{word试卷}江苏省无锡市江阴市第二中学苏科版八年级数学上册第十八周周练试卷(仅供参考)

合集下载

江苏省无锡市江阴市八年级数学上学期周练试卷(9.23,含解析) 苏科版

江苏省无锡市江阴市八年级数学上学期周练试卷(9.23,含解析) 苏科版

2016-2017学年江苏省无锡市江阴中学八年级(上)周练数学试卷(9.23)一.选择(每题3分,共24分)1.四个汽车标志图案中,不是轴对称图形的是()A.三菱B.奔驰C.现代D.大宇2.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3.到△ABC三边距离相等的点是()A.△ABC的三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45° B.55° C.60° D.75°5.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.6.如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若AB=6cm,则△DEB的周长是()A.5cm B.6cm C.7cm D.8cm7.如图,在直角△ABC中,AB=AC,AD=AE,∠BAD=30°,则∠EDC是()A.10° B.12.5°C.15° D.20°8.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()A.32.5°B.57.5°C.65°或57.5°D.32.5°或57.5°二、填空(每空2分,共20分)9.如图,镜子中号码的实际号码是.10.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请依据ASA,添加一个适当的条件,使得△EAB≌△BCD.11.等腰三角形的一个外角是100°,等腰三角形另外两个角的度数是.12.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.13.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.14.如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,P1P2=24,则△PMN的周长是.15.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.(1)若∠C=70°,则∠CBE= ,∠BEC= .(2)若BC=21cm,则△BCE的周长是cm.16.在正方形ABCD所在的平面内找一点P,使其与正方形中的每一边所构成的三角形均为等腰三角形,这样的点有个.三、作图题:(每题5分,共10分)17.现有两条高速公路l1、l2和两个城镇A、B(如图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇的距离也相等,请你利用直尺和圆规作出中心站P的位置.18.请你先在BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.四、简答题:(共46分)19.如图,在△ABC,AB=AC,点D、E在BC上,BD=CE.试说明:∠1=∠2.20.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,CE=AE,连结DE.证明DE∥CB.21.如图,已知△ABC中,AB=AC,点D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F,求证:点O在AB的垂直平分线上.22.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.23.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,证明:(1)△AED是等腰三角形,(2)△BED是等腰三角形.24.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转到CD与OA垂直时(如图1),易证:CD=CE当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.2016-2017学年江苏省无锡市江阴中学八年级(上)周练数学试卷(9.23)参考答案与试题解析一.选择(每题3分,共24分)1.四个汽车标志图案中,不是轴对称图形的是()A.三菱B.奔驰C.现代D.大宇【考点】轴对称图形.【分析】根据轴对称图形的定义进行判断即可.【解答】解:A、B、D中的图形是轴对称图形,C中的图形不是轴对称图形,故选:C.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称【考点】轴对称的性质.【分析】根据轴对称的性质判断各选项即可.【解答】解:A、两个关于某直线对称的图形一定全等,本选项正确,故不符合题意;B、对称图形的对称点不一定在对称轴的两侧,如可能在对称轴上,故本选项错误,符合题意;C、两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴,本选项正确,故不符合题意;D、平面上两个全等的图形不一定关于某直线对称,本选项正确,故不符合题意.故选B.【点评】本题考查轴对称图形的性质,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.