复数高考题型归类
复数的知识点总结与题型归纳
复数的知识点总结与题型归纳一、知识要点 1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有11.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷(c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例] 实数x 分别取什么值时,复数z =x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数.(2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内. (2)在复平面内的x 轴上方.[解](1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:(1) AO ――→表示的复数; (2)对角线CA ――→表示的复数; (3)对角线OB ――→表示的复数.[解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.12 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A .2 B.12 C .-12D .-2(2)(江苏高考)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. [解析] (1)(1+a i)(2+i)=2-a +(1+2a )i ,要使复数为纯虚数,所以有2-a =0,1+2a ≠0,解得a =2.(2)(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5.题型十:复数代数形式的除法运算[典例] (1)若复数z 满足z (2-i)=11+7i(i 是虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)设i 是虚数单位,复数1+a i2-i为纯虚数,则实数a 为( ) A .2 B .-2 C .-12D.12[解析] (1)∵z (2-i)=11+7i ,∴z =11+7i2-i =(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a 5+1+2a 5i ,由1+a i 2-i 是纯虚数,则2-a 5=0,1+2a 5≠0,所以a =2.[答案] (1)A (2)A题型十一:i 的乘方的周期性及应用[典例] (1)(湖北高考)i 为虚数单位,i 607的共轭复数为( ) A .iB .-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i2 016)1-i=i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。
高考复数知识点经典题型
高考复数知识点经典题型高考是每个学生人生道路中的重要里程碑,对于许多学生而言,复习备考是一项艰巨的任务。
在准备期间,学生需要重点关注高考复数知识点,因为这些知识点经常出现在考试中,且占据很大的比重。
在本文中,我将论述一些常见的高考复数知识点,并带你一起解析经典题型。
一、复数的定义和运算法则复数是由实数和虚数构成的数,通常用 a + bi 表示,其中 a 是实部,b 是虚部。
在复数中,虚数单位 i 的平方等于 -1。
对于复数的加法和减法,只需分别对实部和虚部进行运算即可。
而复数的乘法和除法则需要使用分配律和公式 (a + bi) * (c + di) = (ac - bd) + (ad + bc)i 进行计算。
经典题型:1. 计算复数 (3 + 2i) + (4 - i) 的结果。
2. 计算复数 (2 - 3i) - (5 + 2i) 的结果。
3. 计算复数 (1 - 2i) * (3 + 4i) 的结果。
4. 计算复数 (2 + i) / (1 - 3i) 的结果。
二、复数的共轭和模在复数中,共轭是指改变虚部的正负号,得到的新复数称为原复数的共轭。
复数的模是指复数到原点的距离,也可以理解为复数的绝对值。
经典题型:1. 计算复数 (4 + 3i) 的共轭。
2. 计算复数 (2 - i) 的共轭。
3. 计算复数 (3 + 4i) 的模。
4. 计算复数 (-1 + 2i) 的模。
三、复数的幂和根复数的幂是指将复数连续乘以自身多次。
复数的根是指满足a^k - z = 0 的复数 a,其中 a 是复数的根数,k 是根的次数。
经典题型:1. 计算复数 (1 + i)^2 的结果。
2. 求复数 (3 + 4i) 的平方根。
3. 求复数 (1 - i) 的立方根。
4. 求复数 (-1 + √3i) 的四次根。
四、复数的三角形式复数可以利用直角坐标系和极坐标系来表示。
在复数的三角形式中,复数 z = a + bi 可以改写为z = r(cosθ + isinθ) 的形式,其中 r 是复数的模,θ 是复数的辐角。
复数知识点大题型总结
复数知识点大题型总结一、复数的概念复数是表示两个或两个以上的事物或概念的名称或符号,如“苹果”、“树木”、“星星”等。
在语法学上,复数是动词第三人称单数形式之外的一种形式,如“he plays”(他玩)和“they play”(他们玩)。
二、复数的构成1. 大多数情况下,将名词后面加上“-s”或“-es”构成复数形式。
例子:cat(猫)→cats(猫们), box(盒子)→boxes(盒子们)2. 以“-y”结尾的名词,如果“-y”前面是元音字母,则构成复数时直接加“-s”;如果“-y”前面是辅音字母,则将“-y”改为“-i”,再加“-es”。
例子:boy(男孩)→boys(男孩们), baby(婴儿)→babies(婴儿们)3. 以“-f”或“-fe”结尾的名词,通常变“f”为“v”,再加“-es”构成复数。
例子:wolf(狼)→wolves(狼们), leaf(叶子)→leaves(叶子们)4. 以“-o”结尾的名词,大多数情况下在词尾加“-es”。
