC为直角,D为AC中点。以B为圆心,AB为半径作一圆弧AFC,以D为中心,AD为半径,作一半圆AGC,作正方形BDCE。月牙形AGCFA的面积与正方形BDCE的面积大小关系( )
14、(改编)在△ABC中,∠A=120°,AB=2,AC=4,则 的值是__▲_______;
2015年湖北省黄冈市中考数学试卷-答案
湖北省黄冈市2015年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2(3)9±=,所以9的平方根是3±,故选A. 【考点】平方根的概念 2.【答案】C【解析】624x x x ÷=,A 错误;111()x x x--==--,B 错误;236(2)4x x =,C 正确;23522 a a a -=-,D 错误;故选C. 【考点】多项式的运算 3.【答案】B【解析】由几何体得其俯视图为一个大正方形的左下角有一个小正方形,故选B. 【考点】几何体的俯视图 4.【答案】B【解析】22232a b a b a b -=,A 错误;单项式2x -的系数为1-,B 有意义等价于20x +≥,解得,C 错误;1a =-是方程211a a -+的增根,D 错误。
综上所述,故选B.【考点】多项式的运算、单项式的概念、解分式方程 5.【答案】D【解析】由a b ∥得1+2=1803=140︒-︒∠∠∠,又因为1=2∠∠,所以1=140=702⨯︒︒∠2,所以4=2∠∠,故选D.【考点】平行线的性质,角平分线的性质 6.【答案】C【解析】因为直线DE 是线段AB 的垂直平分线,所以DA DB =,所以30==︒∠∠DAB DBA ,则30=︒∠DAC ,又因为在Rt ADC △中,3CD =,所以26BD AD CD ===,所以9BC BD CD =+=,故选C.【考点】直角三角形,垂直平分线的性质 7.【答案】C【解析】由题意得当0t =时,货车和小汽车离乙地的距离为180千米,小汽车到达乙地的时间为180=290(小时),加上返回到达甲地的时间为224⨯=(小时),货车到达乙地的时间为180=360(小时),观察图象得只有C 选项符合,故选C. 【考点】一次函数的图象第Ⅱ卷二、填空题8.【答案】=== 【考点】有理数的计算 9.【答案】2(2)x x -【解析】32222(21)(1).x x x x x x x x -+=-+=- 【考点】因式分解 10.【答案】3【解析】因为1x ,2x 对是方程2210x x --=的两根,所以12221x x -+=-=,12111x x -+==-,所以12122(1)3x x x x +-=--=.【考点】方程的根与系数的关系 11.【答案】1a b- 【解析】22221(1)()()b a b a b b b a b a b a b a b a b a b a b b a b+-+÷-=÷=⨯=-+-++--.【考点】分式的化简 12.【答案】65【解析】因为四边形ABCD 为正方形,AC 为对角线,所以45==︒∠∠ACB ACD , BC CD =,又因为CE为公共边,所以()BCE DCE SAS △≌△,所以20==︒∠∠CDE CBE ,则180 70=︒-=︒∠∠ADE CDE ,又因为45=︒∠DAC ,所以18065=︒--=︒∠∠∠AED EAD EDA . 【考点】正方形的性质,全等三三角形的判定与性质 13.【答案】 108π【解析】由题意得扇形的半径 18(cm)120108r =12ππ=,所以圆锥的侧面积等于扇形的面积等于方11812π (cm)2r 108π=⨯⨯=.【考点】扇形的面积公式、弧长公式 14.【答案】66或126【解析】当ABC △为锐角三角形时,因为13AB =,20AC =,BC 边上的高12AD =,则在Rt ADB △和Rt ADC △中,由勾股定理得5BD =,16DC ==,所以 21BC BD DC =+=,则ABC △的面积为1126(cm)2AD BC =;当ABC ∠为钝角三角形时,因为13AB =,20AC =,BC 边上的高12AD =,则在Rt ADB △和Rt ADC △RIOADC 中,由勾股定理得5BD =,16DC =,所以11BC DC BD =-=,则ABC △的面积为方166(cm)2AD BC =。
2015年黄冈市中考数学试题及答案(word版)_图文
黄冈市2015 年初中毕业生学业水平考试数学试题第Ⅰ卷(选择题共21 分)一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3 分,共21 分)1.9 的平方根是(A. ±3B. ±31C.3D.-32. 下列运算结果正确的是(A.x 6÷x 2=x3B.(-x-1=x1C. (2x3 2=4x6D.-2a 2²a 3=-2a63. 如图所示,该几何体的俯视图是(4. 下列结论正确的是( A.3a 2b-a 2b=2B. 单项式-x 2的系数是-1C. 使式子2+x 有意义的x 的取值范围是x>-2D. 若分式112+-a a 的值等于0, 则a=±15. 如图,a ∥b, ∠1=∠2, ∠3=40°, 则∠4 等于( A.40° B.50° C.60° D.70°6. 如图,在△ABC 中,∠C=Rt∠,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为( A.6 B 6. C.9 D. 37. 货车和小汽车同时从甲地出发, 以各自的速度匀速向乙地行驶, 小汽车到达乙地后, 立即以相同的速度沿原路返回甲地. 已知甲、乙两地相距180 千米,货车的速度为60 千米/小时, 小汽车的速度为90 千米/小时, 则下图中能分别反映出货车、小汽车离乙地的距离y(千米与各自行驶时间t(小时之间的函数图象是(第Ⅱ卷(非选择题共99 分)二、填空题(共7 小题,每小题3 分, 共21 分) 8. 计算:2-=_______9. 分解因式:x 3-2x 2+x=________10. 若方程x 2-2x-1=0 的两根分别为x 1,x 2,则x 1+x2-x 1x 2 的值为_________.11. 计算 1(22b a ab a b +-÷-的结果是_________. 12. 如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E, 若∠CBF=20°,则∠AED 等于_________度.13. 如图所示的扇形是一个圆锥的侧面展开图, 若∠AOB=120° , 弧AB 的长为12πcm, 则该圆锥的侧面积为_______cm2.14. 在△ ABC 中,AB=13cm,AC=20cm,BC 边上的高为12cm, 则△ABC 的面积为__________cm2.三、解答题(本大题共10 小题,满分共78 分)15. (5分)解不等式组:⎪⎩⎪⎨⎧-≥-->3221312232x x x x16. (6分)已知A,B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A,B 两件服装的成本各是多少元?17. (6 分)已知:如图,在四边形ABCD 中,AB ∥ CD,E,F 为对角线 AC 上两点,且AE=CF,DF ∥BE.求证:四边形ABCD 为平行四边形.18. (7分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“ 通过”(用√表示或“ 淘汰”(用³表示的评定结果. 节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1请用树形图列举出选手A 获得三位评委评定的各种可能的结果; (2求选手A 晋级的概率.19. (7 分)“ 六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计, 发现各班留守儿童人数分别为6 名,7 名,8 名,10 名,12 名这五种情形, 并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图, 解答下列问题:(1该校有多少个班级? 并补全条形统计图;(2该校平均每班有多少名留守儿童? 留守儿童人数的众数是多少?(3若该镇所有小学共有60 个教学班, 请根据样本数据, 估计该镇小学生中, 共有多少名留守儿童.20.(7 分如图, 在一次军事演习中, 蓝方在一条东西走向的公路上的A 处朝正南方向撤退, 红方在公路上的B 处沿南偏西60°方向前进实施拦截. 红方行驶1000 米到达C 处后, 因前方无法通行, 红方决定调整方向, 再朝南偏西45°方向前进了相同的距离, 刚好在D 处成功拦截蓝方. 求拦截点D 处到公路的距离(结果不取近似值.21. ( 8分)已知:如图,在△ABC 中,AB=AC,以AC 为直径的⊙O 交AB 于点M ,交BC 于点N ,连接AN, 过点C 的切线交AB 的延长线于点P. (1)求证:∠BCP=∠BAN;(2)求证:BPCBMN AM22. (8 分)如图,反比例函数y=xk的图象经过点A (-1,4, 直线y=-x + b(b≠0 与双曲线y=xk在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C,D 两点. (1求k 的值;(2当b=-2 时,求△OCD 的面积; (3连接OQ ,是否存在实数b, 使得S△ODQ=S△OCD ?若存在,请求出b 的值;若不存在,请说明理由.23. (10 分)我市某风景区门票价格如图所示黄冈赤壁旅游公司有甲、乙两个旅行团队, 计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120 人,乙团队人数不超过50 人. 设甲团队人数为x 人, 如果甲、乙两团队分别购买门票, 两团队门票款之和为W 元.(1求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱;(3“ 五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50 人时,门票价格不变;人数超过50 人但不超过100 人时,每张门票降价a 元; 人数超过100 人时,每张门票降价2a 元. 在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400 元,求a 的值.24. (14 分)如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点, 将△BCD 沿直线CD 折叠, 使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系. (1求OE 的长;(2求经过O ,D ,C 三点的抛物线的解析式;(3一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动. 设运动时间为t 秒,当t 为何值时,DP=DQ; (4 若点N 在(2中的抛物线的对称轴上,点M 在抛物线上, 是否存在这样的点M 与点N ,使得以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标; 若不存在,请说明理由.。
黄冈市2015年中考模拟试题数学A卷附答案(2)
