调洪演算编程

合集下载

调洪演算

调洪演算

第1章 调洪演算1.1 调洪演算已知正常高水位▽正=128m ,查水库水位库容曲线,可得361044.296m V ⨯=。

010020030040050060070060708090100110120130140150160水位(m)容积(106m 3)图 1 - 1 枋洋水库水位库容曲线1.1.1 确定防洪库容用枋洋水库入库断面20年一遇洪水流量同倍比法推求“6·9”洪水过程线,以洪峰控制,其放大倍比为095.121192320===mdmp Q Q K 表1-1 计算表格如下所示:)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q1 23 25 19 318 348 37 530 5802 51 56 20 454 497 38 417 4563 132 144 21 623 682 39 296 324 4 267 292 22 649 710 40 194 2125 366 400 23 721 789 41 137 150 6 412 451 24 694 759 42 99 108 7 519 568 25 802 877 43 75 82 868474826851931445863)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q9 953 1043 27 1150 1258 45 45 49 10 1053 1152 28 1711 1872 46 35 38 11 1154 1262 29 2119 2318 47 27 30 12 961 1051 30 1903 2082 48 21 23 13 814 891 31 1673 1830 49 15 16 14 629 688 32 1297 1419 50 9 10 15 475 520 33 1055 1154 51 6 7 16 375 410 34 846 926 52 2 2 17 314 344 35 719 787 53 1 1 182712963663669654根据表格数据,绘制6.9洪水过程线:51015202530354045505001000150020002500时间t (h)流量q(m3/s)图1-2 6.9洪水过程线1.1.2 求防洪库容和防洪高水位由正常高水位起调,下游最大安全泄量为500s m /3,调洪计算得防洪库容361044.296m V ⨯=正常。

洪水调节设计试算法和半图解法带试算C语言程序

洪水调节设计试算法和半图解法带试算C语言程序

洪水调节设计试算法和半图解法带试算C语言程序Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】《洪水调节课程设计》任务书一、设计目的1.洪水调节目的:定量地找出入库洪水、下泄洪水、拦蓄洪水的库容、水库水位的变化、泄洪建筑物型式和尺寸间的关系,为确定水库的有关参数和泄洪建筑型式选择、尺寸确定提供依据;2.掌握列表试算法和半图解法的基本原理、方法、步骤及各自的特点;3.了解工程设计所需洪水调节计算要解决的课题;培养学生分析问题、解决问题的能力。

二、设计基本资料1.某水利枢纽工程以发电为主,兼有防洪、供水、养殖等综合效益,电站装机为5000KW,年发电量1372×104kw·h,水库库容亿m3。

挡水建筑物为混凝土面板坝,最大坝高。

溢洪道堰顶高程,采用2孔8m×6m(宽×高)的弧形门控制。

水库正常蓄水位。

电站发电引用流量为10 m3/s。

2.本工程采用2孔溢洪道泄洪。

在洪水期间洪水来临时,先用闸门控制下泄流量q并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z的升高而增大,流态为自由流态,情况与无闸门控制一样。

3. 上游防洪限制水位(注:X=+学号最后1位/10,即),下游无防汛要求。

三、 设计任务及步骤分别对设计洪水标准、校核洪水标准,按照上述拟定的泄洪建筑物的类型、尺寸和水库运用方式,分别采用列表试算法和半图解法推求水库下泄流量过程,以及相应的库容、水位变化过程。

具体步骤:1. 根据工程规模和建筑物的等级,确定相应的洪水标准;2. 用列表试算法进行调洪演算:① 根据已知水库水位容积关系曲线V ~Z 和泄洪建筑物方案,用水力学公式求出下泄流量与库容关系曲线q ~Z ,并将V ~Z ,q ~Z 绘制在图上;② 决定开始计算时刻和此时的q 1、V 1,然后列表试算,试算过程中,对每一时段的q 2、V 2进行试算;③ 将计算结果绘成曲线:Q ~t 、q ~t 在一张图上,Z ~t 曲线绘制在下方。

调洪计算试算法python代码

调洪计算试算法python代码

一、概述调洪计算在水利工程中起着至关重要的作用,它能够帮助工程师和决策者准确地预测河流水位和流量的变化,从而有效地进行防洪工作。

而Python作为一种强大的编程语言,被广泛应用于水文水利领域,为调洪计算提供了便利的工具。

本文将介绍调洪计算试算法Python代码的编写方法,以及如何利用Python进行调洪计算。

二、调洪计算简介调洪计算是指根据历史降雨流量数据,利用数学模型和计算方法,预测未来一段时间内的洪水情况。

调洪计算通常涉及的内容包括降雨径流过程、洪水演变规律、水库和河流的调度等。

通过调洪计算,可以有效地指导防洪工作和水利工程设计,保障人民生命财产安全。

三、Python在水文水利领域的应用Python作为一种开源、易学易用的编程语言,具有强大的科学计算和数据处理能力,因此在水文水利领域得到了广泛应用。

Python的第三方库中有许多与水文水利相关的模块,比如numpy、pandas、scipy等,这些库能够帮助工程师快速、高效地进行水文数据处理、水文计算和水文模型的构建。