(2015秋•江阴市校级月考)到△ABC三边距离相等的点是()A.△ABC的三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【考点】角平分线的性质.【分析】直接根据角平分线的性质即可得出结论.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴△ABC三边距离相等的点是△ABC三条角平分线的交点.故选C.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.4.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45° B.55° C.60° D.75°【考点】等边三角形的性质.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选C【点评】本题考查等边三角形的性质,关键是利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.5.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.【考点】剪纸问题.【分析】严格按照所给方法向下对折,再向右对折,向右下对折,剪去上部分的等腰直角三角形,展开得到答案.【解答】解:易得剪去的4个小正方形正好两两位于原正方形一组对边的中间.故选C.【点评】主要考查了剪纸问题;学生空间想象能力,动手操作能力是比较重要的,做题时,要注意培养.6.如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若AB=6cm,则△DEB的周长是()A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线的性质得到DC=DE,AC=AE,根据三角形的周长公式计算即可.【解答】解:∵AD是∠CAB的角平分线,DE⊥AB,∠C=90°,∴DC=DE,AC=AE,∴△DEB的周长=DE+BE+BD=BE+DC+BD=BE+BC=BE+AE=AB=6cm.故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.如图,在直角△ABC中,AB=AC,AD=AE,∠BAD=30°,则∠EDC是()A.10° B.12.5°C.15° D.20°【考点】等腰三角形的性质.【分析】由∠BAC=90°,AB=AC,可知△ABC为等腰直角三角形,即∠B=45°,∠BAC=90°,已知∠BAD=30°,得∠DAE=90°﹣30°=60°,又因为AD=AE,则△ADE为等边三角形,∠ADE=60°,由外角的性质可求∠EDC的度数.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠B=45°,又∵∠BAD=30°,∴∠DAE=90°﹣30°=60°,而AD=AE,∴△ADE为等边三角形,则∠ADE=60°,又∵∠EDC+∠ADE=∠B+∠BAD(外角定理),即∠EDC=45°+30°﹣60°=15°.故选:C.【点评】本题考查了等腰三角形的性质.关键是根据等边三角形的判定与性质以及外角定理解题.8.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()A.32.5°B.57.5°C.65°或57.5°D.32.5°或57.5°【考点】等腰三角形的性质;三角形内角和定理.【专题】分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时底角是57.5°,当高在三角形外部时底角是32.5度,故选D.【点评】熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.二、填空(每空2分,共20分)9.如图,镜子中号码的实际号码是3265 .【考点】镜面对称.【分析】注意镜面反射与特点与实际问题的结合.【解答】解:根据镜面对称的性质,在镜子中的真实数字应该是:3265.故答案为:3265【点评】本题考查了图形的对称变换,学生在解题时可以再借用镜子看一下即可,也可以在卷子的反面看.10.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请依据ASA,添加一个适当的条件AE=EB ,使得△EAB≌△BCD.【考点】全等三角形的判定.【分析】可以根据全等三角形的不同的判定方法添加不同的条件.【解答】解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,理由:在△EAB和△BCD中,,∴△EAB≌△BCD.【点评】本题主要考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.11.等腰三角形的一个外角是100°,等腰三角形另外两个角的度数是50°,50°或80°,20°.【考点】等腰三角形的性质.【分析】先求出与这个外角相邻的内角是80°,再分这个内角是底角和顶角两种情况讨论.【解答】解:与这个外角相邻的内角为:180°﹣100°=80°.分两种情况:(1)当80°角为底角时,顶角为180°﹣80°×2=20°,与其不相邻的两个内角的度数是80°,20°;(2)当80°角为顶角时,底角为(180°﹣80°)÷2=50°,与其不相邻的两个内角的度数是50°,50°.