黄冈市2015年中考模拟试题数学B 卷(考试时间120分钟 满分120分)一、选择题(每题3分,满分24分)1.12-的倒数是( )A. 2-B.12C. 2D. 12-2.下列运算正确的是( )A.= B. 235()a a = C. 4354a a a -= D. 222347a a a +=3.图中几何体的主视图是( )4.为了响应中央号召,我市今年加大财政支农力度,全市农业支出累计达到235 000 000元,其中235000000用科学记数法可表示为( )A.2.35×107B. 2.35×108C.2.35×109D. 0.235×1095. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D6.如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC//OD ,AB=2,OD=3,则BC 的长为( )A. 23B. 32C.D.7.如图所示,平面直角坐标系中,已知三点A (-1,0),B (2,0),C (0,1),若以A 、B 、C 、D 为顶点的四边形是平行四边形,则D 点的坐标不可能是( )A.(3,1)B.(-3,1)C.(1,3)D.(1,-1)8.如图,△P1OA 1,△P 2A 1A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1,A 1A 2都在x 轴上,则点A 2的坐标是( )A. 2,0)B. 2,0)C.D.二、解答题(每小题3 分,共24 分)9.分解因式32a ab -= .10.如果关于x 的一元二次方程260x x c -+=(c 是常数)没有实数根,那么c 的取值范围是 . 11.在△ABC 中,点D 、E 分别在AB 、AC 上,∠ADE=∠C ,如果AD=3,△ADE 的面积为9,四边形BDEC 的面积为16,则AC 的长为 . 12.设220,4a b a b ab <<+=,则a ba b+-的值等于 . 13.母线长为4,底面圆的直径为2的圆锥的侧面积是 . 14.如图,△ABC 中,∠C=90°,∠BAC=30°,将△ABC 绕点C旋转,使点D 落在AB 上,连接AE ,则sin AED ∠= . 15.已知四条直线3,1;31y kx y y x =+===-和所围成的四边形的面积是8,则k = . 16.如图2所示,已知正方形ABCD 的边长为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交DC 于点F ,设BE=x ,FC=y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是 (填序号) 三、解答下列各题(共9 小题,共72 分)17. (本题6分)解不等式组3(2)41213x x xx --≤⎧⎪+⎨>-⎪⎩ ,并把它的解集在数轴上表示出来.18. (本题6分)如图,正方形ABCD 中,O 是对角线AC 、BD 的交点,过点O 作OE ⊥OF ,分别交AB 、BC 于E 、F.(1)求证△OEF 是等腰直角三角形. (2)若AE=4,CF=3,求EF 的长.19. (本题6分)育才学校八(1)班学生举行1分钟篮球投篮比赛,该班同学投篮投中情况部分统计如图所①② 第11题图 第14题图示:(1)求该班的总人数;(2)请将条形图补充完整,并写出投篮投中个数的众数; (3)该班在1分钟投篮比赛中平均每人投中多少个?20. (本题6分)有时我们可以看到这样的转盘游戏:如图所示,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的资金是多少.例如,当指针指向“2”区域时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的资金为0.2元,你就可以得0.2元.请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?21. (本题6分)菜农张大叔今年承包了10亩蔬菜地种植甲、乙两种蔬菜,已知1-5月份张大叔种植的甲、乙两种蔬菜共获利13800元,其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元,求甲、乙两种蔬菜各种植多少亩?22. (本题8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点M ,过点B 作BE//CD ,交AC 的延长线于点E ,连接BC.(1)求证:BE 为⊙O 的切线. (2)若CD=6,1tan 2BCD ∠=,求⊙O 的直径.23. (本题8分)某街道两旁正在安装漂亮的路灯,经查看路灯图纸,小红发现该路灯的设计可以看作是“相切两圆”的一部分,部分数据如图所示:⊙O 1、⊙O 2相切于点C ,CD 切⊙O 1于点C ,A 、B为路灯灯泡.已知∠AO 1O 2=∠BO 2°、C三点距地面MN 的距离分别为, 请根据以上图文信息,求(1)⊙O 1、⊙O 2的半径分别多 少cm ?(2)把A、B两个灯泡看作两个点,求线段AB的长.24.(本题12分)黄冈市某高新企业制定工龄工资标准时充分考虑员工对企业发展的贡献,同时提高员工的积极性、控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案。
★2015湖北中考数学试题及答案【湖北中考数学试题及答案】
以下是湖北2015年全部科目的试题发布入口:
湖北
数学 数学 英语 化学 物理 历史 政治
数学 数学 英语 化学 物理 历史 政治
出国留学网中考频道的小编会及时为广大考生提供2015年湖北中考数学试题及答案有需要的考生可以在考题公布后刷新本页面按ctrlf5希望对大家有所帮助
★2015湖北中考数学试题及答案【湖北中考数学试题及答案】
山高不厌攀,水深不厌潜,学精不厌苦:追求!中考频道的小编会及时为广大考生提供2015年湖北中考数学试题及答案,有需要的考生可以在考题公布后刷新本页面(按ctrl+F5),希望对大家有所帮助。
黄冈市2015年中考数学模拟试题B卷(附详细答案)
黄冈市2015年中考数学模拟试题B 卷(考试时间120分钟 满分120分)一、 填空题(每小题3分,共30分) 1.8的立方根是 . 2.若关于x 的不等式组⎩⎨⎧>>mxx 5的解集是5>x ,则m 的取值范围是 .3.近似数51.0210⨯精确到了 位.4.如图,在8×4的方格(每个方格的边长为1个单位长)中,⊙A 的半径为1,⊙B 的半径为2,将⊙A 由图示位置向右平移5个单位长后,⊙A 与静止的⊙B 的位置关是 . 5.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为 .6.若一个正多边形的每一个内角都等于120︒,则它是正 边形.7.已知实数a b、在数轴上的位置如图所示,化简a b+的结果为 . 8.如图,在△ACB 中,D为AC 边上的中点,AE ∥BC ,ED 交AB 于G ,交BC 的延长线于F ,若BG :GA=3:1,CB=4,则AE 的长为 .9.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 个.10.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是 . 7题图4题图8题图② 3二、选择题(A,B,C,D 四个答案中,有且只有一个是正确的,请将题中唯一正确答案的序号填入题后的括号内,不填、填错或多填均不得分,每小题3分,满分18分) 11.下列不等式变形正确的是( ).A .由a >b ,得a -2<b -2B .由a >b ,得-2a <-2bC .由a >b ,得a >bD .由a >b ,得a 2>b 212.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ).A .22()()4m n m n mn +--=B .222()()2m n m n mn +-+= C .222()2m nmn m n -+=+D .22()()m n m n m n +-=-13.如图,如果甲、乙两图关于点O 成中心对称,则乙图中不符合题意的一块是( ).14.下列说法中正确的是( )A .“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .数据1,1,2,2,3的众数是3;D .想了解我市城镇居民人均年收入水平,宜采用抽样调查.15.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是( ).A. B. C.D.16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( ).图①图② 甲乙13题图15题图深 水 区 浅水区图1图2DCB AOEA .6B .5C .3D .2三、解答题17.(6分)先化简,再求值:2239(1)x x x x---÷,其中2x =. 18.(7分) 图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.19.(7分)为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.(1)根据图1提供的信息,补全图2中的频数分布直方图;(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是 米3,众数 是 米3,中位数是 米3;(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每月的用水量是多少米3?20.(6分)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点M , AE 切⊙O 于点A ,交BC 的延长线于点E ,连接AC .(1)若∠B =30°,AB =2,求CD 的长; (2)求证:AE 2=EB ·EC .21.(7分)师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求: (1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?22.(6分)在某电视台举行的“超级女生”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过” 的结论.(1)写出三位评委给出A 选手的所有可能的结论;(米3) 图2图1 CD∙ABO M E(2)对于选手A ,只有..甲、乙两位评委给出相同结论的概率是多少?23.(9分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米.(1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)24.(10分)为迎接东坡文化节,某承办城市把市区主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.(1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?25.(14分)如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.参考答案1.22. m ≤53.千4. 内切5. (2,4)6. 六7.-2a8. 29. 410. 2+210 11. B 12. B 13. C 14. D 15. A 16.B 17. 原式=13x +,-----------3分当2x =时,原式=15-----------6分 18. (1)四边形OCED 是菱形.-----------2分∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,-----------3分 又 在矩形ABCD 中,OC =OD ,∴四边形OCED 是菱形.-----------4分)(2)连结OE .由菱形OCED 得:CD ⊥OE ,-----------5分 ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形 ∴OE =BC =8-----------6分 ∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=-----------7分19.(1)600米3、700米3、750米3、的频数分别是2、2、4;-----2分 (2)250;750;725;-----5分 (3)14-----7分20.(1)3=CD -----3分(2)证∠EAC =30°,再证△EAC ∽△EBA ,得AE 2=EB ·EC .-----6分21. 解:(1)设徒弟每天组装x 辆摩托车,则师傅每天组装(x+2)辆.依题意得:7x<28 7(x+2)>28解得2<x<4∵x 取正整数 ∴x=3-----3分(2)设师傅工作m天,师徒两人所组装的摩托车辆数相同.依题意得:3(m+2)=5m 解得:m=3-----6分答:徒弟每天组装3辆摩托车;若徒弟先工作2天,师傅工作3天,师徒两人做组装的摩托车辆数相同. -----7分22. (1)画出树状图来说明评委给出A 选手的所有可能结果:-----3分(2)由上可知评委给出A 选手所有可能的结果有8种.对于 A 选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A 选手“只有甲、乙两位评委给出相同结论”的概率是14. -----6分23. (1)如图,作AD ⊥BC 于点D ……………………………………1分Rt △ABD 中,AD =AB sin45°=42222=⨯……2分在Rt △ACD 中,∵∠ACD =30°∴AC =2AD =24≈6.5………………………3分即新传送带AC 的长度约为6.5米. ………………………………………4分 (2)结论:货物MNQP 应挪走. ……………………………………5分通过通过待定待定通过通过待定 通过待定通过待定通过待定甲 乙 丙解:在Rt △ABD 中,BD =AB cos45°=42222=⨯……………………6分在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2 ………………………………8分 ∴货物MNQP 应挪走. …………………………………………………………9分 24. 