例子:potato(土豆)→potatoes(土豆们), mango(芒果)→mangoes/mangoes(芒果)5. 特殊情况:有些名词的复数形式和单数形式相同。
例子:sheep(羊)→sheep(羊), fish(鱼)→fish(鱼)三、复数名词的用法1. 表示数量多于一个例子:There are three dogs in the park.(公园里有三只狗。
)2. 表示多种类型例子:She collected various flowers.(她采集了各种花。
)3. 表示所有例子:The students raised their hands.(学生们都举起了手。
)4. 表示家庭成员例子:My parents are in the living room.(我的父母在客厅里。
)四、不规则复数1. 有些名词的复数形式与单数形式完全不同。
单数:man(男人), woman(女人), child(孩子), tooth(牙齿), foot(脚)复数:men(男人们), women(女人们), children(孩子们), teeth(牙齿们), feet(脚们)2. 有些名词的单复数形式相同。
高考复数知识点与题型
高考复数知识点与题型高考是每个学生都必须面对的重要考试,其中涵盖的知识点众多。
在数学这一科目中,复数是一个重要且常见的知识点。
复数在数学中具有广泛的应用,不仅贯穿于高中数学的各个章节中,而且在高考考试的题目中也经常出现。
本文将重点分析与复数相关的知识点和题型。
一、复数的定义与运算复数由实部和虚部组成,一般表示为a+bi的形式,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
在运算方面,复数的加减法与实数类似,可以将实部与虚部分别相加减。
复数的乘法中,需要注意虚数单位的性质,即i²=-1。
复数的除法可以通过有理化操作将分母变为实数,然后进行分子分母的分别除以实数的运算。
高考常见的复数题型包括求复数的共轭、复数的乘除法、复数的加减法等。
二、复数的平方根和幂次方复数的平方根是指复数的某个平方等于给定复数的性质。
一般来说,复数的平方根有两个解,其中一个解是正实数根,另一个解是负实数根。
对于n次方的复数运算,可以使用De Moivre公式将复数的n次方转化为它的幅角与辐角的函数。
高考中常见的题型包括求复数的平方根或者幂次方。
三、复数的模与辐角复数的模表示复数的长度,也可以理解为复数到原点的距离。
一般使用竖线表示,也可以用绝对值表示。
复数的辐角指的是复数与正实数轴之间的夹角,通常用θ表示。
复数的模和辐角可以通过公式计算出来,也可以通过坐标系进行几何解释。
高考中常见的题型包括给出复数求模和辐角,或者给出模和辐角求复数。
四、复数的几何意义复数在数学中具有重要的几何意义。
可以将复数看作是平面上的向量,复数的实部和虚部可以分别表示向量在x轴和y轴的投影。
将复数在坐标系中表示出来,可以画出复平面图。
复数的加减法可以理解为向量的相加减,复数的乘法可以理解为放缩和旋转。
通过复平面图,可以直观地理解复数的运算与几何意义。
在高考题目中,经常会利用复数的几何意义进行分析和解答。
五、复数方程与不等式复数方程和不等式是高考中较为复杂的考点之一。
高考数学冲刺复数考点全面解析
高考数学冲刺复数考点全面解析在高考数学的征程中,复数是一个不可或缺的重要考点。
对于即将踏入高考考场的同学们来说,透彻理解和熟练掌握复数相关知识,无疑是取得优异成绩的关键一步。
接下来,让我们一起对高考数学中复数这一考点进行全面而深入的解析。
首先,我们要明确什么是复数。
复数是形如 a + bi 的数,其中 a 和b 均为实数,i 是虚数单位,满足 i²=-1。
在复数中,a 被称为实部,记作 Re(z);b 被称为虚部,记作 Im(z)。
复数的四则运算规则是我们必须要掌握的重点。
加法:(a + bi) +(c + di) =(a + c) +(b + d)i减法:(a + bi) (c + di) =(a c) +(b d)i乘法:(a + bi)(c + di) =(ac bd) +(ad + bc)i除法:(a + bi)÷(c + di) =(ac + bd) /(c²+ d²) +(bc ad) /(c²+ d²)i在进行四则运算时,要特别注意 i²=-1 的运用,以及合并实部和虚部。
复数的几何意义也是一个重要的知识点。
在复平面上,复数可以用点来表示,实部 a 对应横坐标,虚部 b 对应纵坐标。
复数的模长|z| =√(a²+ b²),表示复数在复平面上对应的点到原点的距离。
共轭复数同样不容忽视。
对于复数 z = a + bi,其共轭复数为z=a bi。
共轭复数在复数的运算和性质研究中有着重要的作用。
接下来,我们看看高考中关于复数的常见题型。
一是复数的概念与分类。
会给出一个复数,要求判断它是实数、虚数还是纯虚数。
这就需要我们根据实部和虚部的取值来进行判断。
如果虚部为 0,就是实数;如果实部为 0 且虚部不为 0,就是纯虚数;否则就是虚数。
二是复数的四则运算。
通常会给出两个或多个复数,要求进行加、减、乘、除运算,然后求出结果的实部和虚部。
第12章复数章末题型归纳总结 高考数学
又∠ ∈ , ,所以∠ = .
故答案为:
−
,
= ,
试卷讲评课件
例11.(2024 ⋅高一·江苏·专题练习)在复平面内,O是原点,向量OZ对应
的复数是−1 +
− 2
复数为_____.
π
i,将OZ绕点O按逆时针方向旋转 ,则所得向量对应的
4
【解析】如图,由题意可知 = −, ,与
经典题型六:复数的三角表示
模块三:数学思想与方法
①分类与整合思想②等价转换思想③
数形结合的思想
试卷讲评课件
模块一:本章知识思维导图
试卷讲评课件
模块二:典型例题
经典题型一:复数的概念
例1.(2024
z
⋅高三·河南商丘·阶段练习)若复数z满足 为纯虚数,且
2+i
z = 1,则z的虚部为(
√
2 5
A.±
若 = ,则有 = , = , ∴ = ,反之由 = ,
推不出 = ,如 = +, = − 时, = ,故C正确;
D中两个复数不能比较大小,但任意两个复数的模总能比较大小,∴
错.
选.
试卷讲评课件
【解析】复数 = + ,则 = +
= − + = −,
−=
又是实数,因此
,解得 = −,
= −
所以实数的值是−.