Python还具有丰富的可视化库,可以方便地将水文数据进行可视化展示。

四、调洪计算试算法Python代码编写调洪计算试算法通常包括降雨-径流转换、洪水演变和水库调度等计算内容。

下面以Python代码为例,介绍调洪计算试算法的编写方法。

1. 降雨-径流转换在调洪计算中,降雨-径流转换是一个重要的计算环节。

以下是一个简单的Python函数,用于实现降雨-径流转换的计算。

```pythonimport numpy as npdef r本人nfall_runoff(r本人nfall, area):runoff = r本人nfall * 0.6 * areareturn runoff```以上的Python函数实现了简单的降雨-径流转换计算,其中r本人nfall表示降雨量,area表示流域面积。

通过该函数,可以计算出流域内的径流量,为后续洪水演变模拟提供数据支持。

C-2 水库调洪演算的数值解程序

C-2 水库调洪演算的数值解程序

C-2 水库调洪演算的数值解程序作者 张校正(新疆水利厅 )一、程序功能已知水库的水位--水面面积关系,洪水量过程线,对于每一种调洪方案(包括泄流条件、调洪方式、泄水建筑物参数)由调洪起始水位依次计算,直至洪水过程结束,计算机输出各时段末之水位、泄洪洞流量、溢洪道流量、水库出库总流量等。

并用彩色曲线绘制洪水过程线、泄洪过程线和水库水位变化线。

二、算法简介1,水库水量平衡分方程的数值解:水库水量平衡微分方程:q Q dt dZ f -=式中: f=f(z) 水库水面面积,是水位z 的函数;Z=Z(t) 水位,是时间t 的函数;Q=Q(t) 入库流量,是时间t 的函数;Q=q(z) 出库流量,是水位z 的函数。

将上式移项,并定义调洪函数)()()(),(z f Z q t Q Z t F -=则得 ⎪⎩⎪⎨⎧==00)(),(Z t Z Z t F dt dZ 这是一个一阶常微分方程的初值问题。

应用定步长的龙格-库塔方法求解。

其公式为:)22(6143211K K K K Z Z n n ++++=-式中: )()()(),(111111------⨯=⨯=n n n n n Z f Z q t Q T Z t F T K)21()2()2()2,2(11111112K Z f K Z q T t Q T K Z T t F T K n n n n n ++-+⨯=++⨯=----- )2()2()2()2,2(212112113K Z f K Z q T t Q T K Z T t F T K n n n n n ++-+⨯=++⨯=----- )()()(),(3131314K Z f K Z q t Q T K Z t F T K n n n n n ++-⨯=+⨯=---T 为洪水流量时段间隔;n=1,2,……,J2,泄流量公式:当泄水建筑物为深孔时,)(2111111A C Z g B A M q --=式中:M 1 流量系数;A 1 泄流孔口高;B 1 泄流孔口宽;Z 水位;C 1 泄流孔口底槛高程。

洪水调节调洪演算列表法和图解法

洪水调节调洪演算列表法和图解法

调洪演算计算说明书一、 相关资料中包水利枢纽工程是三等工程,溢洪道设计洪水标准为五十年一遇(P=2%)至一百年一遇(P=1%),校核洪水标准为千年一遇(P=0.1%).二、基本原理1.泄水建筑物尺寸:溢洪道堰顶高程519m ,采用3孔86m m ⨯(宽⨯高)的弧形门控制。

由2/302q H g m nb ⋅=ε (其中侧收缩系数ε=0.92,n 为所开孔数, 流量系数m=0.48,单孔堰顶宽度b=8m ,g=9.812/m s ,堰顶水头0H =水位Z-堰顶高程,。

不计流速水头。

) 计算出下泄流量2.设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。

3.基本计算公式为:()()()t V V q q Q Q ∆-=+-+/2/2/122121式中: Q 1, Q 2--分别为计算时段初、末的入库流量,m 3/s ; v 1,v 2--分别为计算时段初、末水库的蓄水量,m 3 ; q 1,q 2--分别为计算时段初、末的下泄流量,m 3/s ; t ∆--计算时段,一般取1小时。

4.下游安全泄量及起调水位该水利枢纽没有下游防洪要求,一般在洪水来临时,水库将预泄库水至水库防洪限制水位,以便有足够的库容蓄洪或滞洪。

防洪限制水位是水库在汛期允许兴利蓄水的上限水位,则调洪计算从水位525.3m 起调。

5.水库运行方式根据题目分析,本工程采用3孔溢洪道泄洪,设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。

在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位525.3m不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z 的升高而增大,流态为自由流态,情况与无闸门控制一样。

6.计算方法:先决定开始计算时刻和此时的q1、V1,然后假定下泄流量q2值,再由计算V2值,再查q-V表得出q2’值,水量平衡方程()()()t-+2/2/=+/VV-qqQ∆Q211122比较q2和q2’,若二者基本相等,则假定正确,否则重新试算,直到大致相等为止,依次计算下去。

调洪演算

调洪演算

2、采用列表试算法进行调洪演算:1) 确定水库蓄泄关系a) 确定库容曲线:根据给定的库容曲线表绘制水库的库容曲线如图2-1图2-1水库库容曲线b) 确定水库泄流公式 根据堰流泄流能力:2302H g mB Q =式中: m —— 流量系数,本工程取0.35; B —— 堰顶净宽,55.0m ; g —— 重力加速度,取29.81gm s ;H0—— 堰顶水头,考虑坝前行进流速水头较小,取H0=H 。

