一元一次不等式应用题解法

合集下载

一元一次不等式组的解法

一元一次不等式组的解法

x ≥-2, (4)不等式组 的解集在数轴上表示为( x 5
B
D.
) -5 ) -2
A.
-5
-2
-1
B.
-5
2.5 4
-2
C.
-5
-2
(5)如图,
则其解集是(
A. 1 x 2.5,
B. 1 x ≤4, C. 2.5 x ≤4
Байду номын сангаас
D. 2.5 x 4
C
小结: 一元一次不等式组和它的解法
x 1, (7) x 4. x 0, (8) x 4 .
x 1, (11) x 4.
x 0, (12 ) x 4.
例1. 求下列不等式组的解集:
x 3, (1) x 7. x 2, ( 2) x 3 . x 2, (3) x 5 . x 0, ( 4) x 4 .


在同一数轴上表示不等式①,②的解集:
2 3
①,②的解集的公共部分记作: 2<x<3,
x 2, 叫做一元一次不等式组 x 3.的 解集
在数轴上表示不等式的解集时应注意:
大于向右画,小于向左画;有等号的画实心 圆点,无等号的画空心圆圈.
例1. 求下列不等式组的解集(在同一数轴上表示出两个不等式 的解集,并写出不等式组的解集): 第一组
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
-3 -2 -1 0
1
2
3
4
5
解:原不等式组无解.
-6
-5 -4 -3 -2 -1

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程1.某水产品市场管理部门计划建造2400平方米的大棚,内设有A种和B种店面各80间。

A种店面的平均面积为28平方米,月租费为400元;B种店面的平均面积为20平方米,月租费为360元。

全部店面的建造面积不低于大棚总面积的85%。

现在要确定A种店面的数量。

解:设A种店面为a间,B种店面为80-a间。

根据题意,28a+20(80-a)≥2400×85%,化简得8a≥440,即a≥55.因此,A种店面至少应有55间。

为使店面的月租费最高,设月租费为y元,根据题意可得y=75%a×400+90%(80-a)×360=300a+-24a=-24a。

因为a≥55,所以当a=55时,y取最大值,即月租费最高为元。

2.水产养殖户XXX计划进行大闸蟹与河虾的混合养殖。

每亩地水面租金为500元,每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗。

每公斤蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;每公斤虾苗的价格为15元,饲养费用为85元,当年可获得160元收益。

现在要求出每亩水面虾蟹混合养殖的年利润,并确定XXX应租多少亩水面,向银行贷款多少元,才能使年利润达到元。

解:每亩水面的成本包括水面年租金、苗种费用和饲养费用,即成本=500+75×4+15×20+525×4+85×20=4900元。

每亩水面的收益为1400×4+160×20=8800元。

因此,每亩水面的年利润为8800-4900=3900元。

设租a亩水面,贷款为4900a-元。

根据题意,收益为8800a,成本不超过元,即4900a≤,解得a≤10.2亩。

为使年利润达到元,可列出方程3900a+0.1(4900a-)=,解得a≈13.08亩,即XXX应租13亩水面,向银行贷款约为元。

某手机生产厂家决定对一款原售价为2000元的彩屏手机进行调价,按新单价的八折优惠出售。

一元一次不等式应用题解法

一元一次不等式应用题解法

⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量已知:两种情况各自与总量比较(两个不等式)【习题1】某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人。

问该宾馆底层有客房多少间?【例2】把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量未知:两种情况相互比较(其中一种情况可计算总量,另一种情况有上下限)【习题2】某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

【例3】某校校长暑假将带领该校“市级三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。

已知两家旅行社的全票价都是240元,哪家旅行社比较好?解两种“方案比较”应用题的方法⑴找出两种方案的,设未知数⑵分别列出两种方案的费用⑶分情况讨论(结合人数)【习题3】某单位计划10月份组织员工到H地旅游人数估计在10~25人之间,甲、乙两旅行社的服务质量相同,且组织到H地旅游的价格都是每人200元.该单位联系时,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠;问该单位应怎样选择,使其支付的旅游总费用较少?【练习】1、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?2、用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