试卷讲评课件
z1
z1
(2)若 是纯虚数,求
z2
z2
+
z1 2
z2
+
z1 3
复数高考题型归类
复数高考题型归类解析1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值范围是A.(- B.-2,2 C.-1,1 D.(2.在平行四边形OABC中,顶点O,A,C分别表示0,3+2i,-2+4i.则对角线错误!所表示的复数的模为;3.已知复数z1=i1-i2,|z|=1,则|z-z1|的取值范围是;1.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹是个圆 B.线段个点个圆2.如果复数z满足|z+2i|+|z-2i|=4,那么|z+i+1|的最小值是3.若|z-2|=|z+2|,则|z-1|的最小值是 .1.如果复数z=1+ai 满足条件|z|<2,那么实数a 的取值范围是A.(-B.-2,2C.-1,1D.( 2.在平行四边形OABC 中,顶点O ,A ,C 分别表示0,3+2i,-2+4i.则对角线错误!所表示的复数的模为 ;3.已知复数z 1=i1-i 2,|z |=1,则|z -z 1|的最大值.z |2-2|z |-3=0,则复数z 对应点的轨迹是 个圆 B.线段 个点 个圆答案 A解析 由题意可知|z |-3|z |+1=0, 即|z |=3或|z |=-1. ∵|z |≥0,∴|z |=3.∴复数z 对应的轨迹是1个圆.5.如果复数z 满足|z +2i|+|z -2i|=4,那么|z +i +1|的最小值是答案 A解析 设复数-2i,2i,-1+i 在复平面内对应的点分别为Z 1,Z 2,Z 3,因为|z +2i|+|z -2i|=4,Z 1Z 2=4,所以复数z 的几何意义为线段Z 1Z 2,如图所示,问题转化为:动点Z 在线段Z 1Z 2上移动,求ZZ 3的最小值. 因此作Z 3Z 0⊥Z 1Z 2于Z 0,则Z 3与Z 0的距离即为所求的最小值,Z 0Z 3=1.故选A.8.若|z -2|=|z +2|,则|z -1|的最小值是 . 答案 1解析 由|z -2|=|z +2|,知z 对应点的轨迹是到2,0与到-2,0距离相等的点,即虚轴.|z -1|表示z 对应的点与1,0的距离.∴|z -1|min =1.12.集合M ={z ||z -1|≤1,z ∈C },N ={z ||z-1-i|=|z -2|,z ∈C },集合P =M ∩N . 1指出集合P 在复平面上所表示的图形;2求集合P 中复数模的最大值和最小值. 解 1由|z -1|≤1可知,集合M 在复平面内所对应的点集是以点E 1,0为圆心,以1为半径的圆的内部及边界;由|z -1-i|=|z -2|可知,集合N 在复平面内所对应点集是以点1,1和2,0为端点的线段的垂直平分线l ,因此集合P 是圆面截直线l 所得的一条线段AB ,如图所示.2圆的方程为x 2+y 2-2x =0, 直线l 的方程为y =x -1. 解错误!得A 错误!,错误!,B 错误!,-错误!.∴|OA|=错误!,|OB|=错误!.∵点O到直线l的距离为错误!,且过O向l 作垂线,垂足在线段BE上,∴错误!<错误!.∴集合P中复数模的最大值为错误!,最小值为错误!.。
复数高考题型总结
复数高考题型一、复数概念1.在复平面内,复数(12)z i i =+对应的点位于 .A .第一象限B .第二象限C .第三象限D .第四象限2.若复数12429,69,z i z i =+=+其中i 是虚数单位,则复数12()z z i -的实部为 . 3.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为 .A .1-B .0C .1D .1-或14.已知复数12z i =-,那么1z= .A B C .1255i +D .1255i -二、复数相等 1.i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是 . A .-15B .-3C .3D .152.若21a bi i=+-i 为虚数单位,,a b R ∈ 则a b +=_________. 3.已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 .A1+2i B 1-2i C2+i D2- i 三、复数计算 1.复数31ii--等于 . A .i 21+ B .12i - C .2i + D .2i -2.已知复数z 3i z =3i ,则z= .A .32B. 34C. 32D.34 3.复数32322323i i i i+--=-+ .A .0B .2C .-2iD .24.复数2(12)34i i+-的值是 .A .-1 B.1 C.-i D.i 5.设1z i =+i 是虚数单位,则22z z+= .A .1i --B .1i -+C .1i -D . 1i +四、其他题型1.已知2,ai b i ++是实系数一元二次方程20x px q ++=的两根,则,p q 的值为 .A .4,5p q =-=B .4,5p q ==C .4,5p q ==-D .4,5p q =-=- 2.i 是虚数单位,238i 2i 3i 8i ++++= .用i a b +的形式表示,a b ∈R ,3.若cos sin z i θθ=+i 为虚数单位,则21z =-的θ值可能是 .A .6πB .4π C .3πD .2π 2006-2009年高考题一.选择题:1.全国一4设a ∈R ,且2()a i i +为正实数,则a = A .2B .1C .0D .1-2.全国二2设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则 A .223b a =B .223a b =C .229b a =D .229a b =3.四川卷复数()221i i +=A4- B4 C4i - D4i 4.安徽卷1复数 32(1)i i +=A .2B .-2C . 2iD . 2i -5.山东卷2设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz 等于 A1 B-i C ±1 D ±i 6.江西卷1在复平面内,复数sin 2cos2z i =+对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限7.湖北卷11设211z z iz =-其中1z 表示z 1的共轭复数,已知z 2的实部是1-,则z 2的虚部为 ;8.湖南卷1复数31()i i-等于 B.-8D.-8i9.陕西卷1复数(2)12i i i+-等于 A .iB .i -C .1D .1-10.重庆卷1复数1+22i= A1+2iB1-2i C-1 D311.福建卷1若复数a 2-3a +2+a-1i 是纯虚数,则实数a 的值为B.2或212.广东卷1已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是A .(15),B .(13),C .D .13.浙江卷1已知a 是实数,iia +-1是春虚数,则a = A1 B-1 C 2 D-2 14.辽宁卷4复数11212i i +-+-的虚部是 A .15iB .15C .15i -D .15-15.海南卷2已知复数1z i =-,则21z z =-A. 2B. -2C. 2iD. -2i162006年广东若复数z 满足方程220z +=,则3z = .A .±B .-C .-D .± 172007年广东文理2若复数1+bi2+i 是纯虚数i 是虚数单位,b 为实数,则b= .A .-2B .-12C .12D .2182008年广东卷1已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是 .A .(15),B .(13),C .D .(1192009年广东卷理设z 是复数,()a z 表示满足1n z =的最小正整数n ,则对虚数单位i ,()a i = .A .8B .6C .4D .2二.填空题:1.上海卷3若复数z 满足(2)z i z =- i 是虚数单位,则z = .2.北京卷9已知2()2a i i -=,其中i 是虚数单位,那么实数a = ;3.江苏卷311ii+-表示为a bi +(),a b R ∈,则a b +== . 4.已知复数z 与 z +22-8i 均是纯虚数,则 z = ____________. 5.若复数z 满足z 1+i =2,则z 的实部是__________.6.在复平面内,O 是原点,OA ,OC ,AB 表示的复数分别为-+++23215i i i ,,,那么BC 表示的复数为________.7.z z C z z z z z 1212122222402,,,∈-+==||,那么以|z 1|为直径的圆的面积为_______; 三、解答题:1.已知复数z 1满足1+iz 1=-1+5i , z 2=a -2-i , 其中i 为虚数单位,a ∈R , 若21z z -<|z 1|,求a 的取值范围.2.已知复数z 1=c osθ-i ,z 2=s in θ+i ,求| z 1·z 2|的最大值和最小值.3.已知z 、为复数,1+3iz 为实数,=,||2ziωω=+且求. 4、已知:复数1cos () z b C a c i =++,2(2)cos 4 z a c B i =-+,且12z z =,其中B 、C 为△ABC 的内角,a 、b 、c 为角A 、B 、C 所对的边.Ⅰ求角B 的大小;Ⅱ 若b =,求△ABC 的面积.。