故与其不相邻的两个内角的度数是50°,50°或80°,20°.故答案为:50°,50°或80°,20°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于12 cm2.【考点】角平分线的性质.【分析】过点P作PD⊥OA于点D,根据角平分线的性质求出PD的长,再由三角形的面积公式即可得出结论.【解答】解:过点P作PD⊥OA于点D,∵OP平分∠AOB,PB⊥OB,PB=3cm,∴PD=PB=3cm,∵OA=8cm,∴S△POA=OA•PD=×8×3=12cm2.故答案为:12.【点评】本题考查的是角平分线的性质,根据题意作出辅助线是解答此题的关键.13.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【考点】翻折变换(折叠问题);等边三角形的性质.【专题】几何图形问题.【分析】由对顶角相等可得∠CGE=∠FGB′,由两角对应相等可得△ADF∽△B′GF,那么所求角等于∠ADF的度数.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.【点评】本题考查了翻折变换问题;得到所求角与所给角的度数的关系是解决本题的关键.14.如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,P1P2=24,则△PMN的周长是24 .【考点】轴对称的性质.【分析】先根据轴对称的性质得出PM=P1M,PN=P2N,由此可得出结论.【解答】解:∵P点关于OA、OB的对称点为P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+PN+MN=P1P2=24.故答案为:24.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.15.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.(1)若∠C=70°,则∠CBE= 30°,∠BEC= 80°.(2)若BC=21cm,则△BCE的周长是53 cm.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由在△ABC中,AB=AC=32cm,∠C=70°,可求得∠ABC与∠A的度数,又由DE是AB的垂直平分线,可得AE=BE,继而求得答案;(2)由△BCE的周长=BC+AC,即可求得答案.【解答】解:(1)∵在△ABC中,AB=AC,∠C=70°,∴∠ABC=∠C=70°,∴∠A=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°,∠BEC=∠A+∠ABE=80°;(2)∵AB=AC=32cm,BC=21cm,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=32+21=53(cm).故答案为:(1)30°,80°;(2)53.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.16.在正方形ABCD所在的平面内找一点P,使其与正方形中的每一边所构成的三角形均为等腰三角形,这样的点有 5 个.【考点】正方形的性质;等腰三角形的判定.【分析】作正方形与边平行的两条对称轴,两对称轴的交点为P点,然后分别以正方形的各边向外作等边三角形,则第三个顶点为P点.【解答】解:如图,满足条件的P点有5个.∁故答案为5.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.三、作图题:(每题5分,共10分)17.现有两条高速公路l1、l2和两个城镇A、B(如图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇的距离也相等,请你利用直尺和圆规作出中心站P的位置.【考点】作图—应用与设计作图.【分析】作出角平分线、线段AB的垂直平分线,交点就是所求.【解答】解:如图,点P即为所求..【点评】此题考查的是作图﹣应用与设计作图,熟知角平分线和线段垂直平分线的性质以及作法是解答此题的关键.18.请你先在BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【专题】作图题.【分析】利用网格特点作∠BAC的平分线交BC于P,则根据角平分线的性质得点P到AB、AC的距离相等,再利用网格特点过BC的中点作BC的垂线交AP于Q,则根据线段垂直平分线的性质得QB=QC.【解答】解:如图,点P和点Q为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、简答题:(共46分)19.如图,在△ABC,AB=AC,点D、E在BC上,BD=CE.试说明:∠1=∠2.【考点】等腰三角形的性质.【分析】根据等腰三角形性质推出∠B=∠C,根据SAS推出△ABD≌△ACE即可得出结论.【解答】证明:∵AB=AC,∴∠B=∠C,∴在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠1=∠2.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定,解题时注意:等边对等角,等角对等边.20.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,CE=AE,连结DE.