则水库泄流能力公式可确定为:23(27.85)Zo Zt Q -=式中: Zt 为当前水库水位 Zo 为正常高水位(溢流堰堰顶高程),本地取167.3m 。

c) 确定蓄泄关系 i. 确定一组水库库容V(I),I=1,2……m ; ii. 对V(I),据库容曲线查得库水位Z (I ),据2)计算对应的泄流能力q (i ); iii. 对应一组V~q ,确定蓄泄关系,如图2—2。

图2-2 水库蓄泄关系图2)列表进行调洪演算a)试算程序调洪演算原理i.对t时段计算,水库初始需水量V(t-1)由上一时段给出;ii.假设qt,则可计算出该时段的水库需水量V(t),从蓄泄关系上差得qt’;iii.比较qt与qt’,若|qt-qt’|<ξ1,则t=t+1,否则重新假设qt,令t=t;iv.当算至水库|Z(t)- Zo|<ξ2时,终止计算。

b)计算表格i.设计频率为P=5.0%的计算结果如表2-1:表2-1 频率为P=5.0%的调洪演算计算结果图2-3 频率为P=5.0%的调洪演算计算图ii.设计频率为P=3.33%的计算结果如表2-2;表2-2 频率为P=3.33%的调洪演算计算结果图2-4 频率为P=3.33%的调洪演算计算图iii.设计频率为P=0.33%的计算结果如表2-3;表2-3 频率为P=0.33%的调洪演算计算结果来水、泄流及水位过程线图2-4:表2-5 频率为P=0.33%的调洪演算计算结果c)调洪演算计算结果如表2-6表2-6 列表法调洪演算结果31)拟定工作图a)确定Z—q关系线,见列表法进行调洪演算;b)确定(V/△t±q/2)—q关系线;i.确定一组水库库容V(I),I=1,2……m;ii.对V(I),据库容曲线查得库水位Z(I),据2)计算对应的泄流能力q(i),并计算V(i)/△t+q(i)/2;iii.对应一组V(i)~Z(i)~ V(i)/△t+q(i)/2~ V(i)/△t-q(i)/2,确定各相各关系。

水库调洪半图解法 matlab编程资料

水库调洪半图解法 matlab编程资料

39.0 7760
39.5 8540
40.0 9420
40.5 10250
41.0 11200
下泄流量 q(m3/s)
(3)
56.7 100.3 173.9 267.2 378.3 501.9 638.9 786.1 946.0
q/2 (m3/s)
(4)
28.35 50.15 86.95 133.60 189.15 250.95 319.45 393.05 473.00
3)图解步骤
a.根据已知的Q~t过程线、Z~V曲线、Z限、计算时 段△t,确定调洪计算的起始时段,并划分各计算 时段。算出平均入库流量Q1以及定出第一时段初 始的Z1、q1、V1各值。 b.利用辅助线在图上求解得出Z2。 c.根据Z2值,利用水库Z~V曲线即可求出V2。 d.将e点代表的Z2值作为下一时段的Z1值 e.求出该时段的Z2、q2、V2值。如此逐时段进行 计算,即可得到下泄流量过程线q~t。
C
AB
CA B
(3) 从c点作垂线交曲线B于d点,过d点作水平线de交水位坐标轴于e, 显然de=ac=(V2/Δt+q2/2)。因曲线B是 (V/Δt-q/2)=f2(Z),d 点在曲线B上,e就应代表Z2,从e点可读出Z2值。
C
A
B
C
A
B
(4) de交曲线C于f点,过f 点作垂线交q坐标轴于g点。因曲线C 是q=f3(Z),e代表Z2,而ef是q2,即从g点可以读出q2的值。
积关系曲线,以及根据水力
f3 (Z )
学公式算出的水位下泄流量
关系曲线,事先计算并绘制
曲线组:
f1(Z )
f2 (Z )
Vq f1(Z ) t 2

水库调洪演算的原理和方法

水库调洪演算的原理和方法


V t

q 2
f2 (Z )

V t

q 2
f3(Z) q
f3 (Z )
f1(Z )
f2 (Z )
Q (m3 / s), V q (m3 / s), V q (m3 / s)
t 2
t 2
调洪计算半图解法的双辅助线
水利水能规划
水库调洪计算的半图解法
V调=Vm-V汛限
Vm
Z~V
Zm
【例 题】
水利水能规划
【补偿调节】
水库
QB=q+Q区
Q
A
QB
qB
坝址
Q区 6h



护 区
河流
水利水能规划
水利水能规划
水利水能规划
水利水能规划
水利水能规划
水利水能规划
水利水能规划
水利水能规划
水利水能规划
【补偿调节】
水库
QB=q+Q区
Q
A
QB
qB
坝址
水利水能规划
水库调洪计算的半图解法
由上节知道列表试算法麻烦工作量大,故人们比较喜欢 用半图解法。
Q1
Q2 2
Δt

q1
q2 2
Δt

V2

V1
Q Q1 Q2 2
等式两边同时除以△t,并移项
Q V1 q1 V2 q2 t 2 t 2
第十四章 水库防洪计算
水利水能规划
• 三、有闸溢洪道水库的防洪计算
水利水能规划
水利水能规划
• 四、具有非常泄洪设施水库的防洪计算

水库双辅助曲线调洪演算计算程序

水库双辅助曲线调洪演算计算程序
பைடு நூலகம்
钮,其黄色填充
段序号、时段长
击“调洪演算”
水标准下的调洪
不能有空格或负
下方程的形式:
q 每项都与 q 有 2
Q1 Q2 q1 q 2 V2 V1 2 2 t t
Q1 Q2 q q2 t 1 t V2 V1 2 2
即:(
V2 q 2 V q V q ) Q1 2 ( 1 1 ) 式中两个括号内都包括两项 、 每项都与 q 有 2 t t 2 t 2
关,最后一个式子的两个括号内的数据可写成如下两个函数式:
V q q f1 t 2 V q q f2 t 2
V q q f1 t 2 V q q f2 t 2
助曲线法原理,

(米) 、下泄流量
水库调洪演算程序说明