复数高考题分类大全
复数高考题分类大全 Revised by BETTY on December 25,2020复数高考真题分类汇编题型一 复数的概念及分类1.(2015·天津卷)i 是虚数单位,若复数))(21(i a i +-是纯虚数,则=a .2.(2016·江苏卷)复数)3)(21(i i z -+=,i 为虚数单位,则z 的实部是 .3.(2016·上海卷)设i iz 23+=,其中i 为虚数单位,则其虚部为 .4.(2017·天津卷)已知R a ∈,i 为虚数单位,若i i a +-2为实数,则a 的值为 . 5.(2017·全国卷)设有下面四个命题::1p 若复数满足R z∈1,则R z ∈; :2p 若复数满足R z ∈2,则R z ∈; :3p 若复数1z 、2z 满足R z z ∈21,则21z z =; :4p 若复数R z ∈,则R z ∈; 其中真命题为( )A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p 题型二 与共轭复数、复数相等有关的问题1.(2013·山东卷)复数满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数为( )A .i +2B .i -2C .i +5D .i -52.(2013·安徽卷)设i 是虚数单位,若z i z z 22=+⋅,则=z ( )A .i +1B .i -1C .i +-1D .i --1 3.(2013·福建卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·湖北卷)在复平面内,复数ii z +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·四川卷)如图,在复平面内,点A 表示复数,则图中表示的共轭复数的点是_____6.(2013·天津卷)已知R b a ∈、,i 是虚数单位,若bi i i a =++)1)((,则=+bi a .7.(2014·陕西卷)原命题为“若21,z z 互为共轭复数,则21z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真假真B .假假真C .真真假D .假假假8.(2014·山东卷)已知R b a ∈、,i 是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a ( )A .i 45-B .i 45+C . i 43-D .i 43+ 9.(2014·江西卷)z 是z 的共轭复数.若2=+z z ,2)(=-i z z ,i 为虚数单位,则=z ( )A .i +1B .i --1C .i +-1D . i -1 10.(2014·安徽卷)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z i iz ( )A .2-B .i 2-C .2D .i 211.(2014·全国卷)设ii z +=310,则z 的共轭复数为( ) A .i 31+- B .i 31-- C .i 31+D .i 31-12.(2014·福建卷)复数i i z )23(-=的共轭复数为( )A .i 32--B .i 32+-C .i 32-D . i 32+ 13.(2015·广东卷)若复数)23(i i z -=(i 是虚数单位),则=z ( )A .i 32-B .i 32+C .i 23+D .i 23- 14.(2015·湖北卷)i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1- 15.(2015·全国卷Ⅱ)若a 为实数,且i i a ai 4)2)(2(-=-+,则=a ( )A .1-B .0C . 1D . 2 16.(2015·山东卷)若复数满足i iz =-1,其中i 为虚数单位,则=z ( )A .i -1B .i +1C .i --1D .i +-1 17.(2016·山东卷)若复数满足i z z 232-=+,其中i 为虚数单位,则=z ( )A .i 21+B .i 21-C .i 21+-D .i 21-- 18.(2016·天津卷)已知R b a ∈、,i 是虚数单位,若a bi i =-+)1)(1(,则b a 的值为______.19.(2017·山东卷)已知R a ∈,i 是虚数单位,若i a z 3+=,4=⋅z z ,则=a ( )A .1或1-B .3或3-C .3-D .320.(2017·浙江卷)已知R b a ∈、,i bi a 43)(2+=+(i 是虚数单位),则=+22b a ______,=ab ________.题型三 复数的模1.(2013·辽宁卷)复数11-=i z 的模为( )A .21B .22C .2D .22.(2013·江苏卷)设2)2(i z -=(i 为虚数单位),则复数z 的模为______.3.(2013·陕西卷)设21z z 、是复数,则下列命题中的假命题是( )A .若021=-z z ,则21z z =B .若21z z =,则21z z =C .若21z z =,则2211z z z z ⋅=⋅D .若21z z =,则2221z z =4.(2013·重庆卷)已知复数i iz 215+=(i 是虚数单位),则=z _____.5.(2015·全国卷)设复数z 满足i z z=-+11,则=z ( )A .1B .2C .3D .26.(2015·江苏卷)设复数满足i z 432+=(i 是虚数单位),则z 的模为_____.7.(2015·重庆卷)设复数bi a +(R b a ∈,)的模为3,则=-+))((bi a bi a ____.8.(2016·全国卷)设yi x i +=+1)1(,其中y x 、是实数,则=+yi x ( )A .1B .2C .3D .2 9.(2017·江苏卷)已知复数)21)(1(i i z ++=,曲终i 是虚数单位,则z 的模是______.10.(2017·全国卷Ⅲ)设复数z 满足i z i 2)1(=+,则=z ( )A .21B .22C .2D .2题型四 复数的四则运算1.(2013·全国卷)设复数满足i z i 2)1(=-,则=z ( )A .i +-1B .i --1C .i +1D .i -12.(2013·浙江卷)已知i 是虚数单位,则=-+-)2)(1(i i ( )A .i +-3B .i 31+-C .i 33+-D .i +-13.(2013·广东卷)若复数满足i z i 42+=⋅,则在复平面内,z 对应的点的坐标是( )A .)4,2(B .)4,2(-C .)2,4(-D .)2,4( 4.(2014·北京卷)复数=-+2)11(ii ______. 5.(2014·江苏卷)已知复数2)25(i z -=(i 为虚数单位),则z 的实部为____.6.(2014·四川卷)复数=+-ii 122______. 7.(2014·天津卷)i 是虚数单位,复数=++i i 437( ) A .i -1B .i +-1C .i 25312517+D .i 725717+- 8.(2014·全国卷)=-+23)1()1(i i ( ) A .i +1 B .i -1 C .i +-1D .i --1 9.(2014·辽宁卷)设复数满足5)2)(2(=--i i z ,则=z ( )A .i 32+B .i 32-C .i 23+D .i 23- 10.(2014·湖北卷)i 为虚数单位,则=+-2)11(ii ( ) A .1- B .1 C .i -D .i11.(2014·湖南卷)满足i zi z =+(i 是虚数单位)的复数=z ( ) A .i 2121+ B .i 2121- C .i 2121+- D .i 2121-- 12.