概率的复习课件
合集下载
专题43概率-2023年高考数学一轮复习课件(全国通用)
BCACB
, BCABC
, BCBAC
,∴甲赢的概率为 P M
1 2
4
7
1 2
5
9 32
.
由对称性可知,乙赢的概率和甲赢的概率相等,
∴丙赢的概率为 P N 1 2 9 7 .
32 16
(2019 全国 II 理 18)11 分制乒乓球比赛,每赢一球得 1 分,当某局打成 10:10 平后,每球交换发球权,先多得 2 分的一方获胜,该局比赛结束.甲、 乙两位同学进行单打比赛,假设甲发球时甲得分的概率为 0.5,乙发球时 甲得分的概率为 0.4,各球的结果相互独立.在某局双方 10:10 平后, 甲先发球,两人又打了 X 个球该局比赛结束. (1)求 P(X=2); (2)求事件“X=4 且甲获胜”的概率.
2023年高考第一轮复习
专题43:概率
1.概率 (1)在相同条件下,大量重复进行同一试验时,随机事件 A 发生的频率会在某个 常数附近摆动,即随机事件 A 发生的频率具有稳定性.我们把这个常数叫做随机事件 A 的概率,记作 P(A). (2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确 定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为 随机事件概率的估计值.
n 64 16
57.(2018 全国Ⅱ理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世
界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的
和”,如 30 7 23 .在不超过 30 的素数中,随机选取两个不同的数,其和
等于 30 的概率是
A. 1 12
B. 1 14
C. 1 15
爻组成,爻分为阳爻“——”和阴爻“— —”,如图就
第九章概率初步复习课件鲁教版(五四制)七年级数学下册
件D.如果一件事不是必然事件,那么它就是不可能事件或随机事件
知识点二 频率的稳定性
要点:
m
频率的定义:在n次重复试验中,不确定事件 A 发生了 m 次,则比值 称为
事件 A 发生的频率.
n
频率的稳定性:在试验次数很大时,事件发生的频率会在一个常数附近摆动, 这个性质称为频率的稳定性。
知识点二
例
பைடு நூலகம்
给出以下结论,错误的有( )
知识点一
变式1. 下列事件是必然事件的是( )A.正数大于负数 B.抛一枚硬币,正面朝上C.明天会下雨
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯
变式2
下列说法正确的是( )A.如果一件事发生的机会只有千
万分之一,那么它就是不可能事件B.如果一件事发生的机会达99.999%,
那么它就是必然事件C.如果一件事不是不可能事件,那么它就是必然事
知识点一
例 下列问题哪些是必然事件?哪些是不可能事件? 哪些是随机事件? (1)太阳从西边下山;
(2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是有理数); (4)水往低处流;(5)13个人中,至少有两个人出生的月 份相同.
知识点一
判断事件的类型最简单的方法就是: 判断这句话的正确性.如果这句话是正确的,那么它就是必然 事件;如果这句话是错误的,那么它就是不可能事件;其他情况 均为随机事件.
知识点二
变式1. 一名运动员连续射靶10次,其中2次命中10环,2次命 中9环,6次命中8环,针对某次射击,下列说法正确的是( ) A.射中10环的可能性最大 B.命中9环的可能性最大 C.命中8环的可能性最大 D.以上可能性均等
变式2. 在大量重复试验中,关于随机事件发生的频率与概率,下 列说法正确的是( ) A.频率就是概率
概率论与数理统计期末复习课件
置信水平
用于确定样本统计量的不 确定性范围。
置信区间
根据置信水平和抽样分布, 估计未知参数的可能值范 围。
点估计与最优性
点估计
用单一的数值估计未知参数的值。
无偏估计
样本统计量的期望值等于真实参数 值。
最小方差估计
选择一个点估计,使得预测误差的 方差最小。
假设检验与p值
假设检验
根据样本数据对未知参数 提出假设,并进行检验。
详细描述
一元线性回归是一种最简单的回归分析方 法,用于研究一个因变量和一个自变量之 间的线性关系。
一元线性回归模型通常表示为`Y = β0 + β1*X + ε`,其中Y是因变量,X是自变量, ε是误差项。β0和β1是需要估计的参数。
重要概念
适用范围
一元线性回归模型假设因变量Y和自变量X 之间存在线性关系,即Y的变化可以由X的 变化来解释。
02
置信区间
根据自助法计算的统计量的置信区间,可以用来估计总体参数的区间范
围。
03
应用
在社会科学和医学研究中,自助法和置信区间被广泛应用于估计样本参
数的可靠性和精度。例如,在估计人口平均年龄的置信区间时,自助法
可以用来确定样本大小和置信水平之间的关系。
CHAPTER 06
实验设计初步
完全随机设计
描述 马尔科夫链通常用状态转移图来表示,其中每个状态通过 箭头连接到其他状态,箭头上标记了从一个状态转移到另 一个状态的概率。
实例 例如天气预报、股票价格等都可以被视为马尔科夫链。
平稳过程与遍历性
定义
平稳过程是一类特殊的随机过程,它具有“时间齐次性”和“空 间齐次性”的性质。
描述
概率复习课
P( A) 件下,事件 B 发生的条件概率.