1.编制原理及适用范围。本程序系依据《工程水文学》双辅助曲线法原理, 利用 Excel VBA 编制而成,适用于水库无闸控制溢洪道调洪演算。 2.程序应用。首先在调洪辅助曲线计算表中输入水库水位(米) 、下泄流量 (立米/秒) 、库容(万立米)数据后,单击“计算辅助曲线”按钮,其黄色填充 区的数据自动计算。其次,激活调洪演算计算表,在表中输入时段序号、时段长 (小时) 、来水流量(立米/秒) ,此数据即为洪水过程线数据,单击“调洪演算” 按钮,其黄色填充区数据自动计算,下泄流量最大值即为设计洪水标准下的调洪 下泄流量。 注:数据输入必须是英文状态下的有效数值,数据输入区内不能有空格或负 数,否则程序报错不予计算。 3.双辅助线法调洪演算原理。 双辅助线法的解算原理也是水库水量平衡方程,只须改变一下方程的形式: 可写成:

借助Excel电子表格实现水库泄流全过程调洪演算

借助Excel电子表格实现水库泄流全过程调洪演算

借助Excel电子表格实现水库泄流全过程调洪演算【内容提要】借助Excel电子表格实现水库泄流全过程调洪演算,以井研县毛坝水库枢纽病害整治工程初步设计中,其上游水库红岩水库p=0.1%校核洪水过程的调洪演算为算例,探索出两种不同的计算方法:一种是利用Excel电子表格自身的函数和公式运算,实现半自动化的水库调洪演算;二是以Microsoft Excel2010以上版本为依托,通过VBA语言编程来实现全自动化的水库调洪演算。

两种方法的计算结果,与本人当年使用日本夏普便携式PC-1500计算机通过Basic语言编程的水库多功能调洪演算程序的计算结果完全一致。

作者推荐第二种方法,它能在大约1至2秒之内实现多行多列上百数据数百次试算的入库和出库洪水流量演算全过程。

由于它的快速和智能化设计,给水库洪水预报盈得时间,是编制已成水库防洪预案和水利水电工程设计及病害整治工作的有力助手。

【正文】现以井研县毛坝水库1995年工程整治中红岩水库调洪演算为算例,展现更先进的计算方法。

本算例在计算入库洪水过程中,所涉及暴雨洪水参数来源有二:一是四川省水利电力局水文总站1979年10月编制的《四川省水文手册》;二是四川省水利电力厅1984年6月编制的《四川省中小流域暴雨洪水计算手册》。

虽然后者的暴雨等值线图已经被近20多年来新增实测暴雨资料的补充分析成果所代替。

四川省水文水资源勘测局已增补到2000年的暴雨资料,于2010年12月出版了新的《四川省暴雨统计参数等值线图》,按理应以新的暴雨资料为依据,但为了保持该工程整治设计的原貌,为了与当时本人使用PC-1500计算机和原来的调洪演算程序的运算结果进行比较,仍然使用《四川省中小流域暴雨洪水计算手册》所附暴雨等值线图计算该水库设计洪水过程线。

一、水库的基本情况毛坝水库位于岷江左支泥溪河上游,井研县天云乡境内。

水库大坝的地理坐标为E103°57′24″,N29°45′37″。

水库调洪演算的原理和方法 PPT

水库调洪演算的原理和方法 PPT

水库调洪计算的半图解法
6.在一张图上点绘Q(t)和q(t),推求qm。
Q、q(m3/s) Q、q(m3/s)
Q~t qmax q~t
Q~t qmax q~t
t (min)
推求qm示意图
t△1tt' t2
t (min)
水库调洪计算的半图解法
7.推求Vm、V调、Zm。
q~V
qmax
V调=Vm-V汛限
水库调洪演算的原理和方法
水库调洪计算是确定入库洪水、泄洪建筑物的型式与尺寸、 调洪方式和调洪库容之间的定量关系。
一、水库调洪计算的任务
在水工建筑物或下游防护对象的防洪标准一定的情况下, 根据水文分析计算提供的各种标准的设计洪水或已知的设 计入库洪水过程线、水库特性曲线、拟定的泄洪建筑物的 型式与尺寸、调洪方式等,通过计算,推求水库出流过程、 最大下泄流量、特征库容和水库相应的特征水位。
Z (m)
因此,可根据选定的计 算时段△t,已知的水库容 积关系曲线,以及根据水力 学公式算出的水位下泄流量 关系曲线,事先计算并绘制 曲线组:
Vq f1(Z) t 2
f2(Z)
V t
q 2
f3(Z) q
f3 (Z )
f1(Z )
f2 (Z )
Q (m 3/s) ,V q (m 3/s) ,V q (m 3/s)
Q、q(m3/s) Q、q(m3/s)
Q~t qmax q~t
Q~t qmax q~t
t (min)
t△1tt' t2
t (min)
qm是两线的交点则计算正确;否则在t1,t2之间计算qm。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流

水库调洪演算的原理和方法

水库调洪演算的原理和方法

水利水能规划
三、水库调洪计算方法
Q、q(m3/s) Q、q(m3/s)
Q~t qmax q~t
Q~t qmax q~t
t (min)
t△1tt' t2
t (min)
qm是两线的交点则计算正确;否则在t1,t2之间计算qm。
水利水能规划
三、水库调洪计算方法
1、列表试算法
(1)由Z~V曲线、泄流计算公式推求q~V曲线。
水利水能规划
二、水库调洪计算的基本方程
1、水量平衡方程
Q1
Q2 2
t

q1
q2 2
t
V2
V1
Q ~ t q1、V1 t
q2、V2
Q、q(m3/s)
Qi+1
Q~t
Qi
qi+1 qi
qmax q~t
V2-V1
△t
ti ti+1
t (min)
水库水量平衡示意图
一个方程两个未知数没有办法求解
水利水能规划
• 二、无闸溢洪道水库的防洪计算 • (一)下游无防洪要求时 • (1)拟定方案;(2)调洪计算;(3)计算坝高;
(4)计算各方案的投资(5)选定方案
水利水能规划
• (二)下游有防洪要求 • 在防洪水利计算中需要考虑下游安全泄量的要求,
分别对枢纽标准与下游防洪标准的洪水进行调洪计 要。具体的步骤是: • (1)假定不同的溢洪道宽度B方案。 • (2)对下游防洪标准的设计洪水进行调洪计算,求得 B与qm的关系。舍去qm超过下游安全泄量的宽度方案。 • (3)对满足下游防洪要求的诸方案,再对枢纽防洪标 准的洪水,进行调洪计算,以确定坝高、设计洪水 位与校核洪水位,以及相应调洪库容。并进行经济 比较,求得经济上合理或最佳的方案。计算过程与 无防洪要求的基本相同。

水库调洪演算的基本原理和方式

水库调洪演算的基本原理和方式