(2014·广东卷)已知复数满足25)43(=+z i ,则=z ( )A .i 43+-B .i 43--C .i 43+D .i 43- 13.(2015·北京卷)复数=-)2(i i ( )A .i 21+B .i 21-C .i 21+-D .i 21-- 14.(2015·福建卷)若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=B A ( )A .{}1-B .{}1C .{}1,1-D .15.(2015·湖南卷)已知i z i +=-1)1(2(i 为虚数单位),则复数=z ( ) A .i +1 B .i -1 C .i +-1D .i --1 16.(2015·四川卷)设i 是虚数单位,则复数=-i i 23( ) A .i - B .i 3- C .iD .i 3 17.(2016·全国卷Ⅲ)若i z 21+=,则=-14z z i ( ) A .1 B .1- C .iD .i - 18.(2016·四川卷)设i 为虚数单位,则6)(i x +的展开式中含4x 的项为( )A .415x -B .415xC .420ix -D .420ix19.(2017全国卷Ⅱ)=++ii 13( ) A .i 21+ B .i 21-C .i +2D .i -2题型五 复数的几何意义 1.(2013·湖南卷)复数)1(i i z +=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2013·福建卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·湖北卷)在复平面内,复数ii z +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·四川卷)如图,在复平面内,点A 表示复数,则图中表示的共轭复数的点是_____5.(2014·全国卷Ⅱ)设复数21,z z 在复平面内的对应点关于虚轴对称,i z +=21,则=21z z ( )A .5-B .5C .i +-4D .i --4 6.(2014·重庆卷)在复平面内表示复数)21(i i -的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2015·安徽卷)设i 是虚数单位,则复数ii -12在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.(2016·北京卷)设R a ∈,若复数))(1(i a i ++在复平面内对应的点位于实轴上,则=a ________. 9.(2017·北京卷)若复数))(1(i a i +-在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .)1,(-∞B .)1,(--∞C .),1(+∞D .),1(+∞-。
复数高考基础题型总结及解题技巧
复数高考基础题型总结及解题技巧复数高考基础题型总结及解题技巧一、概述复数在高考数学中是一个基础而重要的概念,涉及到代数、函数、方程等多个章节。
在高考中,复数的题型也是非常常见的,包括求模、共轭、乘法、除法、方程等多种类型。
了解复数的基础知识,并掌握解题技巧,对于高考数学的备考至关重要。
二、复数的基本概念1. 复数的定义复数是由实部和虚部构成的数,通常表示为a+bi,其中a为实部,bi 为虚部,i为虚数单位,满足i^2=-1。
2. 复数的表示形式复数可以表示为代数形式a+bi,也可以表示为三角形式r(cosθ + isinθ),其中r为复数的模,θ为辐角。
3. 复数的运算复数的加法、减法、乘法、除法与实数的运算类似,需要分别对实部和虚部进行运算。
三、常见高考基础题型及解题技巧1. 求复数的模题型:已知复数z=a+bi,求z的模|z|。
解题技巧:利用复数的定义,|z|=√(a^2+b^2)。
2. 求复数的共轭题型:已知复数z=a+bi,求z的共轭复数z*。
解题技巧:z*的实部和虚部分别与z相同,但虚部的符号相反,即z*=a-bi。
3. 复数的乘法题型:计算复数z1=a+bi和z2=c+di的乘积。
解题技巧:根据复数的乘法规则,进行实部和虚部的分配、合并、整理,得到结果。
4. 复数的除法题型:计算复数z1=a+bi除以z2=c+di的商。
解题技巧:利用复数的定义和除法运算规则,将分母有理化,然后进行分子分母同乘后整理得到商的实部和虚部。
5. 解复数方程题型:解方程z^2=a,其中a为实数。
解题技巧:化为二元一次方程组,利用求根公式解得复数解。
四、个人观点与总结复数作为数学中的一个重要概念,不仅在高考中频繁出现,而且在数学建模、物理等领域也有着广泛的应用。
对复数的基础知识和解题技巧进行深入的学习和掌握,对于数学学科的发展至关重要。
希望同学们能够在备考高考数学的过程中,认真对待复数的学习,多加练习,提高对复数的理解和运用能力。
复数高考题型总结
复数高考题型一、复数概念1.在复平面内,复数(12)z i i =+对应的点位于( ). A .第一象限 B .第二象限C .第三象限D .第四象限2.若复数12429,69,z i z i =+=+其中i 是虚数单位,则复数12()z z i -的实部为 . 3.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为( ).A .1-B .0C .1D .1-或14.已知复数12z i =-,那么1z=( ).A 55+ B 55C .1255i + D .1255i -二、复数相等 1.i 是虚数单位,若17(,)2i a bi a b R i+=+∈-,则乘积ab 的值是( ). A .-15 B .-3 C .3 D .152.若21a bi i=+-(i 为虚数单位,,a b R ∈ )则a b +=_________. 3.已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11( ). (A)1+2i (B) 1-2i (C)2+i (D)2- i三、复数计算 1.复数31ii--等于( ).A .i 21+B .12i -C .2i +D .2i -2.已知复数z 3i )z =3i ,则z=( ).A .322- B. 344- C. 322+D.344+ 3.复数32322323i i ii+--=-+( ).A .0B .2C .-2iD .24.复数2(12)34i i+-的值是( ).A .-1 B.1 C.-i D.i5.设1z i =+(i 是虚数单位),则22z z+=( ). A .1i --B .1i -+C .1i -D . 1i +四、其他题型1.已知2,ai b i ++是实系数一元二次方程20x px q ++=的两根,则,p q 的值为( ).A .4,5p q =-=B .4,5p q ==C .4,5p q ==-D .4,5p q =-=- 2.i 是虚数单位,238i 2i 3i 8i ++++= .(用i a b +的形式表示,a b ∈R ,) 3.若cos sin z i θθ=+(i 为虚数单位),则21z =-的θ值可能是( ).A .6πB .4πC .3πD .2π2006-2009年高考题一.选择题:1.(全国一4)设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-2.(全国二2)设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a =B .223a b =C .229b a =D .229a b =3.(四川卷)复数()221i i +=( )(A)4- (B)4 (C)4i - (D)4i 4.(安徽卷1)复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -5.(山东卷2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz 等于(A )1 (B )-i (C)±1 (D) ±i 6.(江西卷1)在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限7.(湖北卷11)设211z z i z =-(其中1z 表示z 1的共轭复数),已知z 2的实部是1-,则z 2的虚部为 。
高考数学真题题型分类解析专题专题02 复数
一、复数的概念
( ) 叫虚数单位,满足 ,当 时, . 1 i
i2 = −1 k ∈ Z
i 4k = 1, i 4 k +1 = i, i 4k + 2 = −1, i 4k +3 = −i
(2)形如 a + bi(a, b∈ R) 的数叫复数,记作 a +bi∈C .