解:(1)由题意可知,当x ≤100时,购买一个需5000元,故15000y x =;-------------------1分当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以x≤1035005000-+100=250. ------------------------2分即100≤x ≤250时,购买一个需5000-10(x -100)元,故y 1=6000x -10x 2;----------4分 当x >250时,购买一个需3500元,故13500y x =; ----------------5分所以,⎪⎩⎪⎨⎧-=x x x x y 3500106000500021 ).250()250100()1000(>≤<≤≤x x x ,,2500080%4000y x x =⨯=. -------------------------------7分(2) 当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x -10x 2=-10(x -300)2+900000<1400000; 所以,由35001400000x =,得400x =; -------------------------------8分 由40001400000x =,得350x =. -------------------------------9分 故选择甲商家,最多能购买400个路灯.-----------------------------10分 25. 解:解:(1)将B 、C 两点的坐标代入得⎩⎨⎧-==+33c c b ……………………2分解得:⎩⎨⎧-=-=32c b所以二次函数的表达式为:322--=x x y ……………………………4分(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322--x x ),PP /交CO 于E 若四边形POP /C 是菱形,则有PC =PO .连结PP /则PE ⊥CO 于E ,∴OE=EC =23∴y =23-.…………………6分∴322--x x =23-解得1x =2102+,2x =2102-(不合题意,舍去) ∴P点的坐标为(2102+,23-)…………………………9分 (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,322--x x ),易得,直线BC 的解析式为3-=x y 则Q 点的坐标为(x ,x -3).EB QP OE QP OC AB S S S S CPQ BPQ ABC ABPC ⋅+⋅+⋅=++=∆∆∆212121四边形 3)3(2134212⨯+-+⨯⨯=x x =87523232+⎪⎭⎫ ⎝⎛--x ……………12分当23=x 时,四边形ABPC 的面积最大 此时P 点的坐标为⎪⎭⎫⎝⎛-415,23,四边形ABPC 的 面积最大值为875. ………………14分。
2015至2019黄冈中考数学试题汇总:填空题
黄冈市2015 年初中毕业生学业水平考试数学试题二、填空题(共7 小题,每小题3 分,共21 分)8.计算:218-=_______9.分解因式:x 3-2x 2+x=________10.若方程x 2-2x -1=0 的两根分别为x 1,x 2,则x 1+x 2-x 1x 2 的值为_________.11.计算)1(22b a a ba b +-÷-的结果是_________. 12.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC交于点E,若∠CBF=20°,则∠AED 等于_________度.13. 如图所示的扇形是一个圆锥的侧面展开图, 若∠AOB=120° , 弧AB 的长为12πcm, 则该圆锥的侧面积为_______cm 2.14. 在△ ABC 中,AB=13cm,AC=20cm,BC 边上的高为12cm,则△ABC 的面积为__________cm2.黄冈市2016年初中毕业生学业水平考试数 学 试 题二、填空题(每小题3分,共24分)7. (2016·黄冈)169的算术平方根是_______________. 8. (2016·黄冈)分解因式:4ax 2-ay 2=______________________. 9. (2016·黄冈)计算:|1-3|-12=____________________. 10. (2016·黄冈)计算(a -a ab b 22-)÷a b a -的结果是_________ ___. 11. (2016·黄冈)如图,⊙O 是△ABC 的外接圆,∠AOB=70°,AB =AC ,则∠ABC =_______________.12. (2016·黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不是标准的克数记为负数。
2015学年湖北省黄冈中考数学年试题
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前广西南宁市2015年初中毕业升学考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的绝对值是( )A .3B .3-C .13D .13-2.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A B C D 3.南宁快速公交(简称:BRT )将在今年底开始动工,预计2016年下半年建成并投入试运营.首条BRT 西起南宁火车站,东至南宁东站,全长约为11300米,其中数据11300用科学记数法表示为( ) A .50.11310⨯B .41.1310⨯C .311.310⨯D .211310⨯4.某校男子足球队的年龄分布如条形图所示,则这些队员年龄的众数是( )A .12B .13C .14D .155.如图,一块含30角的直角三角板ABC 的直角顶点A 在直线DE 上,且BCDE ∥,则CAE ∠等于( )A .30B .45C .60D .906.不等式231x -<的解集在数轴上表示为 ( )ABCD7.如图,在ABC △中,AB AD DC ==,70B ∠=,则C ∠的度数为( )A .35B .40C .45D .50 8.下列运算正确的是( )A .422ab a ab ÷=B .236(3)9x x =C .347a a a =D9.一个正多边形的内角和为540,则这个正多边形的每个外角等于( )A .60B .72C .90D .10810.如图,已知经过原点的抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-.下列结论: ①0ab >; ②0a b c ++>; ③当20x -<<时,0y <. 正确的个数是 ( )A .0个B .1个C .2个D .3个11.如图,AB 是O 的直径,8AB =,点M 在O 上,20MAB ∠=,N 是MB 的中点,P 是直径AB 上一动点.若1MN =,则PMN△周长的最小值为( )A .4B .5C .6D .712.对于两个不相等的实数,a b ,我们规定符号max{,}a b 表示,a b 中较大的数,如:max{2,4}4=.按照这个规定,方程21max{,}x x x x +-=的解为 ( )A .1B .2C .11+D .1+1-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________--------------------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.分解因式:ax ay += .14.要使分式11x -有意义,则字母x 的取值范围是 .15.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸取一个小球,则取出的小球标号是奇数的概率是 .16.如图,在正方形ABCD 的外侧作等边ADE △,则BED ∠的度数是.17.如图,点A在双曲线0)y x >上,点B 在双曲线(0)ky x x=>上(点B 在点A 的右侧),且AB x ∥轴.若四边形OABC 是菱形,且60AOC ∠=,则k = .18.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动:第1次点A 向左移动3个单位长度到达点1A ,第2次从点1A 向右移动6个单位长度到达点2A ,第3次从点2A 向左移动9个单位长度到达点3A ,……,按照这种移动规律移动进行下去,第n 次移动到达点n A .如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:022015(1)2tan 454+--+20.(本小题满分6分)先化简,再求值:(1)(1)(2)1x x x x +-++-,其中12x =.21.(本小题满分8分)如图,在平面直角坐标系中,已知ABC △的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -. (1)画出ABC △关于y 轴对称的111A B C △;(2)将ABC △绕着点B 顺时针旋转90后得到22A BC △.请在图中画出22A BC △,并求出线段BC 在旋转过程中所扫过的面积.(结果保留π).22.(本小题满分8分)今年5月份,某校九年级学生参加了南宁市中考体育考试.为了了解该校九年级(1)班学生的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(图1)和扇形统计图(图2).请根据图表中的信息解答下列问题:(1)求全班学生人数和m 的值;(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段?(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人.现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”,求出恰好选到一男一女的概率.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(本小题满分8分)如图,在□ABCD 中,,E F 分别是,AB DC 边上的点,且AE CF =. (1)求证:ADE CBF △≌△;(2)若90DEB ∠=,求证:四边形DEBF是矩形.24.(本小题满分10分)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上,修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽;(3)已知某园林公司修建甬道、花圃的造价1y (元),2y (元)与修建面积2(m )x 之间的函数关系如图2所示.如果学校决定由该公司承建此项目,并要求修建的甬道宽不少于2米且不超过10米,那么甬道宽为多少时,修建的甬道和花圃的总造价最低?最低总造价为多少元?25.(本小题满分10分)如图,AB 是O 的直径,,C G 是O 上两点,且AC CG =.过点C 的直线CD BG ⊥于点D ,交BA 的延长线于点E .连接BC ,交OD 于点F . (1)求证:CD 是O 的切线;(2)若23OF FD =,求E ∠的度数;(3)连接AD ,在(2)的条件下,若CD =求AD 的长.26.(本小题满分10分)在平面直角坐标系中,已知,A B 是抛物线2(0)y ax a =>上两个不同的动点,其中A 在第二象限,B 在第一象限.(1)如图1所示,当直线AB 与x 轴平行,90AOB ∠=,且2AB =时,求此抛物线的解析式和,A B 两点的横坐标的乘积;(2)如图2所示,在(1)所求得的抛物线上,当直线AB 与x 轴不平行,AOB ∠仍为90时,,A B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由;(3)在(2)的条件下,若直线22y x =--分别交直线,AB y 轴于点,P C ,直线AB 交y 轴于点D ,且BPC OCP ∠=∠,求点P 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
湖北省黄冈市2015年中考模拟数学试题(B卷)及答案
湖北省黄冈市2015年中考模拟试题数学B 卷(含答
案)
总分:120分时间:120分钟
一、选择题(共
7小题,每小题3分,共21分)1.|﹣2|等于(
)A. 2 B.-2 C.1
2 D.
122. 下列图形中,是轴对称图形的个数是
( )A .1 B .2 C .3 D .4
3. 下列几何体中,同一个几何体的主视图与俯视图不同的是(
)A.