(2)推求水库下泄流量过程线q~t。
(a)分析确定起调水位Z1和计算时段。
无闸: Z1=Z堰顶
有闸: Z1=Z限
(b)由起始条件确定Q1、Q2 、V1和q1。
(c)试算(q2~V2~q'2)。
(d)将q2、V2作为下时段的起始条件,推求q~t。
水利水能规划
三、水库调洪计算方法
起始条件 假设q2

Z~V
水利水能规划
第三章 洪水调节
第二节 水库调洪计算的原理和方法
水利水能规划
水库调洪计算是确定入库洪水、泄洪建筑物的型式与尺寸、 调洪方式和调洪库容之间的定量关系。
一、水库调洪计算的任务
在水工建筑物或下游防护对象的防洪标准一定的情况下, 根据水文分析计算提供的各种标准的设计洪水或已知的设 计入库洪水过程线、水库特性曲线、拟定的泄洪建筑物的 型式与尺寸、调洪方式等,通过计算,推求水库出流过程、 最大下泄流量、特征库容和水库相应的特征水位。
第一时段初始的Z1、q1、V1各值。
水利水能规划
水库调洪计算的半图解法
0
g
Z(m)
2.

f3(Z )

e
辅 Z2 助
q2
f
线

Z1 a
b



解。
f1 (Z )
d c
下泄流量q(m3/s)
f2 (Z )
f1(Z
)
V t
q 2
f2 (Z )
V t
q 2
f3(Z) q
Q( m 3
/ s ),
V t
水利水能规划
水库调洪计算的半图解法
6.在一张图上点绘Q(t)和q(t),推求qm。

水库调洪计算试算法

水库调洪计算试算法

水库调洪计算试算法水库调洪演算试算法一、水库调洪计算的任务入库洪水流经水库时,水库容积对洪水的拦蓄、滞留作用,以及泄水建筑物对出库流量的制约或控制作用,将使出库洪水过程产生变形。

与入库洪水过程相比,出库洪水的洪峰流量显著减小,洪水过程历时大大延长。

这种入库洪水流经水库产生的上述洪水变形,称为水库洪水调节。

水库调洪计算的目的是在已拟定泄洪建筑物及已确定防洪限制水位(或其他的起调水位)的条件下,用给出的入库洪水过程、泄洪建筑物的泄洪能力曲线及库容曲线等基本资料,按规定的防洪调度规则,推求水库的泄流过程、水库水位过程及相应的最高调洪水位和最大下泄流量。

若水库不承担下游防洪任务,那么水库调洪计算的任务是研究和选择能确保水工建筑物安全的调洪方式,并配合泄洪建筑物的形式、尺寸和高程的选择,最终确定水库的设计洪水位、校核洪水位、调洪库容及二种情况下相应的最大泄流量。

若水库担负下游防洪任务,首先应根据下游防洪保护对象的防洪标准、下游河道安全泄量、坝址至防洪点控制断面之间的区间入流情况,配合泄洪建筑物形式和规模,合理拟定水库的泄流方式,确定水库的防洪库容及其相应的防洪高水位;其次,根据下游防洪对泄洪方式的要求,进一步拟定为保证水工建筑物安全的泄洪方式,经调洪计算,确定水库的设计洪水位与校核洪水位及相应的调洪库容。

二、水库调洪计算基本公式洪水进入水库后形成的洪水波运动,其水力学性质属于明渠渐变不恒定流。

常用的调洪计算方法,往往忽略库区回水水面比降对蓄水容积的影响,只按水平面的近似情况考虑水库的蓄水容积(即静库容)。

水库调洪计算的基本公式是水量平衡方程式:11(Q,Q),t,(q,q),t,V,V (3-1) tt,1tt,1t,1t22,t式中: ——计算时段长度(s);3Q,Q ——t时段初、末的入库流量(m/s); tt,13q,q ——t时段初、末的出库流量(m/s); tt,13V,V ——t时段初、末水库蓄水量(m)。

洪水调节调洪演算列表法和图解法

洪水调节调洪演算列表法和图解法

调洪演算计算说明书一、 相关资料中包水利枢纽工程是三等工程,溢洪道设计洪水标准为五十年一遇(P=2%)至一百年一遇(P=1%),校核洪水标准为千年一遇(P=0.1%).二、基本原理1.泄水建筑物尺寸:溢洪道堰顶高程519m ,采用3孔86m m ⨯(宽⨯高)的弧形门控制。

由2/302q H g m nb ⋅=ε (其中侧收缩系数ε=0.92,n 为所开孔数, 流量系数m=0.48,单孔堰顶宽度b=8m ,g=9.812/m s ,堰顶水头0H =水位Z-堰顶高程,。

不计流速水头。

) 计算出下泄流量2.设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。

3.基本计算公式为:()()()t V V q q Q Q ∆-=+-+/2/2/122121式中: Q 1, Q 2--分别为计算时段初、末的入库流量,m 3/s ; v 1,v 2--分别为计算时段初、末水库的蓄水量,m 3 ; q 1,q 2--分别为计算时段初、末的下泄流量,m 3/s ; t ∆--计算时段,一般取1小时。

4.下游安全泄量及起调水位该水利枢纽没有下游防洪要求,一般在洪水来临时,水库将预泄库水至水库防洪限制水位,以便有足够的库容蓄洪或滞洪。

防洪限制水位是水库在汛期允许兴利蓄水的上限水位,则调洪计算从水位525.3m 起调。

5.水库运行方式根据题目分析,本工程采用3孔溢洪道泄洪,设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。

在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位525.3m不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z 的升高而增大,流态为自由流态,情况与无闸门控制一样。

6.计算方法:先决定开始计算时刻和此时的q1、V1,然后假定下泄流量q2值,再由计算V2值,再查q-V表得出q2’值,水量平衡方程()()()t-+2/2/=+/VV-qqQ∆Q211122比较q2和q2’,若二者基本相等,则假定正确,否则重新试算,直到大致相等为止,依次计算下去。

洪水调节设计试算法和半图解法带试算C语言程序

洪水调节设计试算法和半图解法带试算C语言程序