高考数学真题题型分类解析 专题 02 复数
命题解读
考向
高考对复数的考查,重点是复数的运 共轭复数、复数的除法运算
算、概念、复数的模、复数的几何意义 等,难度较低.
复数的乘法运算 复数的几何意义
复数的模
考查统计 2022·新高考Ⅰ卷,2 2023·新高考Ⅰ卷,2 2024 新高考Ⅰ卷,2 2022·新高考Ⅱ卷,2 2023 新高考Ⅱ卷,1 2024·新高考Ⅱ卷,1
综上所述,无论方程的判别式b2 −4ac 的符号如何,韦达定理都成立,于是韦达定理能被推广到复数根的
情况,即实系数一元二次方程ax2 +bx + c = 0( a 、b 、c∈ R 且a ≠ 0 )的两个根与系数满足关系
, x1
+
x2
=
−
b a
x1 x2
=
c a
4 / 11
一、单选题
1.(2024·安徽芜湖·三模)已知复数
=
(1− i)2
−2i
=
= −1− i .
−2i
故选:D
5.(2024·山东德州·三模)已知复数 z 满足: z − i(2 + z) = 0 ,则 z = ( )
. . . . A −1− i B −1+ i C 1+ i D 1− i 【答案】B
历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。
高考数学复习点拨 复数的几种常见题型
复数的几种常见题型一、利用复数的代数形式由复数的代数形式为()z x yi x y =+∈R ,知,用代入法解题是最基本且常用的方法. 例1 已知1z ,2z ∈C 且11z =,若122z z i +=,则12z z -的最大值是( )A.6 B.5 C.4 D.3解析:设1z x yi =+,2z x mi =-+,那么221x y +=.11x -≤≤,11y -≤≤,2y m +=,12z z - 11y -∵≤≤,1y =-∴时,12max 4z z -=,故选C. 二、利用复数相等的充要条件在复数集{}a bi a b =+∈C R ,|中,任意取两个数a bi +,()c di a b c d +∈R ,,,,a bi c di a c +=+⇔=,且b d =.例2 已知复数1z i =+,求实数a b ,使22(2)az bz a z +=+.解:1z i =+∵,2(2)(2)az bz a b a b i +=++-∴,222(2)(2)44(2)(4)4(2)a z a a i a a a i +=+-++=+++.因为a b ,都是实数,所以由22(2)az bz a z +=+,得22424(2)a b a a a b a ⎧+=+⎨-=+⎩,. 两式相加,整理得2680a a ++=.解得12a =-,24a =-,对应得11b =-,22b =.所以,所求实数为2a =-,1b =-或4a =-,2b =.三、利用复数除法法则以及虚数i ,ω的运算性质1.形如a bi c di++,可以乘以分母的共轭复数,使分母“实数化”; 2.熟记一些常用的结果: (1)n i 的周期性;(2)2(1)2i i ±=±;(3)11i i i +=-,11i i i-=-+; (4)1230()n n n n i i i i n ++++++=∈N ;(5)设12ω=-+,则ω的性质有: ①2132i ω=-; ②31ω=,1ωω=·;③120()n n n n ωωω++++=∈N .例3 设11()()11n ni i f n n i i +-⎛⎫⎛⎫=+∈ ⎪ ⎪-+⎝⎭⎝⎭N ,则集合{}()x x f n =|中元素的个数是( ) A.1 B.2 C.3 D.无穷多个解析:因为()()n n f n i i =+-,所以当4n k =,41k +,42k +,43k +时,()202f n =-,,,∴集合{}{}()202x x f n ==-,,|,故答案为C. 四、利用共轭复数复数a bi +与复数()a bi a b -∈R ,互为共轭复数.例4 若32i +是方程220()x bx c b c ++=∈R ,的一个根,求c 的值.解:因为b c ,是实数,所以两根之和是实数,两根之积是实数;又因为32i +是方程的一个根,因此满足条件的另一个根必定是它的共轭复数32i -,因此,(32)(32)2c i i +-=,解得26c =. 另解:把32x i =+代入方程得310(242)0b c b i ++++=,根据复数相等的充要条件,得3100b c ++=且2420b +=,解得26c =.注:两共轭复数的积:22()()a bi a bi a b +-=+·,即两共轭复数的积等于复数模的平方.例5 若1z ,2z ∈C ,则1212z z z z +的( )A.纯虚数 B.实数 C.虚数 D.不能确定 解析:若一个数的共轭复数是它的本身,则这个数是实数.由12121212z z z z z z z z +=+,可知1212z z z z +为实数.故答案选B.五、利用复数的几何意义1.利用复数的模复数z a bi =+的模z .例6 已和z z .解:21012(43)(12)(1)i i z i --+=-1021243121i i i --+=-·256536075264⨯==. 注:如果先化简再求模就会增大计算量.2.利用复数加法及减法的几何意义复数的加(减)法可按向量的平行四边(三角)形法则进行运算.例7 设复数1z ,2z 满足122z z ==,1223z z +=,求12z z -.解:根据题意画出如图所示的平行四边形22222(23)1cos 2OBC +-∠==-, 所以,1cos 2AOB ∠=. 因此,22222222cos 4AB AOB =+-⨯⨯∠=,2AB =.得122z z -=.我们看到上面的解题方法互相关联,因此在解题时,要注意灵活解题,综合运用所学知识.。
复数知识点及题型总结