B型抽水机比A型抽水机每分钟约多抽多少吨水?3、A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/3吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?练习题:1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。

一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案精品文档一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答一.分配问题:1.把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

一元一次不等式组的解法经典例题透析

一元一次不等式组的解法经典例题透析

经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。

思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。

解析:解不等式①,得x≥-;解不等式②,得x<1。

所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。

总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。

有等号画实心圆点,无等号画空心圆圈。

举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。

解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。

即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。

所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。

思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。

一元一次不等式组的解法

一元一次不等式组的解法

解一元一次不等式组通常涉及以下步骤:
1. 求出各个不等式的解集:需要分别求解组成不等式组的每一个不等式,找到每个不等式的解集范围。

2. 利用数轴确定公共部分:在数轴上表示出每个不等式的解集,然后找出这些解集的重叠部分,即它们的交集。

这个交集就是不等式组的解集。

3. 表示出不等式组的解集:根据公共部分,可以用区间表示法来描述不等式组的解集。

此外,如果遇到含有字母参数的一元一次不等式组,可能需要讨论不同情况下的解集变化。

总的来说,解一元一次不等式组是一个系统的过程,需要对每个不等式进行仔细分析,并借助数轴等工具来辅助解题。

一元一次不等式组应用题的步骤

一元一次不等式组应用题的步骤

如果每个学生分3个桃子,那么多8个;如果前面 每人分5个,那么最后一个人得到桃子但少于3个.试 问有几个学生,几个桃子? 解: 设有x个学生, 则有(3x+8)个桃子. (3x+ - 5(x-1) >0 8) (3x+8)-5(x-1) <3 整理得: 解得: 2x<13 x<6.5

2x>10
2:某班有若干名学生住宿,若每间住4人,则有20人没宿舍 住;若每间住8人则有一间没有住满人,试求该班宿舍间数及 住宿人数?
一本英语书共98页,张 力读了一周(7天)还没读 完,而李永不到一周就已读 完。李永平均每天比张力多 读3页,张力平均每天读多 少页(答案取整数)?
解:设张力平均每天读x页 7( x +3)>98 ① 7 x <98 ② 解不等式①得 x >11 解不等式②得 x <14 因此,不等式组的解集为 11 < x<14 根据题意得,x的值应是整数,所以 x=12或13 答:张力平均每天读12或13页
分析:“不能完成任务”的意思是:
“提前完成任务”的意思 是: 大于 提高生产速度后 ,10天的产品数量____500
小于 按原先的生产速度,10天的产品数量_ 500
解:设每个小组原先每天生产x件产品. 根据题中前后两个条件,得 3×10x<500 ① 3×10(x+1)>500 ②

由不等式①得 由不等式②得
X套A型时装需要70米布料 +(80-x)套 B型时装需要的70米布料 ≤ 70 X套A型时装需要52 米布料+(80-x)套 B型时装需要的52米布料 ≤ 52
0.6x 0.9x
解得:36
+

七年级数学人教版下册第九章一元一次不等式组的实际应用分配问题与方案选择问题

七年级数学人教版下册第九章一元一次不等式组的实际应用分配问题与方案选择问题

讲解答案
解题方法
雄鹰必须比鸟飞得高,因为它的猎物就是鸟。 治天下者必先立其志。 雄鹰必须比鸟飞得高,因为它的猎物就是鸟。 志,气之帅也。 强行者有志。 沧海可填山可移,男儿志气当如斯。
贫困能造就男子1气、概。根据题目中的关键词找出不等关系,列不等式(组).
志不立,如无舵这舟,无衔之马,漂荡奔逸,终亦何所底乎。 人无志向,和迷途的盲人一样。
例题讲解-答案
解题方法
1、根据两种商品之间的等量关系,建立方程求解.
2、根据题目中的关键词找出不等关系,列不等式(组).
3、 有几种方案
回答数字几种
有哪几种方案
回答数字,并写出具体方案.
应用练习1
某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两 种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元 (1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买 了多少件?
应用练习3
某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元. (1)求每辆A型车和B型车的售价各为多少万元.
应用练习3
某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元. (2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130 万元,且不超过140万元.则有哪几种购车方案?
应用练习2
某校组织夏令营活动,现有36座和42座两种客车供选择租用,若 只租用36座客车若干辆,则刚好坐满;若只租用42座客车,则能少租 一辆,而且还有一辆没有坐满,但超过30人,问: (1)该校有多少人参加夏令营活动?