B. C. D. 4.下列运算正确的是()A .(x +y 2)2=x 2+y 4 B .b 6÷b 2=b 3 C .-a 2+2a 2=a 2 D .(2y)2×(-y)=-2y 3
5. 如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF 交CD 于点G ,如果∠1=50°,则∠2的度数是(
)A.50° B.65° C.60° D.45°
6. 如图,正方形ABCD 和正方形OEFG 中,点A 和点F 的坐标分别为
(3,2),(-1,-1),则两个正方形的位似中心的坐标是(
)A .(1,0) B .(-5,-1) C .(1,0)或(-5,-1)D .(1,0)或(-5,-2)
7.如图,在平面直角坐标系中
,矩形OABC 的两边OA 、OC 分别在x 轴、y 轴的正半轴上,OA=6,OC=4.点P 从点O 出发,沿x 轴以每秒1个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段CP 的中点绕点P 按顺时针方向旋转
90°得点D ,点D 随点P 的运动而运动,连接DP 、DA .则第7题图
第6题图第5题图。
湖北省黄冈市2015年中考模拟试题数学D卷
第5题图第6题图 湖北省黄冈市2015年中考模拟试题数学D 卷(Word 版含答案)试卷总分:120分 考试时间:120分钟第Ⅰ卷(选择题 共21分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面表格内。
本大题共7小题,每小题3分,共21分.) 1.-20151的倒数为 A.-2015 B. -20151 C.2015 D. 201512.下列运算正确的是A .b a b a +=+--)(B .a a a =-2333 C .(x 6)2=x 8D.323211=⎪⎭⎫⎝⎛÷- 3.在函数y =中,自变量x 的取值范围是 A.1x ≠ B. 1x >- C. x ≥1D.1x >4.不等式组⎪⎩⎪⎨⎧-<--+≥+-xx x x 8)1(311323的整数解是A .-2,-1,0B .-1,0,1C .0,1,2D .1,2,35.几个棱长为1的正方体组成几何体的三视图如图,则这个几何体的体积是A .5B .6C .7D .8 6.二次函数y =ax 2+bx +c(a≠0)的图象如图,给出下列结论:①b 2-4ac>0; ②2a+b<0; ③4a-2b +c =0; ④a∶b∶c=-1∶2∶3.其中正确的是A .①② B.②③ C.③④ D.①④ 7.等腰△ABC中,∠A=30°,AB=4 ,则AB 边上的高CD 的长是 A .2或32或33 B .2或34或33 C .2或32或332 D. 2或34或332第Ⅱ卷(非选择题 共99分)二、填空题(共7个小题,每小题3分) 8.化简-5.0-=___________.9.分解因式:3-12t + 12t 2= . 10. 已知0113=+++b a ,则_______20152=--ba .11.如图,直线BD∥EF,AE 与BD 交于点C ,若∠ABC=30°,∠BAC=75°,则∠CEF 为____.AD FE 第17题图第11题图12、若方程2x +8x-4=0的两根为1x 、2x 则21+1= 14. 如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN ⊥AB,垂足为N.P,Q 分别为弧AM,弧BM 上一点(不与端点重合),如果∠MNP =∠MNQ.有以下结论:①∠1=∠2 ,②∠MPN+∠MQN=180°,③∠MQN=∠PMN ,④PM=QM,⑤MN 2=PN ·QN.其中正确的是___________.三、解答题(本大题共10小题,共78分.) 15.(5分) 先化简,在求值:3-x 2x -4÷(5x -2-x -2),其中x=3-3.16.(本小题满分6分)某中心城市有一楼盘,开发商准备以每平方米7000元的价格出售.由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分比;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力.请问房产销售经理的方案对购房者是否更优惠?为什么?17.(本小题满分6分)如图△ABC 中,D 、E 分别是AB 、AC 的中点, BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF .求证:四边形BCFE 是菱形.19.(本小题满分7分)在复习《反比例函数》一课时,同桌的小峰和小轩有一个问题观点不一致: 情境:随机同时掷两枚质地均匀的骰子(骰子六个面上的点数分别代表1,2,3,4,5,6).第一枚骰子上的点数作为点P (m ,C BA45°60°NM 第22题图第20题图A O DCn )的横坐标,第二枚骰子上的点数作为点P (m ,n )的纵坐标 小峰认为:点P (m ,n )在反比例函数y=x 8图象上的概率一定大于在反比例函数y=x 6图象上的概率;小轩认为:点P (m ,n )在反比例函数y=x 8和y=x6图象上的概率相同. 问题:(1)试用列表或画树状图的方法,列举出所有点P (m ,n )的情形;(2)分别求出点P (m ,n )在两个反比例函数的图象上的概率,并说明谁的观点正确.20.(本小题满分7分)如图,AB 是⊙O 的直径,BC 为⊙O 切线, 切点为B ,OC 平行于弦AD ,OA =2. (1)求证:CD 是⊙O 的切线;(2)若AD +OC =9,求CD 的长.(结果保留根号)21.(本小题满分9分) 教育局为了解本县一中学1200名学生每学期参加社会实践活动的时间,(1)在这个统计中,众数是 ,中位数是 ; (2)补全下面的频率分布表和频率分布直方图:(3)请你估算这所学校的学生中,每学期参加社会实践活动时间不少于9天的大约有多少人?22.(本小题满分7分)钓鱼岛自古就是中国的领土.某日,中国一艘海 监船从A 点沿正北方向巡航,其航线距钓鱼岛(设M ,N 为该岛的东 西两端点)最近距离为14km (即MC=14km ).在A 点测得岛屿的西端点M 在点A 的东北方向;航行4km 后到达B 点,测得岛屿的东端点N 在点B 的北偏东60°方向,(其中N ,M ,C 在同一条直线上), 求钓鱼岛东西两端点MN 之间的距离(结果保留根号). 23.(本小题满分10分)“低碳生活”作为一种健康、环保、安全的生活方式,受到越来越多人的关注.某公司生产的健身自行车在市场上受到普遍欢迎,在国内市场和国外市场畅销,生产的产第24题图品可以全部售出,在国内市场每辆的利润y 1(元)与销量x (万辆)的关系如图所示;在国外市场每辆的利润y 2 (元)与销量x (万量)的关系为: y 2=⎩⎨⎧≤≤≤≤+-)104(240)60(36020x x x .(1)求国内市场的销售总利润1z (万元)关于销售量x (万辆)的函数关系式,并指出自变量的取值范围.(2)该公司的年生产能力为10万辆,请帮助该公司确定 国内、国外市场的销量各为多少时,公司的年利润最大?24.(本小题满分14分)如图,抛物线y=ax 2-2ax+c(a≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 坐标为(4,0). (1)求该抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK+KN 最小,并求出点K 的坐标;(3)点Q 是线段AB 上的动点,过点Q 作QE∥AC,交BC 于点E ,连接CQ.当△CQE 的面积最大时,求点Q 的坐标;(4)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.AB CDFE第17题图第Ⅰ卷(选择题 共21分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面表格内。
湖北省黄冈市2015年中考模拟试题数学C卷(含答案)
湖北省黄冈市2015年中考模拟试题数学C卷(含答案)(考试时间:120分钟满分:120分)黄梅县晋梅中学柳平一、填空题(3分×7=21分)1. +3的绝对值是_______.2.函数错误!未找到引用源。
中,自变量x的取值范围是___________.3.因式分解:-y2-4y-4=__________.4.一个圆锥的底面半径为4cm,将侧面展开后所得扇形的半径为5cm,那么这个圆锥的侧面积等于_________ cm25. 若a+3b=0,则错误!未找到引用源。
.6.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图左视图俯视图7.如图已知二次函数错误!未找到引用源。
的图象过(-1,0)和(0,-1)两点,则化简代数式错误!未找到引用源。
=.二、选择题(3分×7=21分)8.下列计算正确的是( )A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
9.庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有( )队参加比赛.A.12B.11C. 9D. 1010.下列说法不正确的是()A.折线图可以直观反映数据的变化趋势.B.一组数据1、2、3,平均数为2,方差为0.第7题图C.一组数据3,5,4,1,-2的中位数是3 .D.样本中个体的数目叫样本容量.11. 已知方程x2-5x-1=0的两根分别为x1与x2,则错误!未找到引用源。
=()A.-10 B.-11 C.11D.10第12题第13题第14题12.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC= 6cm,点P是母线BC上一点且PC=23BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(错误!未找到引用源。
)cm B.5cm C.错误!未找到引用源。
cm D.7cm13.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.错误!未找到引用源。
【新课标】备战中考2015年全国各地试题训练湖北黄冈-解析版
湖北省黄冈市2015年中考数学试卷一、填空题(共8小题,每小题3分,满分24分)1、(2015•随州)﹣的倒数是﹣2.考点:倒数。