注意:⑴ 0 ≤ P(B | A) ≤1; (2)可加性:
如果 B和C 互斥,那么
P(B C) | A P(B | A) P(C | A)
5.相互独立事件的定义:
设A,B两个事件, 若P(AB) P(A)P(B) (即事件
A是否发生对事件B发生的概率没有影响), 则称事件A 与事件B相互独立.
(2)解决概率问题的一个关键:分解复杂问题为基本 的互斥事件与相互独立事件.
练习1 设甲、乙、丙三人每次设计命中目标的概率分 别为0.7、0.6、0.5。
(1)三人各向目标射击一次,求至少有一个人命中 目标的概率;
(2)若三人各向目标射击一次,求他们恰好有二人 命中目标的概率。
6. n 次独立重复试验: 一般地,在相同条件下,重复做的 n 次试验称
(2)方差与标准差
D ( xn1 E )2 p1 ( xi E )2 pi
( xi E )2 pi i 1
( xn E )2 pn
D
(3)重要结论:
若ξ~B(n,p),则Eξ= np
D np(1 p)
特别地,若 服从两点分布,则
E P, D p(1 p)
典例分析
例1 判断下列随机变量是否是离散型? (1)某路口一天经过的车辆数X (2)某森林中树木的高度在(0,33]米这一范围变化, 测得树木的高度X (3)一质点沿着数轴进行随机运动,它在数轴上的 位置坐标X (4)某人一生中每时每刻的身高X (5)某人射击一次中靶的环数X
为 n 次独立重复试验.
在 n 次独立重复试验中, 记 Ai 是“第 i 次试验的结果” 显然, P( A1 A2 An ) = P( A1 )P( A2 )
注意:⑴ 0 ≤ P(B | A) ≤1; (2)可加性:
如果 B和C 互斥,那么
P(B C) | A P(B | A) P(C | A)
5.相互独立事件的定义:
设A,B两个事件, 若P(AB) P(A)P(B) (即事件
A是否发生对事件B发生的概率没有影响), 则称事件A 与事件B相互独立.
(2)解决概率问题的一个关键:分解复杂问题为基本 的互斥事件与相互独立事件.
练习1 设甲、乙、丙三人每次设计命中目标的概率分 别为0.7、0.6、0.5。
(1)三人各向目标射击一次,求至少有一个人命中 目标的概率;
(2)若三人各向目标射击一次,求他们恰好有二人 命中目标的概率。
6. n 次独立重复试验: 一般地,在相同条件下,重复做的 n 次试验称
(2)方差与标准差
D ( xn1 E )2 p1 ( xi E )2 pi
( xi E )2 pi i 1
( xn E )2 pn
D
(3)重要结论:
若ξ~B(n,p),则Eξ= np
D np(1 p)
特别地,若 服从两点分布,则
E P, D p(1 p)
典例分析
例1 判断下列随机变量是否是离散型? (1)某路口一天经过的车辆数X (2)某森林中树木的高度在(0,33]米这一范围变化, 测得树木的高度X (3)一质点沿着数轴进行随机运动,它在数轴上的 位置坐标X (4)某人一生中每时每刻的身高X (5)某人射击一次中靶的环数X
为 n 次独立重复试验.