人教版初一数学下册:一元一次不等式的解法(基础)知识讲解

人教版初一数学下册:一元一次不等式的解法(基础)知识讲解

一元一次不等式的解法(基础)知识讲解【学习目标】1.理解一元一次不等式的概念; 2.会解一元一次不等式.【要点梳理】【高清课堂:一元一次不等式 370042 一元一次不等式 】 要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式. 要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数; ③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向. 要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集. 要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变. 3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释: 在用数轴表示不等式的解集时,要确定边界和方向: (1)边界:有等号的是实心圆点,无等号的是空心圆圈; (2)方向:大向右,小向左. 【典型例题】类型一、一元一次不等式的概念1.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0 (2)2x+3>5 (3)384x (4)1x≥2 (5)2x+y≤8【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数.【答案与解析】解:(2)、(3)是一元一次不等式.【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可.类型二、解一元一次不等式2.(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与解析】解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向.举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为()【答案】C3.(2015•巴中)解不等式:≤﹣1,并把解集表示在数轴上.【思路点拨】按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变.【答案与解析】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.【总结升华】去分母时,不要漏乘没有分母的项. 举一反三: 【变式】若3511+-=x y ,14522--=x y ,问x 取何值时,21y y >. 【答案】 解:∵3511+-=x y ,14522--=x y , 若21y y >,则有1452351-->+-x x 即 6101<x∴当6101<x 时,21y y >.4.关于x 的不等式2x -a ≤-1的解集为x ≤-1,则a 的值是_________.【思路点拨】首先把a 作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即可得到关于a 的方程,解方程即可求解. 【答案】-1【解析】由已知得:12a x -≤,由112a -=-,得1a =-. 【总结升华】解不等式要依据不等式的基本性质,注意移项要改变符号.举一反三:【变式1】如果关于x 的不等式(a+1)x <a+1的解集是x >l ,则a 的取值范围是________. 【答案】1a -<【高清课堂:一元一次不等式 370042 例6】 【变式2】已知关于x 的方程2233x m xx ---=的解是非负数,m 是正整数,求m 的值. 【答案】 解:由2233x m xx ---=,得x =22m -, 因为x 为非负数,所以22m-≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】 举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x <解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。

一元一次不等式组应用题及答案

一元一次不等式组应用题及答案

一元一次不等式组应用题及答案一元一次不等式应用题解决实际问题的步骤:1.审题,找出不等关系;2.设未知数;3.列出不等式;4.求出不等式的解集;5.找出符合题意的值;6.作答。

一.分配问题:1.一定数量的花生要分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?2.一定数量的书要分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?5.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

1)如果有x间宿舍,那么可以列出关于x的不等式组:4x ≤ n - 196y。

n2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.XXX家到学校2.1千米,现在需要在18分钟内走完这段路。

已知XXX步行速度为90米/分,跑步速度为210米/分,问XXX至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

一元一次不等式解应用题1.某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。

(1) 试确定A种类型店面的数量?(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?解:设A种类型店面为a间,B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55 A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;问题:1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面,贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=366003900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆,由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .由于a是车的数量,应为正整数,所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。