分析:根据倒数的定义直接解答即可.解答:解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.点评:本题考查倒数的基本概念,即若两个数的乘积是1,我们就称这两个数互为倒数.属于基础题.2、(2015•随州)分解因式:8a2﹣2=2(2a+1)(2a﹣1).考点:提公因式法与公式法的综合运用。
分析:先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解答:解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).点评:本题考查了提公因式法,公式法分解因式.注意分解要彻底.3、(2015•随州)要使式子有意义,则a的取值范围为a≥﹣2且a≠0.考点:二次根式有意义的条件。
专题:计算题。
分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4、(2015•随州)如图:点A在双曲线上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=﹣4.考点:反比例函数系数k的几何意义。
专题:探究型。
分析:先根据反比例函数图象所在的象限判断出k的符号,再根据S△AOB=2求出k的值即可.解答:解:∵反比例函数的图象在二、四象限,∴k<0,∵S△AOB=2,∴|k|=4,∴k=﹣4.故答案为:﹣4.点评:本题考查的是反比例系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.5、(2015•鄂州)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.考点:平移的性质。
黄冈市2015年初中毕业生学业水平考试数学试题1模8k
黄冈市2015年中考数学试题(1模、答题卡、参考答案)(时间:120分 满分:120分)一. 选择题(每小题3分,共21分) 1. –2的相反数是( ).A .-2B .±2C .2D .12-2.若(m -1)20,则m +n 的值是( ). A .-1 B .0 C .1 D .23.下列运算正确的是( ).A .325(2)4x x -=B .32422x x x ÷=C .236x x x ⋅=D .235x x x += 4.函数y =x 的取值范围是( ). A . x ≠1 B .x ≥0且x ≠1 C .x >1 D .x ≥15.如图所示,是一个几何体的三视图,从该几何体的A 点沿其外表面绕一条金线到P 点,则该金线的最短长度是( ). A .4 B .5 C .6 D .7B6.如图所示,以AB =10为直径的⊙O 中,弦BC =6,DO ⊥AB 交AC 于D ,则OD =( ). A .154 B . 152 C .125 D . 2457.如图,在矩形ABCD 中,AB =8,BC =6,P 、Q 分别为AB 、CD 上的动点,PE ∥BQ ,F 是BQ 上的动点,则图中△PEF 面积的最大值是( ). A. B. C .6 D. 二. 填空题(每小题3分,共21分)8.计算:= .9.分解因式:3269a a a -+= .10.若21x x x<<,则x 的取值范围是 . 11.王师傅5:00开车从甲地到乙地,匀速行驶一段时间后,因车子故障耽搁了一段时间,故障排除后,加快速度匀速前进,结果刚好准时到达.如图是王师傅行驶的路程y (km )与行驶时间t (h)之间的函数图象,则王师傅准时到达的时刻是几点 .12.如图,AB 和CD 分别是半径为13的⊙O 上的两条弦,其中CD 是动弦,AB 是定弦,AB=24,CD=10,OM ⊥AB 于M ,ON ⊥CD 于N ,则MN 的取值范围是 .h )ONMDCBAEDCBA13.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,∠ADE =∠C ,如果AD =3,△ADE 的面积为9,四边形BDEC 的面积为16,则AC 的长为 .14.双曲线y = k x 和y = 1 x 在第一象限内的图象如图所示,P 在y = kx 的图象上,PC ⊥x 轴于C ,交y = 1 x 的图象于A ,PD ⊥y 轴于D ,交y = 1 x 的图象于B ,当P 点在y = kx 的图象上运动时,下列结论:①△OBD 与△OAC 的面积相等;②四边形P AOB 的面积保持不变;③P A =PB ;④ 若A 是PC 的中点,则B 是DP 的中点.其中一定正确的的序号是 .三.解答题(本大题共10小题,满分共78分)15.(5分)计算:0312sin 301)()2-︒---16.(6分)解不等式组:523(1)31722x x x x +>-⎧⎪⎨--⎪⎩≤①②,并求其整数解. 17.(8分) 如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =55cm ,且tan ∠EFC =34. (1)证明:△AFB ∽△FEC ; (2)求矩形ABCD 的周长.FED CBA ODCBABC18. (7分)如图,P A 、PB 是⊙O 的切线,A 、B 是切点,AC 是⊙O 的直径,AB 交OP 于D . (1)证明:AD ⊥OP ; (2)若AC =10,cos C =35,求P A .19. (7分)如图阴影部分是一片沼泽,为了测量AD 之间的距离,现从A 点向东走200m 到B 点,测得D 点在B 点的西偏北60º方向, 从B 点再向东走100m 到C 点,测得D 点在C 点的西北方向,求点A 与D 点的距离AD .(结果请保留根号)20.(6分)甲、乙两台白糖封装机封装白糖,从中各抽出10袋,测得它们的实际质量如下:(1)填空 (2) 种封装机封装的白糖的质量更稳定.21.(6分)假定鸟卵孵化后,雏鸟为雌、雄的概率相等.如果三枚鸟卵全部孵化成功,用X 表示雌性,Y 表示雄性.(1)用树形图或列举表示所有的可能性;(2)求三只雏鸟中恰有两雌一雄的概率.22.(9分)在中国倡导的“一带一路”战略中,由亚投行投资兴建的一条跨国铁路分为标1、标2、标3、标4四个等长标段,这四段路的路况一样,由中巴两个工程队合作12天完成标1后,接着中方单独完成标2,巴方单独完成标3,结果巴方比中方多用10天.(1)若将标4交给中方或巴方单独施工,求中方、巴方单独完成标4的天数;(2)若中方每天的施工费是5万元,巴方每天的施工费是3.5万元,标4要求在30天内完工,由中方或巴方或中巴两工程队共同施工,在不误工期时,请为亚投行设计出费用最少的招标方案.23.(10分)某私营公司生产一种商品,每件成本为20元,根据往年的销售记录发现:这种商品在未来30天的日销量Q (件)与销售时间x (天)之间的关系近似满足下表:未来30天每天的售价p (元/件)与销售时间x (天)之间满足的函数关系式为:1254p x =+,x 为整数 (1)从所学的一次函数、二次函数、反比例函数中选择一个符合要求的,直接写出Q 与x 之间的函数关系式;(2)未来30天中哪一天的利润(W 元)最大?最大利润是多少元?(3)在实际销售的30天中,该公司决定每销售一件商品就提取n 元利润捐赠给本村敬老院,每天扣除捐款后,前19天的日销售利润逐日增加,求该私营企业这次最少共捐款了多少元?24.(14分)如图,菱形ABCD的边长为4且∠DAB =60°,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系.动点P 从点D 出发沿折线DCB 向终点B 以2个单位/秒的速度运动,同时动点Q 从点A 出发沿x 轴负半轴以1个单位/秒的速度运动,当点P 到达终点时停止运动,运动时间为t 秒,直线PQ 交AD 于点E .(1)直接写出点A 、D 、C 的坐标和经过A 、D 、C 三点的抛物线解析式;(2)是否存在时刻t 使得PQ ⊥DB ?若存在,请求出t 值;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三角形?若存在,直接写出M 点的坐标;若不存在,请说明理由;(4)设AE 长为y ,试求y 与t 之间的函数关系式.DCPO DC BA黄冈市2015年初中毕业生学业水平考试数学试题一模答题卡15°45°30°30°60°15°45°30°EDCB A2015年黄冈市中考数学一模参考答案....15. 032sin 301)()2-︒---+ 解:原式218(2)62=⨯-++-=16.(6分523(1)31722x x x x +>-⎧⎪⎨--⎪⎩≤①②解: 由①得,52x >-;由②得,4x ≤. 所以不等式组的解集是542x -<≤,当x 为整数时,2,1,0,1,2,3,4x --=.17.(1) 证明:由矩形ABCD 知,∠B =∠C =∠D =90°,由折叠知,∠AFE =∠D =90°,则∠AFB +∠EFC =∠BAF +∠AFB =90°,∴∠EFC =∠BAF ,∴△AFB ∽△FEC ;(2)在Rt △EFC 中,tan ∠EFC =EC FC = 34 ,设EC =3x ,FC =4x ,则DE =FE =5x ,∴AB =CD=8x ,又∠EFC =∠BAF ,在Rt △ABF 中,tan ∠BAF = BF AB = 34 ,即 BF 8x = 34,∴BF =6x ,∴AD =BC =10x ,在Rt △AEF 中,222(10)(5)x x +=,1x ∴=,∴矩形ABCD 的周长=36x =36.18.(1)证明:∵P A 、PB 是⊙O 的切线,∴P A =PB ,又OA =OB ,∴OP 是线段AB 的垂直平分线,∴AD ⊥OP ;(若用全等,只要合理,参照给分) (2)∵AC 是⊙O 的直径,∴∠ABC =90°,在Rt △ABC 中,cos C =BC AC =35,即BC 10=35,∴ BC =6,则BC =8,∵P A 是⊙O 的切线,AC 是⊙O 的直径,∴OA ⊥AP ,∴∠OAD +∠DAP =90°,又AB ⊥OP ,∴∠DAP +∠DP A =90°,∴∠OAD =∠DP A ,又∠CBA =∠OAP =90°,∴△ABC ∽△P AO ,∴ AB P A =BC AO ,即8P A =65,∴P A =203. 19.【解】作AE ⊥BD 于E ,连接CE ,在Rt △ABE 中, ∵ AB =200,∠ABE =60°,∴∠BAE =30°,BE =100,又BC =100,∴BE =BC ,∠BEC =∠BCE =30°,又∠ACD =45°,∴∠ECD =15°,∴∠EDC =15°,∴∠ECD =∠EDC ,∴DE =CE ,∵∠BAE =30°,∠ABE =∠BCE =30°,∴AE =CE ,∴DE =CE =AE =1003,∴AD =100 6 (m )答:A 点与D 点之间的距离是100 6 m .