洪水调节课程设计任务书一、设计目(de)1.洪水调节目(de):定量地找出入库洪水、下泄洪水、拦蓄洪水(de)库容、水库水位(de)变化、泄洪建筑物型式和尺寸间(de)关系,为确定水库(de)有关参数和泄洪建筑型式选择、尺寸确定提供依据;2.掌握列表试算法和半图解法(de)基本原理、方法、步骤及各自(de)特点;3.了解工程设计所需洪水调节计算要解决(de)课题;培养学生分析问题、解决问题(de)能力.二、设计基本资料1.某水利枢纽工程以发电为主,兼有防洪、供水、养殖等综合效益,电站装机为5000KW,年发电量2×104kw·h,水库库容亿m3.挡水建筑物为混凝土面板坝,最大坝高.溢洪道堰顶高程,采用2孔8m×6m(宽×高)(de)弧形门控制.水库正常蓄水位.电站发电引用流量为10m3/s.2.本工程采用2孔溢洪道泄洪.在洪水期间洪水来临时,先用闸门控制下泄流量q并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z(de)升高而增大,流态为自由流态,情况与无闸门控制一样.3. 上游防洪限制水位(注:X=+学号最后1位/10,即),下游无防汛要求.三、 设计任务及步骤分别对设计洪水标准、校核洪水标准,按照上述拟定(de)泄洪建筑物(de)类型、尺寸和水库运用方式,分别采用列表试算法和半图解法推求水库下泄流量过程,以及相应(de)库容、水位变化过程.具体步骤:1. 根据工程规模和建筑物(de)等级,确定相应(de)洪水标准;2. 用列表试算法进行调洪演算:① 根据已知水库水位容积关系曲线V ~Z 和泄洪建筑物方案,用水力学公式求出下泄流量与库容关系曲线q ~Z,并将V ~Z,q ~Z 绘制在图上;② 决定开始计算时刻和此时(de)q 1、V 1,然后列表试算,试算过程中,对每一时段(de)q 2、V 2进行试算;③ 将计算结果绘成曲线:Q ~t 、q ~t 在一张图上,Z ~t 曲线绘制在下方.3. 用半图解法进行调洪计算:① 绘制三条曲线:()2t 1q V Z f -=∆,()2t2qV Z f +=∆,()Z f=q ;② 进行图解计算,将结果列成表格.4. 比较分析试算法和半图解法调洪计算(de)成果.四、 时间安排和要求1. 设计时间为1周;2. 成果要求:① 设计说明书编写要求条理清楚、附图绘制标准;② 列表试算法要求采用手工计算,熟悉过程后可编程计算,如采用编程计算需提供程序清单及相应说明;③ 设计成果请独立完成,如有雷同则二者皆取消成绩,另提交成果时抽查质询.五、 参考书3. 水利水电工程等级划分及洪水标准(SL252-2000)4. 水利水能规划附录:一、 堰顶溢流公式2/302q H g m nb ⋅=ε式中:q ——通过溢流孔口(de)下泄流量,m 3/s ;n ——溢流孔孔口数; b ——溢流孔单孔净宽,m ; g ——重力加速度,s 2;ε——闸墩侧收缩系数,与墩头形式有关,初步计算可假设为;m ——流量系数,与堰顶形式有关,可查表,本工程取;H0——堰顶水头,m.二、设计洪水过程三、水位-库容曲线和库容表库容表高程(m )450460470480490500505库容(104m3)018高程(m)510515520525530535540库容(104m3)6670四、工程分等分级规范和洪水标准五、调洪计算成果表设计洪水校核洪水频率项目洪水调节演算过程一、洪水标准(de)确定1.工程等别(de)确定:由设计对象(de)基本资料可知,该水利枢纽工程以发电为主,兼有防洪、供水、养殖等其他综合效益,电站装机为5000kW,水库库容⨯.若仅由装机容量5000kW为指标,根据“水利水电工程分等指标”,可将工程等别定为Ⅴ;若仅以水库总库容⨯为指标,则可将工程等别定为Ⅲ.综合两种指标,取等级最高(de)Ⅲ等为工程最终等别.2.洪水标准(de)确定:该水利工程(de)挡水建筑物为混凝土面板坝,由已确定(de)为Ⅲ等(de)工程等别,根据“山区,丘陵区水利水电工程永久性水工建筑物洪水标准”,可查得,该工程设计洪水标准为100~50年,校核标准为1000~500年,不妨取设计标准为100年,校核洪水标准为1000年.二、试算法洪水调节计算1.计算并绘制水库(de)q=f(V)关系曲线:应用式2/32q Hgmnb⋅=ε,根据不同水库水位计算H与q,再由H~V关系曲线查得V,并计算于下表,绘制q=f(V) 关系曲线图如下. 2.3.4.5. 确定调洪(de)起始条件:起调水位也是防洪限制水位,Z=.相应库容×104m 3.在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变;当洪水来水量Q 继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q 随水库水位z(de)升高而增大,流态为自由流态,情况与无闸门控制一样.由公式:10H 2g m nb Q q 230+⋅==ε=⨯⨯⨯()5.12.681.92⨯m 3/s 得调洪开始时(de)下泄流量为 m 3/s.所以在第一时段,以闸门控制入库流量等于下泄流量;以后时段闸门全开不再控制,下泄流量由试算计算.6. 列表试算泄流量q,本过程采用C 语言编程试算.① 基本原理:根据水库容积曲线V=f (Z )和堰顶溢流公式q=f (H ),得出蓄泄方程q=f (V ).联立水量平衡方程)q (2t121212q Q Q V V --++=∆f(V)q =可得q=f(V)=g (q ),即q=g (q ).② 编程公式(de)主要过程a) 已知(de)电站发电引用流量为10m 3/s,结合堰顶溢流公式,得出下泄流q=nb εm 230H g 2+10 (1)b) 水位高程Z 与堰顶水头H(de)关系.基本材料可知溢洪道堰顶高程为519m 则H=Z-519m ;c) 水库容积曲线V=f (Z )(de)近似化.根据该设计(de)蓄泄情况,水位高程(de)变化范围在525m~535m 之间,又由于水库容积曲线在水位高程属525m~535m 之间(de)变化率较小,为方便计算,故可将其分段直线化以简化、近似计算.