在 n 次独立重复试验中, 记 Ai 是“第 i 次试验的结果” 显然, P( A1 A2 An ) = P( A1 )P( A2 )
第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)
第三章 概率的进一步认识
第三章 复习课
复习目标
1.回顾本章的内容,梳理本章的知识结构,建立有关概率知
识的框架图.
2.知道求概率的一般方法——树状图和列表法.
3.知道试验频率与理论概率的关系;会合理运用概率的思想,
解决生活中的实际问题.
◎重点:会用树状图或列表法计算简单事件的概率,以及用
试验或模拟试验的方法估计复杂事件发生的概率.
时,用列表法.
(3)用树状图或表格求概率的关键:
①各种情况出现的可能性 一定要相同 ;
事件发生的次数 )
②P(A)= 各种情况出现的次数 ;
(
③在统计各种情况出现的次数和某一事件发生的次数时,
要做到不重不漏.
预习导学
4.估计总体数目.
通过试验法估计总体数目的方法:(1) 抽取 法估算总体
数目;(2)用 放入 法估算总体数目.
预习导学
·导学建议·
本节可通过问题的形式引导学生,梳理知识结构,重点关
注以下几个问题:(1)频率与概率的区别;(2)计算概率的两种方
法;(3)概率与统计之间的内在的联系.
合作探究
随机事件的概率计算
1.某市体育中考现场考试内容有三项:50米跑为必测项目,
另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A
处便宜就马上购买,否则到C处购买,这样更有希望买到最低价
格的礼物.这个想法是否正确?试通过树状图分析说明.
解:(1)∵在每一处都有价格最低,最高,较高的可能,
∴P(A处买到最低价格礼物)= .
合作探究
(2)作出树状图如下:
第三章 复习课
复习目标
1.回顾本章的内容,梳理本章的知识结构,建立有关概率知
识的框架图.
2.知道求概率的一般方法——树状图和列表法.
3.知道试验频率与理论概率的关系;会合理运用概率的思想,
解决生活中的实际问题.
◎重点:会用树状图或列表法计算简单事件的概率,以及用
试验或模拟试验的方法估计复杂事件发生的概率.
时,用列表法.
(3)用树状图或表格求概率的关键:
①各种情况出现的可能性 一定要相同 ;
事件发生的次数 )
②P(A)= 各种情况出现的次数 ;
(
③在统计各种情况出现的次数和某一事件发生的次数时,
要做到不重不漏.
预习导学
4.估计总体数目.
通过试验法估计总体数目的方法:(1) 抽取 法估算总体
数目;(2)用 放入 法估算总体数目.
预习导学
·导学建议·
本节可通过问题的形式引导学生,梳理知识结构,重点关
注以下几个问题:(1)频率与概率的区别;(2)计算概率的两种方
法;(3)概率与统计之间的内在的联系.
合作探究
随机事件的概率计算
1.某市体育中考现场考试内容有三项:50米跑为必测项目,
另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A
处便宜就马上购买,否则到C处购买,这样更有希望买到最低价
格的礼物.这个想法是否正确?试通过树状图分析说明.
解:(1)∵在每一处都有价格最低,最高,较高的可能,
∴P(A处买到最低价格礼物)= .
合作探究
(2)作出树状图如下:
九年级数学概率初步PPT优秀课件
(1)一般地,在大量重复试验中,如果事件 A发生的频率 会稳定在某个常数p附近 ,那么,这个常数p就叫作事件A的概率 。事件A发生的频率是:在 n次试验中 ,事件A发生的频数m与 n 的比。
(2)求一个事件的概率的基本方法是:进行大量 的重复试验,用这个事件发生的频率近似地 作 为它的概率
(3)对于某些随机事件也可以不通过重复试验, 而只通过一次试验中可能出现的结果的分析 来计算概率。例如:掷两枚硬币,求两枚硬 币正面向上的概率。
随机事件:海市蜃楼,守株待兔。 不可能事件:海枯石烂,画饼充饥,拔苗助长。
2、在一个不透明的口袋中装有除颜色外其余都 相同的1个红球,2个黄球,如果每一次先从袋中 摸出1个球后不再放回,第二次再从袋中摸出1个 球,那么两次都摸到黄球的概率是多少?