【另解】作DE ⊥AB 于E ,设BE =x ,则DE =3x ,CE =100+x ,∵DE ⊥AB ,∠ACD =45°,∴DE =CE ,即3x =100+x ,∴ x =50(1+3),∴AE =200-50(1+3)=50(3-3),DE =50(3+3),在Rt △ADE 中,由勾股定理知AD =100 6 m . (2)乙21.解:(1)树形图如下:第3枚第2枚第1枚或者完全列举所有可能的结果是:XXX ,XXY ,XYX ,XYY ,YXX ,YXY ,YYX ,YYY ; (2)在8种等可能的结果中,两雌一雄有3种,其概率为P = 38.22. 【解】(1)设甲工程队单独施工完成标1需a 天,则乙工程队单独施工完成标1需(a +10)天,依题意,有1111012a a +=+,则(20)(6)0a a -+=,20,6a a ==-(舍),经检验,200,10300a a =≠+=≠,故20a =是原分式方程的解,从而1030a +=. 即中方单独施工完成标1需20天,则巴方单独施工完成标1需30天. (4分)(2)设标4中方做x 天,巴方做y 天完工,记总施工费为W 万元,则12030x y +=,则3260x y +=,6032xy -=,( 0≤x ≤20). 又60315 3.55 3.510524x W x y x x -=+=+⋅=-,(0≤x ≤20),∵x 增大,W 减小,∴x =20, 1105201004W =-⨯=最小值(万元). (4分) 故亚投行应安排中方单独施工,20天可以完工,此时总费用最小,是100万元. 23.【解】 (1) ∵1981080⨯≠⨯,∴Q 与x 不是反比例函数;由三点式方程知,Q 与x 不是二次函数;Q 与x 满足一次函数关系,关系式是:2100Q x =-+,(1≤x ≤30,x 为整数);(2)211(20)(2100)(2520)(15)612.542W Q p x x x =⋅-=-++-=--+,(1≤x ≤30,x 为整数)200-x 60°45°1003xxDECBA∵102a =-<,∴x =15时,max (15)612.5W W ==;即第15天日销售利润最大,是612.5元; (3)∵211(20)(2100)(2520)(215)100(5)42W'Q p n x x n x n x n =⋅--=-++--=-+++-∵102a =-<,抛物线的对称轴是21521512()2n x n +=-=+⨯-,依题意,21519n +≥,∴ n ≥2,∴当n =2时,捐款最少;即该私营企业这次最少共捐款1230()2(1002110022100230)2Q Q Q ++⋅⋅⋅+⋅=-⨯+-⨯+⋅⋅⋅+-⨯⋅ []100302(1230)24140=⨯-⨯++⋅⋅⋅+⋅=(元). 24.【解】(1)A (-2,0),D (0,23),C (4,23),222)(6)y x =-+-=-(2) 连接AC ,则AC ⊥BD ,若PQ ⊥BD ,则PQ ∥AC ,∴P 点在BC 上时,不存在PQ ∥AC ;当P 点在CD 上时,∵PQ ∥AC ,AB ∥CD ,∴四边形PCAQ 是平行四边形,∴PC =AQ ,即有4-2t =t ,∴43t =;(3) (3,±.过程不必,用纯几何法,分类讨论如下(也可以用解析法): ①BM =BC =4,1,2(3,4)M ±;②CM =CB =4,3M ;③MB =MC,4M ;(4)分两种情况:①当P 点在DC 上时,即0≤t ≤2时,∵ AB ∥CD ,∴△AFB ∽△FEC , ∴AE DE =AQ DP ,即y 4-y =t 2t ,∴43y =; ②当P 点在BC 上时,即2<t ≤4时,∵ AE ∥BC ,∴△AEQ ∽△BPQ ,∴AE BP =QAQB,即y 8-2t =t t +4 ,∴2(4)4t t y t-=+; 综上所述,有4,(02)32(4),(2<4)4t y t t t t⎧<⎪⎪=⎨-⎪⎪+⎩≤≤; (说明:在t =2时连续即可)【第7题分析】∵PE ∥BQ ,作PF ′∥AQ ,∴四边形PEQF ′是平行四边形,∴''PEF PEF QEF S S S ∆∆∆==,易知186242ABQ S ∆=⨯⨯=,设AP =x , 2APE ABQ S AP S AB ∆∆=(),2'BPF ABQ S BP S AB∆∆=(),代数,有 2232488APE APE S x S x ∆∆=⇒=(),22''8382488BPF BPF S x S x ∆∆-=⇒=-()(), ∴222''333224(8)(4)6888PEF PEF S x x S x ∆∆=---⇒=--+max 12PEF S ∆⇒=.选A,此时x =4,点P 在AB 的中点上. 8xx P CA【第10题分析】主考应用三种基本函数图象,以数形结合的方式求解;若分类,学生难取解. 【第5题分析】该几何体是一个圆锥,侧面展开图是一个半圆,下面是分析图OPB AA4351x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈市2015年初中毕业生学业水平考试数学试题 第Ⅰ卷(选择题共21 分) 一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3 分,共21 分)1.(3 分)(2015•黄冈)9 的平方根是( )A.±3B.±31C.3D.-3考点:平方根.分析:根据平方根的含义和求法,可得9 的平方根是: ±9 =±3 ,据此解答即可.解答:解:9 的平方根是:±9 =±3 .故选:A .点评:此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.2.(3 分)(2015•黄冈)下列运算结果正确的是( )A.x 6÷x 2=x 3B.(-x)-1=x1 C. (2x 3)2=4x 6 D.-2a 2·a 3=-2a 6考点:同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.分析:根据同底数幂的除法、幂的乘方、单项式的乘法计算即可.解答:解:A 、x 6÷x 2=x 4 ,错误;B 、(-x)-1=﹣x 1 ,错误; C 、(2x 3)2=4x 6 ,正确;D 、-2a 2·a 3=-2a 5,错误;故选C点评:此题考查同底数幂的除法、幂的乘方、单项式的乘法,关键是根据法则进行计算.3.(3 分)(2015•黄冈)如图所示,该几何体的俯视图是( )考点:简单组合体的三视图.分析:根据从上面看得到的视图是俯视图,可得答案.解答:解:从上面看是一个正方形,在正方形的左下角有一个小正方形.故选:B .点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.4.(3 分)(2015•黄冈)下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子2+x 有意义的x 的取值范围是x>-2D.若分式112+-a a 的值等于0,则a=±1 考点:二次根式有意义的条件;合并同类项;单项式;分式的值为零的条件.分析:根据合并同类项,可判断A ;根据单项式的系数是数字因数,可判断B ;根据二次根式的被开方数是非负数,可判断C ;根据分式的分子为零分母不为零,可判断D .解答:解:A 、合并同类项系数相加字母部分不变,故A 错误;B 、单项式-x 2的系数是﹣1,故B 正确;C 、式子2+x 有意义的x 的取值范围是x >﹣2 ,故C 错误;D 、分式112+-a a 的值等于0,则a=1,故D 错误; 故选:B .点评:本题考查了二次根是有意义的条件,二次根式有意义的条件是分式的分子为零分母不为零,二次根式有意义的条件是被开方数是非负数.5.(3 分)(2015•黄冈)如图,a ∥b,∠1=∠2,∠3=40°,则∠4 等于( )A.40°B.50°C.60°D.70°考点:平行线的性质.分析:先根据平行线的性质求出∠1+∠2 的度数,再由∠1=∠2 得出∠2 的度数,进而可得 出结论.解答:解:∵a ∥b ,∠3=40°,∴∠1+∠2=180°﹣40°=140°,∠2= ∠4 .∵∠1=∠2 ,∴∠2= 21 ×140°=70°, ∴∠4= ∠2=70°.故选D .点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.(3 分)(2015•黄冈)如图,在△ABC 中,∠C=Rt ∠,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为( )A.6 B 36. C.9 D. 33考点:含30 度角的直角三角形;线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端距离相等可得AD=BD ,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD 为∠BAC 的角平分线,由角平分线的性质得 DE=CD=3 ,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE ,得结果.解答:解:∵DE 是AB 的垂直平分线,∴AD=BD ,∴∠DAE= ∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD 为∠BAC 的角平分线,∵∠C=90°,DE ⊥AB ,∴DE=CD=3 ,∵∠B=30°,∴BD=2DE=6 ,∴BC=9 ,故选C .点评:本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.7.(3 分)(2015•黄冈)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180 千米,货车的速度为60 千米/小时,小汽车的速度为90 千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )考点:函数的图象.分析:根据出发前都距离乙地 180 千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180 千米;经过三小时,货车到达乙地距离变为零,而答案.解答:解:由题意得出发前都距离乙地180 千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180 千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C .点评:本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.