由水位—库容表V=f (Z )及上式H=Z -519m,可得V=f (H ),易算出H=g (V )= 02.18268.3591V - []9.55938.4683V ,∈ 22.21548.3226V - []0.66709.5593V ,∈ (2)联立(1)、(2)式得10V g g 2m nb =q 23+)(ε....................................(3)d )将(3)式与水量平衡方程联立.得 )q (2t 121212q Q Q V V --++=∆10V g g 2m nb =q 23+)(ε...........................(4)e )C 语言程序源代码如下: include<> include<> void main() {float V1,V2,Q1,Q2,q1,q2,q3, t=; printf("V1="); scanf("%f",&V1); printf("Q1="); scanf("%f",&Q1); printf("Q2="); scanf("%f",&Q2); printf("q1="); scanf("%f",&q1); printf("q2=");scanf("%f",&q2);printf("\n\n");loop:{V2=V1+ (Q1+Q2-q2-q1) t/2;if (V2>= && V2<= q3=(pow(/,)+10;else if (V2>= && V2<= q3=(pow(/,)+10;}if (fabs(q3-q2)>{q2=q3;goto loop;}printf("q2=%f\n",q3);printf("V2=%f\n\n\n",V2);}7.对设计洪水计算时段平均入库流量和时段入库水量.①将洪水过程表中P=1%(de)洪水过程线划分计算时段,初选时段Δt=1h=3600填入下表第一栏,表中第二栏为按计算时段摘录(de)入库洪水流量,计算(de)时段平均入库流量和时段入库水量分别填入第三栏和第四栏.泄流量(de)计算见第五,六,七栏.从表中第一,五栏可绘制下泄流量过程线.第一,十栏可绘制水位过程线;② 为了枯水期能保证兴利部门(de)用水需求,当水位再次下降到调洪水位时,又需要用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变.见第15时段q=f (V )(de)程序计算截图;③ 绘制Q~t 与q~t 曲线,如图所示.最大下泄流量m ax q = m 3/s 发生在t=8h 时,正好是q~t 曲线与Q~t 曲线(de)交点,即为所求(de)最大下泄流量;④ 推求设计调洪库容设V 和设计洪水位设Z .m ax q =对应(de)库容和水位分别为万m 3和,减去堰顶以下(de)库容万m 3 即可得设V =万m 3,设Z = m.第2时段试算法程序计算截图第时段试算法(de)程序计算截图8.对校核洪水计算时段平均入库流量和时段入库水量.①将洪水过程表中P=%(de)洪水过程线划分计算时段,初选时段Δt=1h=3600填入下表第一栏,表中第二栏为按计算时段摘录(de)入库洪水流量,计算(de)时段平均入库流量和时段入库水量分别填入第三栏和第四栏.泄流量(de)计算见第五,六,七栏.从表中第一,五栏可绘制下泄流量过程线.第一,十栏可绘制水位过程线.②为了枯水期能保证兴利部门(de)用水需求,当水位再次下降到调洪水位时,又需要用闸门控制下泄流量q并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变.见第20时段q=f(V)(de)程序计算截图.③ 绘制Q~t 与q~t 曲线,如图所示.最大下泄流量m ax q =s 发生在t=8h 时,正好是q~t 曲线与Q~t 曲线(de)交点,即为所求(de)最大下泄流量.④ 推求校核调洪库容校V 和设计洪水位校Z .m ax q =对应(de)库容和水位分别为万m 3和,减去堰顶以下(de)库容万m 3 即可得校V =万m 3,校Z = m.第2时段试算法程序计算截图第时段试算法程序计算截图校核洪水调节计算表时间 t(h) 入库洪水流量 Q (m3/s ) 时段平均入库流量 Q(平均)(m3/s )时段入库水量 Q(平均)△t (万m3) 下泄流量 q(m3/s ) 时段平均下泄流量(m3/s ) 时段下泄水量q(平均)△t (万m3) 时段内水库存水量变化 △V (万m3)水库存 水量V (万m3)水库 水位Z (m)1 2 3 45 6 78 9105017350173某水库校核调洪计算表水位时间关系曲线(Z~t)524526528530532534024681012141618202224时间h(t)水位Z (m )水位时间关系曲线三、 半图解法洪水调节计算(以设计洪水标准进行调洪演算为例子) 1. 计算并绘制2qt V ~q +∆辅助线.计算时段取h 1t =∆.计算过程见下表.利用表中第五,七栏(de)相应数值绘制(de)辅助线如图. 2qtV ~q +∆辅助曲线计算表q=f(V/Δt+q/2)辅助曲线计算表 水库水总库容V 堰顶以V/Δq(m3/s) q/2(m3/sV/Δ位Z (m ) (万m3) 上库容(万m3)t(m3/s) ) t+q/2 (m3/s)q=f(V/Δt+q/2)辅助曲线0.00500.001000.001500.002000.002500.003000.003500.000.005000.0010000.0015000.00V/Δt+q/2q (m 3/s )q=f(V/Δt+q/2)辅助曲线2. 调洪计算求q~t 过程和库水位过程:由于作辅助线时t ∆需取固定值,且)2qt V f(q +=∆是由蓄泄曲线q=f (V )转换而来(de),故该法只适用于自由泄流(无闸或闸门全开)和t ∆固定(de)情况.当有闸门控制泄流时,应按控制(de)流量调洪.所以对于第一时段Q<Q 限时,起调水位也是防洪限制水位,Z=.