(2004.海口)
3、你喜欢玩游戏吗?现请你玩一个转盘游戏,如 图的两个转盘中指针落在每一个数字的机会均等, 现同时自由转动甲、乙两个转盘,转盘停止后,指 针各指向一个数字,用所指的两个数学作乘积, (1)列举所有可能得到的数字之积。 (2)求出数字之积为奇数的概率 (2005.黄冈)
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
3、在什么条件下适用P(A)= 得到 事件的概率?
一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等, 事件A包含其中m种结果,那么事件A发 生的概率为P(A)=
4、如何用列举法求概率?
当事件要经过一步完成时列举出所有可 能 情况,当事件要经过两步完成时用列 表 法,当事件要经过三步以上完成时用 树形图法。
1、下列事件中哪个是必然事件? (A)打开电视机正在播广告。 (B)明天是晴天. (C)已知:3>2,则3c>2c 。 (D)从装有两个红球和一个白球的口袋
2024届新教材高考数学二轮复习 概率 课件(69张)
A.15
B.13
C.25
D.23
【解析】 从 6 张卡片中无放回抽取 2 张,共有(1,2),(1,3),(1,4),
(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),
(5,6),15 种情况,其中数字之积为 4 的倍数的有(1,4),(2,4),(2,6),(3,4),
2.古典概型 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=nk=nnΩA. 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
多 维 题 组·明 技 法
角度1:随机事件的关系 1. (2023·柳州模拟)从数学必修一、二和政治必修一、二共四本书中 任取两本书,那么互斥而不对立的两个事件是( D ) A.至少有一本政治与都是数学 B.至少有一本政治与都是政治 C.至少有一本政治与至少有一本数学 D.恰有1本政治与恰有2本政治
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率 为(1-α)(1-β)2
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1- β)2
C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1 -β)3
D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率 大于采用单次传输方案译码为0的概率
【解析】 由题意可得事件1表示{1,3,5},事件2表示{2,4,6},事件3 表示{4,5,6},事件4表示{1,2},所以事件1与事件2为对立事件,事件1与 事件3不互斥,事件2与事件3不互斥,事件3与事件4互斥不对立,故选 项A,C,D错误,选项B正确.故选B.
《高二数学概率复习》课件
条件概率的公式
P(A|B) = P(A∩B) / P(B)。其中,P(A∩B)表示事件A和事件B同时发生的概率, P(B)表示事件B发生的概率。
条件概率的性质
非负性
P(A|B) ≥ 0。
规范性
当事件B是必然事件时,P(A|B) = P(A)。
条件概率的加法规则
如果两个事件B1和B2是互斥的,那么对于任一事件A,有 P(A|B1∪B2) = P(A|B1) + P(A|B2)。
04
概率的应用
概率在日常生活中的应用
天气预报
通过概率分析,预测未来天气变 化,为日常生活和出行提供参考
。
彩票
彩票中奖概率的计算,让人们理性 对待,避免盲目投入。
医学诊断
通过概率统计方法,提高疾病诊断 的准确率。
概率在科学实验中的应用
物理实验
在物理学中,概率被广泛应用于 粒子实验、量子力学等领域。
解析5
进阶题目5的答案是$frac{4}{8} times frac{3}{7} = frac{12}{56} = frac{3}{14}$,因为第一次摸出白球的概 率为$frac{4}{8}$,第二次摸出白球的概率为$frac{3}{7}$ 。
解析6
进阶题目6的答案是$frac{7}{10} times frac{3}{9} = frac{21}{90} = frac{7}{30}$,因为第一次摸出红球的概 率为$frac{7}{10}$,第二次摸出白球的概率为 $frac{3}{9}$。
《高二数学概率复习》ห้องสมุดไป่ตู้ppt课件
目 录
• 概率的基本概念 • 古典概型与几何概型 • 条件概率与独立性 • 概率的应用 • 复习题与答案解析
P(A|B) = P(A∩B) / P(B)。其中,P(A∩B)表示事件A和事件B同时发生的概率, P(B)表示事件B发生的概率。
条件概率的性质
非负性
P(A|B) ≥ 0。
规范性
当事件B是必然事件时,P(A|B) = P(A)。
条件概率的加法规则
如果两个事件B1和B2是互斥的,那么对于任一事件A,有 P(A|B1∪B2) = P(A|B1) + P(A|B2)。
04
概率的应用
概率在日常生活中的应用
天气预报
通过概率分析,预测未来天气变 化,为日常生活和出行提供参考