第Ⅱ卷(非选择题共99 分)二、填空题(共7 小题,每小题3 分,共21 分)8.(3 分)(2015•黄冈)计算:218-=_______ 考点:二次根式的加减法.菁优网版权所有 分析:先将二次根式化为最简,然后合并同类二次根式即可得出答案.解答:解:218-=322-=22 .故答案为:2 2 .点评:本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.9.(3 分)(2015•黄冈)分解因式:x 3-2x 2+x=________考点:提公因式法与公式法的综合运用.分析:首先提取公因式x ,进而利用完全平方公式分解因式即可.解答: 解:x 3-2x 2+x=x (x 2 ﹣2x+1 )=x (x ﹣1)2 .故答案为:x (x ﹣1)2 .点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.10.(3 分)(2015•黄冈)若方程x 2-2x-1=0 的两根分别为x 1,x 2,则x 1+x 2-x 1x 2 的值为_________.考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到x 1 +x 2 =2 ,x 1 x 2 = ﹣1,然后利用整体代入的方法计算.解答:解:根据题意得x 1 +x 2 =2 ,x 1 x 2 = ﹣1,所以x 1+x 2-x 1x 2 =2 ﹣(﹣1)=3 .故答案为3 .点评:本题考查了根与系数的关系:若x 1 ,x 2 是一元二次方程ax 2 + bx + c=0 (a ≠0 )的两根时,x 1 +x 2 =a b -,x 1 x 2 = a c11.(3 分)(2015•黄冈)计算)1(22b a a b a b +-÷-的结果是_________.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答: 解:原式= 故答案为: .点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.12.(3 分)(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC交于点E,若∠CBF=20°,则∠AED 等于_________度.考点:正方形的性质;全等三角形的判定与性质.菁优网版权所有分析:根据正方形的性质得出∠BAE= ∠DAE ,再利用SAS 证明△ ABE 与△ ADE 全等,再利用三角形的内角和解答即可.解答:解:∵正方形ABCD ,∴AB=AD ,∠BAE= ∠DAE ,在△ABE 与△ADE 中, ,∴△ABE ≌△ADE (SAS ),∴∠AEB= ∠AED ,∠ABE= ∠ADE ,∵∠CBF=20°,∴∠ABE=70°,∴∠AED= ∠AEB=180°﹣45°﹣70°=65°,故答案为:65°点评:此题考查正方形的性质,关键是根据正方形的性质得出∠BAE= ∠DAE ,再利用全等三角形的判定和性质解答.13. (3 分)(2015•黄冈)如图所示的扇形是一个圆锥的侧面展开图, 若∠AOB=120° , 弧AB 的长为12πcm, 则该圆锥的侧面积为_______cm 2.考点:圆锥的计算.分析:首先求得扇形的母线长,然后求得扇形的面积即可.解答:解:设AO=B0=R ,∵∠AOB=120°,弧AB 的长为12πcm ,∴ 180120R =12π,解得:R=18 ,∴圆锥的侧面积为 21lR= 21 ×12π×18=108π, 故答案为:108π.点评:本题考查了圆锥的计算,解题的关键是牢记圆锥的有关计算公式,难度不大.14. (3 分)(2015•黄冈)在△ ABC 中,AB=13cm,AC=20cm,BC 边上的高为12cm,则△ABC 的面积为__________cm2.考点:勾股定理.菁优网版权所有分析:此题分两种情况:∠B 为锐角或∠B 为钝角已知AB 、AC 的值,利用勾股定理即可求出BC 的长,利用三角形的面积公式得结果.解答:解:当∠B 为锐角时(如图 1),在Rt △ABD 中,BD==5cm , 在Rt △ADC 中,CD==16cm , ∴BC=21 ,∴S △ ABC= =21 ×21×12=126cm ; 当∠B 为钝角时(如图2 ),在Rt △ABD 中,BD==5cm , 在Rt △ADC 中,CD==16cm , ∴BC=CD ﹣BD=16 ﹣5=11cm ,∴S △ ABC= = 21×11×12=66cm , 故答案为:126 或66 .点评:本题主要考查了勾股定理和三角形的面积公式,画出图形,分类讨论是解答此题的关键.三、解答题(本大题共10 小题,满分共78 分)15.(5分)(2015•黄冈)解不等式组:⎪⎩⎪⎨⎧-≥-->3221312232x x x x考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:由①得,x <2 ,由②得,x≥﹣2 ,故不等式组的解集为:﹣2≤x <2 .点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)(2015•黄冈)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A,B 两件服装的成本各是多少元?考点:二元一次方程组的应用.分析:设A 服装成本为x 元,B 服装成本y 元,由题意得等量关系:①成本共500 元;②共获利 130 元,根据等量关系列出方程组,再解即可.解答:解:设A 服装成本为x 元,B 服装成本y 元,由题意得:,解得:,答:A 服装成本为300 元,B 服装成本200 元.点评:此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.17.(6 分)(2015•黄冈)已知:如图,在四边形ABCD 中,AB ∥ CD,E,F 为对角线AC 上两点,且AE=CF,DF∥BE.求证:四边形ABCD 为平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:首先证明△AEB≌△CFD 可得AB=CD ,再由条件AB∥CD 可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD 为平行四边形.解答:证明:∵AB∥CD,∴∠DCA= ∠BAC,∵DF ∥BE,∴∠DFA= ∠BEC,∴∠AEB= ∠DFC,在△AEB 和△ CFD 中,∴△AEB≌△CFD (ASA),∴AB=CD ,∵AB∥CD,∴四边形ABCD 为平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.18.(7分)(2015•黄冈)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“ 通过”(用√表示)或“ 淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.考点:列表法与树状图法.分析:(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2 )列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数即为所求的概率.解答:解:(1)画出树状图来说明评委给出A 选手的所有可能结果: ;(2 )∵由上可知评委给出A 选手所有可能的结果有8 种.并且它们是等可能的,对于A 选手,晋级的可能有4 种情况,∴对于A 选手,晋级的概率是:21 . 点评:本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(7 分)(2015•黄冈)“ 六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6 名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补全条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数.分析:(1)根据有7 名留守儿童班级有2 个,所占的百分比是 12.5%,即可求得班级的总个数;(2 )利用平均数的计算公式求得每班的留守儿童数,然后根据众数的定义,就是出现次数最多的数确定留守儿童的众数;(3 )利用班级数60 乘以(2 )中求得的平均数即可.解答:解:(1)该校的班级数是:2÷ 12.5%=16 (个).则人数是8 名的班级数是:16 ﹣1 ﹣2 ﹣6 ﹣2=5 (个).; (2 )每班的留守儿童的平均数是: 161(1×6+2×7+5×8+6×10+12×2 )=9 (人),众数是 10 名;(3 )该镇小学生中,共有留守儿童60×9=540 (人).答:该镇小学生中共有留守儿童540 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7 分)(2015•黄冈)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000 米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).考点:解直角三角形的应用-方向角问题.分析:过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的垂线,过D作AB 的平行线,两线交于点F ,则∠E= ∠F=90°,拦截点D 处到公路的距离DA=BE+CF .解Rt △ BCE ,求出BE=21BC=21×1000=500 米;解Rt △ CDF ,求出 CF=22CD=5002 米,则DA=BE+CF=(500+5002)米. 解答:解:如图,过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的垂线,过D 作AB 的平行线,两线交于点F ,则∠E= ∠F=90°,拦截点D 处到公路的距离DA=BE+CF .在Rt △ BCE 中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=21BC=21×1000=500 米; 在Rt △ CDF 中,∵∠F=90°,∠DCF=45°,CD=AB=1000 米, ∴CF=22 CD=5002 米, ∴DA=BE+CF= (500+5002)米,故拦截点D 处到公路的距离是(500+500 2 )米.