专题10一元一次不等式(组)及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习

专题10一元一次不等式(组)及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学专题10 一元一次不等式(组)及其应用(知识点总结+例题讲解)一、不等式及其性质:1.不等式的定义:用不等号“>”、“≥”、“<”、“≤”或“≠”表示不等关系的式子,叫做不等式;2.不等式的解:使不等式成立的未知数的值;3.不等式的解集:(1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解;(2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集;4.解不等式:求不等式的解集的过程,叫做解不等式;5.不等式基本性质:(1)不等式两边加(或减)同一个数(或同一个整式),不等号的方向不变;若a>b,则a±c>b±c;(2)不等式两边乘以(或除以)同一个正数,不等号的方向不变;若a>b,c>0,则ac>bc(或a b>);c c(3)不等式两边乘以(或除以)同一个负数,不等号的方向改变;若a>b,c<0,则ac<bc(或a b<);c c【例题1】下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个【答案】C【解析】主要依据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.【变式练习1】据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33 B.t≤24 C.24<t<33 D.24≤t≤33【答案】D【解析】已知某日武侯区的最高气温和最低气温,可知某日武侯区的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.【例题2】(2020•贵港)如果a<b,c<0,那么下列不等式中不成立的是()A.a+c<b+c B.ac>bc C.ac+1>bc+1 D.ac2>bc2【答案】D【解析】根据不等式的性质解答即可.解:A、由a<b,c<0得到:a+c<b+c,原变形正确,故此选项不符合题意;B、由a<b,c<0得到:ac>bc,原变形正确,故此选项不符合题意;C、由a<b,c<0得到:ac+1>bc+1,原变形正确,故此选项不符合题意;D、由a<b,c<0得到:ac2<bc2,原变形错误,故此选项符合题意.故选:D.【变式练习2】(2019•济南)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>0【答案】C【解析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.解:由图可知,b<0<a,且|b|<|a|,∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0,∴关系式不成立的是选项C.故选:C.【例题3】已知x≥5的最小值为a,x≤﹣7的最大值为b,则ab=.【答案】-35【解析】解答此题首先根据已知得出理解“≥”“≤”的意义,判断出a和b的最值即可解答.解:因为x≥5的最小值是a,a=5;x≤﹣7的最大值是b,则b=﹣7;则ab=5×(﹣7)=﹣35.故答案为:﹣35.【变式练习3】关于x的一元一次不等式m−2x3≤−2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【答案】D【解析】本题是关于x的不等式,应先只把x看成未知数,求得不等式的解集,再根据x≥4,求得m的值.解:m−2x3≤−2;所以:m﹣2x≤﹣6;则:﹣2x≤﹣m﹣6;即:x≥12m+3;∵关于x的一元一次不等式m−2x3≤−2的解集为x≥4;∴12m+3=4,解得m=2.故选:D.二、一元一次不等式及其解法:1.一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的2.一元一次不等式的解法一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)将未知项的系数化为1。

中考数学点对点-一元一次不等式(组)及其应用(解析版)

中考数学点对点-一元一次不等式(组)及其应用(解析版)

专题13 一元一次不等式(组)及其应用专题知识点概述1.不等式的定义:用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

一个含有未知数的不等式的所有解,组成这个不等式的解集。

3.一元一次不等式的定义:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

4.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

5.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。

性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

6.一元一次不等式的解法的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.7.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

8.求不等式组解集的规律:不等式解集在数轴上的表示方法:含≥或≤,用实心圆点,含>或<用空心圆圈。

不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.9.中考出现一元一次不等式(组)试题类型总结:类型一:一元一次不等式的解集问题。