复数知识点及题型总结一、复数的构成1. 一般情况下,在词尾加 -s 表示复数形式例子:book → books, cat → cats, dog → dogs2. 以 s, x, sh, ch 结尾的词,在词尾加 -es 表示复数形式例子:box → boxes, bus → buses, brush → brushes, church → churches 3. 以辅音字母+y 结尾的词,变 y 为 i, 再加上-es 表示复数形式例子:baby → babies, city → cities, family → families4. 以 f 或 fe 结尾的词,变 f 或 fe 为 v, 再加上-es 表示复数形式例子:leaf → leaves, calf → calves, knife → knives5. 以 o 结尾的名词,有时加 -es 表示复数形式例子:tomato → tomatoes, hero → heroes, echo → echoes6. 某些词有不规则的复数形式例子:man → men, foot → feet, child → children, tooth → teeth二、复数的用法1. 表示两个或两个以上的事物,用复数形式例子:There are three cats in the garden.2. 表示概括的一类事物,用复数形式例子:Dogs are loyal animals.3. 表示一些特定的事物,用复数形式例子:They have two cars.4. 数词或量词后接名词时,名词用复数形式例子:Three books, five apples三、复数名词的题型1. 单选题例题:Which of the following is the plural form of "child"?A. childsB. childesC. childD. children答案:D. children分析:这是一道对复数形式的选择题,考查学生对复数构成规则的掌握情况。
高中数学复数题型归纳总结
高中数学复数题型归纳总结一、复数概念复数是由实部和虚部构成的数,可以用形如a+bi的形式表示,其中a为实数部分,b为虚数部分,i为虚数单位,且i^2=-1。
二、常见运算法则1.加法和减法:实部与实部相加减,虚部与虚部相加减。
2.乘法:使用分配律展开,i^2=-1,进一步简化计算。
3.除法:用有理化的方法进行分子分母的有理化,并利用i^2=-1进行简化。
三、复数的表示形式1.代数形式:a+bi,a、b为实数。
2.三角形式:r(cosθ+isinθ),r为复数的模,θ为辐角或幅角。
3.指数形式:re^(iθ),r为复数的模,θ为辐角或幅角。
四、复数共轭对于复数z=a+bi,其共轭复数记为z*,即共轭复数与原复数的虚部符号相反,即z*=a-bi。
五、复数的模对于复数z=a+bi,其模记为|z|,即模等于复数的实部与虚部构成的向量的长度,即|z|=√(a^2+b^2)。
六、复数的辐角或幅角对于复数z=a+bi,其辐角或幅角记为arg(z),即辐角或幅角等于复数与实轴正方向形成的夹角。
七、复数的乘方对于复数z=a+bi,其乘方可以使用三角形式来计算,即z^n=r^n(cos(nθ)+isin(nθ)),这里r为模,θ为辐角或幅角。
八、复数的根式对于复数z=a+bi,其根式可以使用三角形式来计算,即z^(1/n)=r^(1/n)(cos(θ/n)+isin(θ/n)),这里r为模,θ为辐角或幅角。
九、复数的应用领域1.电学领域:交流电的分析与计算可以使用复数来表示。
2.物理领域:波函数等的计算与分析可以使用复数来表示。
3.工程领域:信号处理、图像处理等需要对信号进行计算与分析的领域中,复数也有着广泛的应用。
综上所述,复数是由实部和虚部构成的数,具有加法、减法、乘法、除法等运算法则。
复数可以用代数形式、三角形式和指数形式来表示,其中三角形式和指数形式可以方便地进行复数的乘法、除法、乘方和根式运算。
复数在电学、物理和工程等领域有着广泛的应用,是高中数学中重要的内容之一。
高考复数的知识题型总结归类
结总型高考复数的知识题一、复数的有关概念(1)复数1. 定义:形如a+bi (a,b∈R)的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. (i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n=1)2. 表示方法:复数通常用字母z 表示,即z=a+bi (a,b∈R),叫做复数部,b 叫做复数z 的虚部.(注意b 是虚部而不是的代数形式,a 叫做复数z 的实bi )(2)复数集1. 定义:全体复数所成的集合叫做复数集.2. 表示:大写字母C.(3)复数的分类复数集、实的关系数集、虚数集、纯虚数集之间( 4 ) 复数相等的充要条件a+bi =c+di ? a=c 且b=da+bi =0? a=b=0. (a,b,c,d 均为实数)说明:要求复数相等要先将复数化为z=a+b i (a,b∈R)的形式,即分离实部和虚部.二、复平面的概念是b,复数z=a+bi ( a、b∈R)可用点Z( a,b) 表示,坐标是a,纵点Z 的横坐标叫做叫做实轴,y轴系来表示复数的平面叫做复平面,x轴这个建立了直角坐标实轴上的点都表示实数虚轴数(1)实轴上的点都表示实上的点都表示纯虚数(2)虚轴数对为(0,0)(3)原点对应的有序实三、复数的两种几何意义(1)复数z=a+b i (a,b∈R)→对应复平面内的点Z(a,b).(2)复数z=a+b i (a,b∈R)→平面向量→OZ四、复数的模复数z=a+b i (a,b∈R)对应的向量为O Z ,则O Z 的模叫做复数z 的模,记作| z| ,且大小.的模表示实数,可以比较大小的,但它们注意:两个虚数是不可以比较五、复数的运算设z1=a+bi ,z2=c +di ( a、b、c、d∈R)是任意两个复数,z1 与z2 的加法运算律:z1+z2=( a+bi )+( c +di )=( a+c )+( b+d) i .z1 与z2 的减法运算律:z1- z2=( a+bi )-( c +di )=( a- c)+( b- d) i .z1 与z2 的乘法运算律:z1·z2= ( a+bi )( c +di )=( ac-bd)+( bc+ad) i .z1 与z2 的除法运算律:z1÷z2 =( a+bi ) ÷( c +di )= (分母要利用平方差实数化)六、共轭复数1. 定义:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0 的两个共轭复数也叫做共轭虚数通常记复数的共轭复数为。