点评:本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键.21.( 8分)(2015•黄冈)已知:如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点M ,交BC 于点N ,连接AN,过点C 的切线交AB 的延长线于点P.(1)求证:∠BCP=∠BAN;(2)求证:BPCB MN AM考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)由AC 为⊙O 直径,得到∠NAC+ ∠ACN=90°,由AB=AC ,得到∠BAN= ∠CAN ,根据PC 是⊙O 的切线,得到∠ACN+ ∠PCB=90°,于是得到结论.(2 )由等腰三角形的性质得到∠ABC= ∠ACB ,根据圆内接四边形的性质得到∠PBC= ∠AMN ,证出△ BPC ∽△MNA ,即可得到结论.解答:(1)证明:∵AC 为⊙O 直径,∴∠ANC=90°,∴∠NAC+ ∠ACN=90°,∵AB=AC ,∴∠BAN= ∠CAN ,∵PC 是⊙O 的切线,∴∠ACP=90°,∴∠ACN+ ∠PCB=90°,∴∠BCP= ∠CAN ,∴∠BCP= ∠BAN ;(2 )∵AB=AC ,∴∠ABC= ∠ACB ,∵∠PBC+ ∠ABC= ∠AMN+ ∠ACN=180°,∴∠PBC= ∠AMN ,由(1)知∠BCP= ∠BAN ,∴△BPC ∽△MNA ,∴BP CB MN AM . 点评:本题考查了切线的性质,等腰三角形的性质,圆周角定理,相似三角形的判定和性质,圆内接四边形的性质,解此题的关键是熟练掌握定理.22.(8 分)(2015•黄冈)如图,反比例函数y=x k 的图象经过点A (-1,4),直线y=-x + b(b ≠0) 与双曲线y=xk 在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C,D 两点.(1)求k 的值;(2)当b=-2 时,求△OCD 的面积;(3)连接OQ ,是否存在实数b,使得S △ODQ=S △OCD ? 若存在,请求出b 的值;若不存在,请说明理由.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)根据反比例函数的图象上点的坐标特征易得k= ﹣4 ;(2 )当b= ﹣2 时,直线解析式为y= ﹣x ﹣2 ,则利用坐标轴上点的坐标特征可求出C (﹣2 ,0 ),D (0,﹣2 ),然后根据三角形面积公式求解;(3 )先表示出C (b ,0 ),根据三角形面积公式,由于S △ ODQ=S △ OCD ,所以点Q 和 点C 到OD 的距离相等,则Q 的横坐标为(﹣b ,0 ),利用直线解析式可得到Q (﹣ b ,2b ),再根据反比例函数的图象上点的坐标特征得到﹣b •2b= ﹣4 ,然后解方程即可 得到满足条件的b 的值.解答: 解:(1)∵反比例函数y= xk 的图象经过点A (﹣1,4 ), ∴k= ﹣1×4= ﹣4 ;(2 )当b= ﹣2 时,直线解析式为y= ﹣x ﹣2 ,∵y=0 时,﹣x ﹣2=0 ,解得x= ﹣2 ,∴C (﹣2 ,0 ),∵当x=0 时,y= ﹣x ﹣2= ﹣2 ,∴D (0,﹣2 ),∴S △ OCD=21×2×2=2 ; (3 )存在.当y=0 时,﹣x+b=0 ,解得x=b ,则C (b ,0 ),∵S △ ODQ=S △ OCD ,∴点Q 和点C 到OD 的距离相等,而Q 点在第四象限,∴Q 的横坐标为﹣b ,当x= ﹣b 时,y= ﹣x+b=2b ,则Q (﹣b ,2b ),∵点Q 在反比例函数y= ﹣x4 的图象上, ∴﹣b •2b= ﹣4 ,解得b= ﹣2 或b=2(舍去),∴b 的值为﹣2 .点评:本题考查了反比例函数与一次函数的交点:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象上点的坐标特征和三角形面积公式.23.(10 分)(2015•黄冈)我市某风景区门票价格如图所示黄冈赤壁旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120 人,乙团队人数不超过50 人.设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱;(3“) 五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50 人时,门票价格不变;人数超过50 人但不超过100 人时,每张门票降价a 元;人数超过100 人时,每张门票降价2a 元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400 元,求a 的值.考点:一次函数的应用;一元二次方程的应用;一元一次不等式的应用.分析:(1)根据甲团队人数为x 人,乙团队人数不超过50 人,得到x ≥70,分两种情况:①当70≤x ≤100 时,W=70x+80 (120 ﹣x )= ﹣10x+9600,②当100<x <120 时,W=60x+80 (120 ﹣x )= ﹣20x+9600 ,即可解答;(2 )根据甲团队人数不超过100 人,所以x ≤100,由W= ﹣10x+9600,根据70≤x ≤100, 利用一次函数的性质,当x=70 时,W 最大=8900 (元),两团联合购票需120×60=7200(元),即可解答;(3 )根据每张门票降价a 元,可得W= (70 ﹣a )x+80 (120 ﹣x )= ﹣(a+10 )x+9600 , 利用一次函数的性质,x=70 时,W 最大= ﹣70a+8900 (元),而两团联合购票需120(60 ﹣2a )=7200 ﹣240a (元),所以﹣70a+8900 ﹣(7200 ﹣240a )=3400,即可解答.解答:解:(1)∵甲团队人数为x 人,乙团队人数不超过50 人,∴120 ﹣x≤50,∴x≥70,①当70≤x≤100 时,W=70x+80 (120 ﹣x )= ﹣10x+9600,②当100<x <120 时,W=60x+80 (120 ﹣x )= ﹣20x+9600 ,综上所述,W=(2 )∵甲团队人数不超过100 人,∴x≤100,∴W= ﹣10x+9600,∵70≤x≤100,∴x=70 时,W 最大=8900 (元),两团联合购票需 120×60=7200 (元),∴最多可节约8900 ﹣7200=1700 (元).(3 )∵x≤100,∴W= (70 ﹣a )x+80 (120 ﹣x )= ﹣(a+10 )x+9600 ,∴x=70 时,W 最大= ﹣70a+8900 (元),两团联合购票需 120 (60 ﹣2a )=7200 ﹣240a (元),∵﹣70a+8900 ﹣(7200 ﹣240a )=3400 ,解得:a=10 .点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式,利用一次函数的性质求得最大值.注意确定x 的取值范围.24.(14 分)(2015•黄冈)如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA边上的点E 处,分别以OC,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长;(2)求经过O,D,C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t为何值时,DP=DQ;(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)由折叠的性质可求得CE、CO,在Rt△ COE 中,由勾股定理可求得OE,设AD=m ,在Rt△ADE 中,由勾股定理可求得m 的值,可求得D 点坐标,结合C、O 两点,利用待定系数法可求得抛物线解析式;(2 )用t 表示出CP 、BP 的长,可证明△ DBP ≌△DEQ ,可得到BP=EQ ,可求得t的值;(3 )可设出N 点坐标,分三种情况①EN 为对角线,②EM 为对角线,③EC 为对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M 点的横坐标,再代入抛物线解析式可求得M 点的坐标.解答:解:(1)∵CE=CB=5,CO=AB=4,∴在Rt △ COE 中,OE==3 ,设AD=m ,则DE=BD=4 ﹣m ,∵OE=3,∴AE=5 ﹣3=2,在Rt △ADE 中,由勾股定理可得AD 2 +AE 2 =DE 2 ,即m 2 +22 = (4 ﹣m )2 ,解得m= 23 , ∴D (﹣23,﹣5 ), ∵C (﹣4 ,0 ),O (0,0 ),∴设过O 、D 、C 三点的抛物线为y=ax (x+4 ), ∴﹣5= ﹣23 a (﹣23+4 ),解得a=34 , ∴抛物线解析式为y=34x (x+4 )= 34x 2 + 316x ; (2 )∵CP=2t ,∴BP=5 ﹣2t ,在Rt △ DBP 和Rt △ DEQ 中,,∴Rt △ DBP ≌Rt △ DEQ (HL ),∴BP=EQ ,∴5 ﹣2t=t ,∴t= 35 ; (3 )∵抛物线的对称为直线x= ﹣2 ,∴设N (﹣2 ,n ),又由题意可知C (﹣4 ,0 ),E (0,﹣3 ),设M (m ,y ),①当EN 为对角线,即四边形ECNM 是平行四边形时,则线段EN 的中点横坐标为= ﹣1,线段CM 中点横坐标为,∵EN ,CM 互相平分, ∴ = ﹣1,解得m=2 ,又M 点在抛物线上,∴y=34x 2 + 316x=16 , ∴M (2 ,16);②当EM 为对角线,即四边形ECMN 是平行四边形时,则线段EM 的中点横坐标为,线段CN 中点横坐标为 = ﹣3,∵EN ,CM 互相平分, ∴ = ﹣3,解得m= ﹣6,又∵M 点在抛物线上,∴y= 34× (﹣6 )2 + 316× (﹣6 )=16 , ∴M (﹣6,16);③当CE 为对角线,即四边形EMCN 是平行四边形时,则M 为抛物线的顶点,即M (﹣2 ,﹣316 ). 综上可知,存在满足条件的点M ,其坐标为(2 ,16)或(﹣6,16)或(﹣2 ,﹣316 ). 点评:本题主要考查二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、折 叠的性质、 平行四边形的性质等知识点.在(1)中求得D 点坐标是解题的关键,在 (2 )中证得全等,得 到关于t 的方程是解题的关键,在(3 )中注意分类讨论思想的应用.本题考查知识点较多,综 合性较强,难度适中.(注:可编辑下载,若有不当之处,请指正,谢谢!)。