类型二:一元一次不等式组无解的情况。

类型三:明确一元一次不等式组的解集求范围。

类型四:一元一次不等式组有解求未知数的范围。

类型五:一元一次不等式组有整数解求范围。

一元一次不等式的解法的综合应用题

一元一次不等式的解法的综合应用题

一元一次不等式的解法的综合应用题一、航班起飞时间问题假设小明要搭乘航班去参加一个重要会议,会议的开始时间是下午2点,而小明所在的城市距离会议所在城市800公里。

航班公司提供两个航班供小明选择,分别为A航班和B航班。

A航班的起飞时间是上午8点,每小时飞行速度为600公里;B航班的起飞时间是上午10点,每小时飞行速度为700公里。

问题:小明选择哪个航班能确保他按时参加会议?解题步骤:1. 假设小明选择A航班,航行时间为t小时。

根据题目信息可得800 = 600t,得出t = 800 ÷ 600 = 1.33小时。

2. 上午8点起飞,航行1.33小时,到达时间为上午8点 + 1.33小时= 上午9:20。

3. 小明选择A航班会在上午9:20到达会议城市,因此无法按时参加会议。

4. 假设小明选择B航班,航行时间为t小时。

根据题目信息可得800 = 700t,得出t = 800 ÷ 700 ≈ 1.14小时。

5. 上午10点起飞,航行1.14小时,到达时间为上午10点 + 1.14小时 = 上午11:08。

6. 小明选择B航班会在上午11:08到达会议城市,确保按时参加会议。

综上所述,小明选择B航班能确保他按时参加会议。

二、雨伞购买问题某商场正在销售雨伞,商场提供两种购买方式:方案A为预先支付80元购买一把雨伞,然后每天收取1元雨伞使用费;方案B为不预先支付,每天支付2元的雨伞使用费。

问题:如果小红需要使用雨伞超过50天,她应该选择哪种购买方案能节省更多费用?解题步骤:1. 假设小红使用雨伞的天数为t天。

根据题目信息可得方案A总费用为80 + t,方案B总费用为2t。

2. 小红选择方案A的总费用为80 + t,应该小于方案B的总费用2t,即 80 + t < 2t。

解方程可得 t > 80。

3. 小红需要使用雨伞超过50天,即t > 50。

综上所述,小红如果需要使用雨伞超过50天,应该选择方案A,能节省更多费用。

一元一次不等式经典例题

一元一次不等式经典例题

1. 解不等式:2x - 5 ≤3x + 7
解法:将x的系数移到一边,常数移到另一边,得到-x ≤12,再将不等式两边乘以-1,即可得到x ≥-12,所以解集为[-12, +∞)。

2. 解不等式:3x + 5 > 2x - 3
解法:将x的系数移到一边,常数移到另一边,得到x > -8,所以解集为(-8, +∞)。

3. 解不等式:4x - 7 ≤5x + 3
解法:将x的系数移到一边,常数移到另一边,得到-x ≤10,再将不等式两边乘以-1,即可得到x ≥-10,所以解集为[-10, +∞)。

4. 解不等式:2x + 3 > 5x - 1
解法:将x的系数移到一边,常数移到另一边,得到-3x > -4,再将不等式两边乘以-1并改变不等号的方向,即可得到x < 4/3,所以解集为(-∞, 4/3)。

5. 解不等式:-2x + 5 ≤3x - 7
解法:将x的系数移到一边,常数移到另一边,得到-5x ≤-12,再将不等式两边乘以-1并改变不等号的方向,即可得到x ≥12/5,所以解集为[12/5, +∞)。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

一元一次不等式解应用题1.某水产品市场管理部门规划建造面积为2400平方米的大棚.大棚设A 种类型和B种类型的店面共80间.每间A种类型的店面的平均面积为28平方米.月租费为400元.每间B种类型的店面的平均面积为20平方米..月租费为360元.全部店面的建造面积不低于大棚总面积的85%。

(1) 试确定A种类型店面的数量?(2)该大棚管理部门通过了解.A种类型店面的出租率为75%.B种类型店面的出租率为90%.为使店面的月租费最高.应建造A种类型的店面多少间?. . . 资料. .解:设A种类型店面为a间.B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55 A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显.a≥55.所以当a=55时.可以获得最大月租费为25920-24x55=24600元. . . 资料. .二、水产养殖户大爷准备进行大闸蟹与河虾的混合养殖.他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元.其饲养费用为525元.当年可获1400元收益;每公斤虾苗的价格为15元.其饲养费用为85元.当年可获160元收益;问题:1、水产养殖的成本包括水面年租金.苗种费用和饲养费用.求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、大爷现有资金25000元.他准备再向银行贷款不超过25000元.用于蟹虾混合养殖.已知银行贷款的年利率为10%.试问大爷应租多少亩水面.并向银行贷款多少元.可使年利润达到36600元?. . . 资料. .解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面.贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=36600. . . 资料. .3900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司.要将300吨物资运往某地.现有A、B两种型号的车可供调用.已知A型车每辆可装20吨.B型车每辆可装15吨.在每辆车不超载的条件下.把300吨物资装运完.问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆.由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .. . . 资料. .由于a是车的数量.应为正整数.所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨.全部由甲.乙两个垃圾厂处理.已知甲厂每小时处理垃圾55吨.需费用550元;乙厂每小时处理垃圾45吨.需费用495元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量已知:两种情况各自与总量比较(两个不等式)【习题1】某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人。