高考复数必考知识点
高考复数必考知识点一、名词的复数形式名词的复数形式是高考中必考的知识点之一。
一般来说,名词的复数形式有以下几种情况:1. 一般在名词后面加-s或-es。
例如:- car → cars(车→ 车)- box → boxes(盒子→ 盒子们)- glass → glasses(玻璃杯→ 玻璃杯们)2. 以-o结尾的名词,加-es。
例如:- potato → potatoes(土豆→ 土豆们)- tomato → tomatoes(番茄→ 番茄们)3. 以辅音字母+y结尾的名词,去掉y,变成-i+es。
例如:- party → parties(派对→ 派对们)- city → cities(城市→ 城市们)4. 以-f或-fe结尾的名词,变-f或-fe为-ves。
例如:- knife → knives(刀→ 刀们)- leaf → leaves(叶子→ 叶子们)5. 一些特殊名词的复数形式需要记忆。
例如:- child → children(孩子→ 孩子们)- mouse → mice(老鼠→ 老鼠们)- tooth → teeth(牙齿→ 牙齿们)二、动词的复数形式除了名词的复数形式,动词的复数形式也是高考复数必考的知识点。
一般来说,动词的复数形式有以下几种情况:1. 第三人称单数形式加-s。
例如:- He walks to school.(他走路上学。
)- She teaches English.(她教英语。
)2. 动词的基本形式就是它的复数形式。
例如:- They work in a company.(他们在一家公司工作。
)- We live in the same neighborhood.(我们住在同一个社区。
)3. 一些特殊动词需要记忆它们的复数形式。
例如:- am/is/are → are(是→ 是)- has/have → have(有→ 有)三、形容词的复数形式形容词的复数形式也是高考复数必考的知识点之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.若 |z — 2|= |z + 2|,贝V |z — 1|的最小值 是 .
1•如果复数z=1+ai 满足条件|z| v 2,那么实 数a 的取值范围是[] A. 2迈,2 近 B. (-2 , 2) C. (-1 , 1)
D.屈禹
2•在平行四边形 OABC 中,顶点O , A ,
C 分别表示0,3+ 2i , — 2 + 4i.则对角线CA 所表示的复数的模为 ;
3.已知复数 z i = i(1 — i)2, |z| = 1,则 |z — z i |
的取值范围是 _____ ;
练习:
1. 已知复数z 满足|z|2 — 2|z|— 3 = 0,则复数
z 对应点的轨迹是(
) 个圆 B.线段个点个圆
2. 如果复数z 满足|z + 2i|+ |z — 2i|= 4,那
么|z + i + 1|的最小值是( )
复数高考题型归类解析 练习:
5.如果复数z满足|z+ 2i|+Z—2i匸4,那么|z+ i + 1|的最小值是()
答案A
1.如果复数z=1+ai满足条件|z| v 2,那么数a的取值范围是[] 解析设复数—2i,2i, —(1 + i)在复平面内对应的点分别为
Z1, Z2, Z3,因为|z+
2i| + |z—2i| = 4,乙Z2= 4,所以复数z 的几何意义为线段Z1Z2,如图所示,问题转化为:动点Z在线段乙Z2上移动,求ZZ3 的最小值.
2•在平行四边形OABC中,顶点O, A,
C分别表示0,3+ 2i, —2 + 4i.则对角线CA 所表示的复数的模为
3. 已知复数Z1 = i(1 —i)2, |z| = 1,则|z—引的最大值.
七、轨迹方程型已知复数z满足|z|2—2|z| —3= 0,则复数
对应点的轨迹是(
B.线
段
个占答案A
解析由题意可知(|z|—3)(|z|+ 1)= 0,
即|z| = 3 或|z|=— 1.
•/ |z|>0,二|z| = 3. •••复数z对应的轨迹是1个圆. 因此作Z3Z0丄乙Z2于Z o,则Z3与Z0的距离即为所求的最小值,Z o Z3= 1.故选A.
8.若|z—2| = |z + 2|,贝V |z—1| 的最小值是_____ .
答案1 解析由|z—2|= |z+ 2|,知z对应点的轨迹是到(2,0)与到(—2,0)距离相等的点,即虚轴.|z—1|表示z 离.—|z—1|min = 1.
12.集合M 十|z—
1|< 1, z€ C}, N = {z|z —1 —i| = |z—
2|, z€ C},集合P = M n N.
(1)指出集合P在复平面上所表示的图形;⑵求集合P中复数模的最大值和最小值. 解(1)由|z—1|< 1可知,集合M在复平面内所对应的点集是以点E(1,0)为圆心,
以1为半径的圆的内部及边界;由|z—1 —
i| = |z—2|可知,集合N在复平面内所对
复数高考题型归类解析
A. 2 2,2 2
B. (-2 , 2)
C. (-1 , 1)
D. 3, .3
个圆
个圆对应的点与(1,0)的距
练习:
应点集是以点(1,1)和(2,0)为端点的线段的垂直平分线I,因此集合P是圆面截直线I
所得的一条线段AB,如图所示• ⑵圆的方程
为x2+ y2—2x = 0, 直线I的方程为y = x—1.
x2+ y2—2x= 0,
y = x—1
2+ 2 2 2—2 2 A(—2 ,T),B (二,一~2).
••• |OA|= 2+ , 2,|OB|= 2—, 2. •••点O到直线I的距离为¥,且过O向I作垂线,垂足在线段BE 上,
< 2—12.
•••集合P中复数模的最大值为2+ 2, 最小值为二2.。