相应库容×104m 3.在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变,即q=Q ;可直接求出)(2t 11q V +∆= m 3/s 和)(2t22q V +∆= m 3/s.从第二时段开始闸门全开,Q 2= 196 m 3/s,3Q =524 m 3/s,2q =196 m 3/s,将)(2t22q V +∆= m 3/s 代入 2q t V 1i 1i +∆++=(2q t V ii +∆)+Q i q -,求得)(2q tV 33+∆= m 3/s,由式)2q tV f(q +=∆得,3q = m 3/s.同法依次类推,可求出其他时段(de)泄量.其成果如表第四,六栏所示.3. 绘制Q~t 与q~t 过程线以及q~Z,过程线,求m ax q .利用表中第一,二,四栏数值,可绘出Q~t 与q~t 过程线.取Q~t 与q~t 两曲线(de)交点(de)纵坐标数值,作为m axq =s,t=8h 时.利用表中(de)库水位Z 与泄流能力q,可绘制Z~q 关系曲线,如图所示.4. 推求设计调洪库容设V 和设计洪水位设Z .m ax q =对应(de)水位为m,设Z=.5. 按校核洪水标准进行调洪演算,其演算过程与设计洪水演算过程一致.其成果如下. 最大下泄流量m axq =s 发生在t=7h 时,正好是q~t 曲线与Q~t 曲线(de)交点,即为所求(de)最大下泄流量.m ax q 对应(de)水位分别为,校Z =532. m四、调洪计算成果表五、总结本次课程设计对我们(de)知识是一个全方位(de)考察,这个过程学到了很多东西,不仅是专业知识,电脑软件(de)应用也学到了很多,总之这次设计受益匪浅.。

洪水调节设计(试算法和半图解法)模板 - 带试算C语言程序

洪水调节设计(试算法和半图解法)模板 - 带试算C语言程序

《洪水调节课程设计》任务书一、设计目的1.洪水调节目的:定量地找出入库洪水、下泄洪水、拦蓄洪水的库容、水库水位的变化、泄洪建筑物型式和尺寸间的关系,为确定水库的有关参数和泄洪建筑型式选择、尺寸确定提供依据;2.掌握列表试算法和半图解法的基本原理、方法、步骤及各自的特点;3.了解工程设计所需洪水调节计算要解决的课题;培养学生分析问题、解决问题的能力。

二、设计基本资料1.某水利枢纽工程以发电为主,兼有防洪、供水、养殖等综合效益,电站装机为5000KW,年发电量1372×104 kw·h,水库库容0.55亿m3。

挡水建筑物为混凝土面板坝,最大坝高84.80m。

溢洪道堰顶高程519.00m,采用2孔8m×6m(宽×高)的弧形门控制。

水库正常蓄水位525.00m。

电站发电引用流量为10 m3/s。

2.本工程采用2孔溢洪道泄洪。

在洪水期间洪水来临时,先用闸门控制下泄流量q并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z的升高而增大,流态为自由流态,情况与无闸门控制一样。

3.上游防洪限制水位524.8m(注:X=524.5+学号最后1位/10,即524.5m-525.4m),下游无防汛要求。

三、设计任务及步骤分别对设计洪水标准、校核洪水标准,按照上述拟定的泄洪建筑物的类型、尺寸和水库运用方式,分别采用列表试算法和半图解法推求水库下泄流量过程,以及相应的库容、水位变化过程。

具体步骤:1.根据工程规模和建筑物的等级,确定相应的洪水标准;2.用列表试算法进行调洪演算:①根据已知水库水位容积关系曲线V~Z和泄洪建筑物方案,用水力学公式求出下泄流量与库容关系曲线q~Z,并将V~Z,q~Z绘制在图上;②决定开始计算时刻和此时的q1、V1,然后列表试算,试算过程中,对每一时段的q2、V2进行试算;③ 将计算结果绘成曲线:Q ~t 、q ~t 在一张图上,Z ~t 曲线绘制在下方。

尾矿库排水系统调洪演算

尾矿库排水系统调洪演算

尾矿库排水系统调洪演算调洪演算的目的是根据既定的排水系统确定所需的调洪库容及泄洪流量。

对一定的来水过程线,排水构筑物愈小,所需调洪库容就愈大,坝也就愈高。

设计中应通过几种不同尺寸的排水系统的调洪演算结果,合理地确定坝高及排水构筑物的尺寸,以便使整个工程造价最小。

一、数解法(一)对于洪水过程线可概化为三角形,且排水过程线可近似为直线的简单情况,其调洪库容和泄洪流量之间的关系可按公式(1)确定。

q=Qp(1-V t)(1)W p式中 q——所需排水构筑物的泄流量,米3/秒;Qp——设计频率P的洪峰流量,米3/秒;V t——某坝高时的调洪库容,米3;W p——频率为P的一次洪水总量,米3。

(二)对于一般情况的调洪演算,可根据来水过程线和排水构筑的泄水量与尾矿库的蓄水量关系曲线,通过水量平衡计算求出泄洪过程线,从而定出泄流量和调洪库容。

尾矿库内任一时段△t的水量平衡方程式如公式(2)如下。

1(Qs+Q z)△t-1(q s+q z) △t=V z-V s (2)22式中Q s、Q z——时段始、终尾矿库的来洪流量,米3/秒;q s、q z——时段始、终尾矿库的泄洪流量,米3/秒;V z、V s——时段始,终尾矿库的蓄洪量,米3。

令Q=1/2(Q s+Q z),将其代入公式(3),整理后得:V z +1q z△t= Q△t+(V s-1q s △t ) (3) 22求解公式(3)可列表计算,但需预先根据泄流量(q)—库水位(H)—调洪库(Vt)之间的关系绘出q-V+(1/2)q△t和q-V-(1/2)q△t输助曲线备查。

例1:某尾矿库初期坝装满时,水面面积F s=2.5公里2,陆面面积F1=1.5公里2,L0=0.81公里,E0=385公里/公里,J=0.2,N0=0.2,N s=0.08,mp=2.0,μ=1毫米/秒,S p=137.5毫米/小时,n1=0.55,n2=0.75,试求p=2%的设计洪水过程线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档