问该宾馆底层有客房多少间?【例2】把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量未知:两种情况相互比较(其中一种情况可计算总量,另一种情况有上下限)【习题2】某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

【例3】某校校长暑假将带领该校“市级三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。

已知两家旅行社的全票价都是240元,哪家旅行社比较好?解两种“方案比较”应用题的方法⑴找出两种方案的,设未知数⑵分别列出两种方案的费用⑶分情况讨论(结合人数)【习题3】某单位计划10月份组织员工到H地旅游人数估计在10~25人之间,甲、乙两旅行社的服务质量相同,且组织到H地旅游的价格都是每人200元.该单位联系时,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠;问该单位应怎样选择,使其支付的旅游总费用较少?【练习】1、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?2、用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

B型抽水机比A型抽水机每分钟约多抽多少吨水?3、A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?练习题:1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。

4.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?5.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?6.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。

问刻录这批电脑光盘,该校如何选择,才能使费用较少?7.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?8.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:料的费用不超过72元,(1)设需用x千克甲种原料,写出x应满足的不等式组。

(2)按上述的条件购买甲种原料应在什么范围之内?9.某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满。

若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满。

问宾馆一楼有多少房间?10.某种商品进价为800元,出售时标价为1200元,后来由于该商品积压,商家准备打折出售,但要保持利润率不低于5%,你认为该商品至多可以打几折?11.小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解,这两种灯的照明效果和使用寿命都一样,已知小王所在地的电价为每千瓦时0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。

12.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元。

(1)符合公司要求的购买方案有哪几种?请说明理由。

(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案?13.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是?14.一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7560平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。

)15.一次考试共有25道选择题,做对一题得4分,做错一题或不做减2分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?16.某宾馆一楼客房比二楼少5间,某旅游团有48人,若全部安排在一楼,每间4人,房间不够,每间5人,房间没有住满;若安排住在二楼,每间3人房间不够,每间4人,有房间没住满,问宾馆一楼有客房几间?17.有三个连续自然数,它们的和小于15,问这样的自然数有几组它们分别是多少?18.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)19.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?20.2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个种造型需甲种花卉80盆,乙种花卉40盆,搭配一个种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个种造型的成本是800元,搭配一个种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?21.一手机经销商计划购进某品牌的A Array型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.22.小名家有一个家庭工厂,现投资2万元购进一台机器,生产某种商品,这种商品的单件成本是3元,单件售价5元,应付税款和其他费用是销售收入的10%.(1)问至少要生产,销售多少个这种产品才能使所获利润(毛利润减去税款和其他费用)超过购买机器的投资款?(2)若这个工厂每月大约能产生,销售这种商品1000个,购买机器款2万元是从银行贷款的,月利率为1%,问至少几个月才能用经营所得的利润一次性还清贷款和利息?23.某次数学测验共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答则不扣分。

某同学有一题未答,那么这个同学至少答对多少道题,成绩才能在60分以上?24.学校若干人,住若干间宿舍,如果每间住4人,则余19人没住处,如果每间住6人,则有一间宿舍住不满,求有多少间宿舍?多少名学生?25.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。

问刻录这批电脑光盘,该校如何选择,才能使费用较少?26.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?27.把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?28.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

29.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3本.设该校买了m本课外读物,有x名学生获奖,请解答下列问题:用含x的代数式表示m;求出该校的获奖人数及所买课外读物的本数.30.(2001荆门市)有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则应该如何安排人员?。

相关文档
最新文档