。
彩票
彩票中奖概率的计算,让人们理性 对待,避免盲目投入。
医学诊断
通过概率统计方法,提高疾病诊断 的准确率。
概率在科学实验中的应用
物理实验
在物理学中,概率被广泛应用于 粒子实验、量子力学等领域。
解析5
进阶题目5的答案是$frac{4}{8} times frac{3}{7} = frac{12}{56} = frac{3}{14}$,因为第一次摸出白球的概 率为$frac{4}{8}$,第二次摸出白球的概率为$frac{3}{7}$ 。
解析6
进阶题目6的答案是$frac{7}{10} times frac{3}{9} = frac{21}{90} = frac{7}{30}$,因为第一次摸出红球的概 率为$frac{7}{10}$,第二次摸出白球的概率为 $frac{3}{9}$。
《高二数学概率复习》ห้องสมุดไป่ตู้ppt课件
目 录
• 概率的基本概念 • 古典概型与几何概型 • 条件概率与独立性 • 概率的应用 • 复习题与答案解析
《概率论总复习》课件
常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
《概率初步》PPT教学课件
121 1 A.3 B.3 C.6 D.9
《概率初步》教学实用课件(PPT优秀 课件)
3.(2016·金华)小明和小华参加社会实践活动,随机选择“打扫社区 卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的 概率为( A )
111 3 A.4 B.3 C.2 D.4 4.(2016·包头)同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面 向上的概率是( D )
《概率初步》教学实用课件(PPT优秀 课件)
《概率初步》教学实用课件(PPT优秀 课件)
解:(1)画出树状图(略),共有 27 种等可能的结果,三辆车全部同向而 行的有 3 种情况,∴P(三车全部同向而行)=19
(2)∵至少有两辆车向左转的有 7 种情况,∴P(至少两辆车向左转)=277 (3)∵汽车向右转、向左转、直行的概率分别为52,130,130,∴在不改变 各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮 的时间为 90×130=27(秒),直行绿灯亮的时间为 90×130=27(秒),右转绿灯 亮的时间为 36(秒)
《概率初步》教学实用课件(PPT优秀 课件)
A.14 B.21 C.34 D.56
《概率初步》教学实用课件(PPT优秀 课件)
《概率初步》教学实用课件(PPT优秀 课件)
二、填空题 6.下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时 正面朝上;③任取两个正整数,其和大于1;④长为3 cm,5 cm,9 cm的三条 线段能围成一个三角形.其中随机事件有____2个. 7.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为
解:列表(略),所有等可能的情况有 16 种,其中两指针所指 数字的和为 5 的情况有 4 种,所以小军获胜的概率=146=14
《概率初步》教学实用课件(PPT优秀 课件)
3.(2016·金华)小明和小华参加社会实践活动,随机选择“打扫社区 卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的 概率为( A )
111 3 A.4 B.3 C.2 D.4 4.(2016·包头)同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面 向上的概率是( D )
《概率初步》教学实用课件(PPT优秀 课件)
《概率初步》教学实用课件(PPT优秀 课件)
解:(1)画出树状图(略),共有 27 种等可能的结果,三辆车全部同向而 行的有 3 种情况,∴P(三车全部同向而行)=19
(2)∵至少有两辆车向左转的有 7 种情况,∴P(至少两辆车向左转)=277 (3)∵汽车向右转、向左转、直行的概率分别为52,130,130,∴在不改变 各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮 的时间为 90×130=27(秒),直行绿灯亮的时间为 90×130=27(秒),右转绿灯 亮的时间为 36(秒)
《概率初步》教学实用课件(PPT优秀 课件)
A.14 B.21 C.34 D.56
《概率初步》教学实用课件(PPT优秀 课件)
《概率初步》教学实用课件(PPT优秀 课件)
二、填空题 6.下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时 正面朝上;③任取两个正整数,其和大于1;④长为3 cm,5 cm,9 cm的三条 线段能围成一个三角形.其中随机事件有____2个. 7.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为
解:列表(略),所有等可能的情况有 16 种,其中两指针所指 数字的和为 5 的情况有 4 种,所以小军获胜的概率=146=14