证明DE∥CB.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】连结CE,依据题意可知点E在AC的垂直平分线上,然后再证明点D在AC的垂直平分线上,从而可证明AC⊥DE,然后由AC⊥BC,故此可证明DE∥CB.【解答】解:如图所示:连结CE.∵△ADC为等边三角形,∴AD=DC,∴点D在AC的垂直平分线上.∵AE=CE,∴点E在AC的垂直平分线上.∴DE是AC的垂直平分线.∴DE⊥AC.∵∠C=90°,∴AC⊥BC.∴DE∥BC.【点评】本题主要考查的是垂直平分线的判定、等边三角形的性质,平行线的判定,熟练掌握相关知识是解题的关键.21.如图,已知△ABC中,AB=AC,点D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F,求证:点O在AB的垂直平分线上.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】由AB=AC,AD是BC边上的中线,AB的垂直平分线交AD于点O,交AB于点E.根据线段垂直平分线的性质,可得OA=OB=OC,继而证得结论.【解答】证明:如图,∵AB=AC,AD是BC边上的中线,∴AD是BC的垂直平分线,∴OB=OC,∵AB的垂直平分线交AD于点O,交AB于点E,∴OA=OB,∴OA=OC,∴点O在AC的垂直平分线上.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【考点】等腰三角形的性质.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,BE=CD在△BOE和△COD中∵∠BOE=∠COD,BE=CD,∠BEC=∠BDE=90°∴△BOE≌△COD,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.23.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,证明:(1)△AED是等腰三角形,(2)△BED是等腰三角形.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)利用平行线的性质和角平分线的定义以及等腰三角形的判定证明即可;(2)证明∠EAD=∠EDA,此为解题的关键性结论;证明∠EAD=∠EDA,即可解决问题.【解答】证明:(1)∵AD平分∠BAC,∴∠EAD=∠DAC,∵DE∥AC,∴∠ADE=∠EAD,∴AE=ED,∴△AED是等腰三角形;(2)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.【点评】该题主要考查了等腰三角形的判定与性质、直角三角形的性质、平行线的性质等几何知识点的应用问题;灵活运用有关定理来分析、判断是解题的关键.24.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转到CD与OA垂直时(如图1),易证:CD=CE当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.【考点】全等三角形的判定与性质;角平分线的性质.【专题】探究型.【分析】当三角板绕点C旋转到CD与OA垂直时,如图1,只需运用角平分线的性质就可解决问题;当三角板绕点C旋转到CD与OA不垂直时,如图2,图3,过点C作CG⊥OA于G,过点C作CH⊥OB于H,根据角平分线的性质可得CG=CH,易证∠GCH=90°=∠DCE,从而可得∠GCO=∠HCE,进而可得△DGC≌△EHC,即可得到CD=CE.【解答】解:当三角板绕点C旋转到CD与OA垂直时,如图1,∵OC平分∠AOB,CD⊥OA,CE⊥OB,∴CD=CE.当三角板绕点C旋转到CD与OA不垂直时,CD=CE仍然成立.①如图2,过点C作CG⊥OA于G,过点C作CH⊥OB于H,∵OC平分∠AOB,∴CG=CH.∵∠CGO=∠CHO=∠GOH=90°,∴∠GCH=90°,∴∠GCH=∠DCE=90°,∴∠GCO=∠HCE.在△DGC和△EHC中,,∴△DGC≌△EHC,∴CD=CE.②如图3,过点C作CG⊥OA于G,过点C作CH⊥OB于H,∵OC平分∠AOB,∴CG=CH.∵∠CGO=∠CHO=∠GOH=90°,∴∠GCH=90°,∴∠GCH=∠DCE=90°,∴∠GCO=∠HCE.在△DGC和△EHC中,,∴△DGC≌△EHC,∴CD=CE.【点评】本题主要考查了角平分线的性质、全等三角形的判定与性质、四边形的内角和、同角的余角相等等知识,将一般位置与特殊位置相结合是解决本题的关键.。

江苏省无锡市江阴市第二中学2020-2021学年苏科版八年级数学上册第十八周周练试卷

江苏省无锡市江阴市第二中学2020-2021学年苏科版八年级数学上册第十八周周练试卷

江苏省无锡市江阴二中2020-2021学年苏科版八年级数学上册第十八周周练试卷 一、选择题:(本大题共10小题,每题3分,共30分) 1.下列实数:-1.732、2π、34-、722、364-、9- 中,属于无理数的个数是----( ) A .2个 B .3个 C .4个 D .5个2. 如图,小手盖住的点的坐标可能为 ( )A .(5,2)B .(-6,3)C .(46)--,D .(34)-,3.下列二次根式中,最简二次根式是 ( )A .x 1.0(x ≥0)B .8C .21D .42+x 4.一个长为4cm ,宽为3cm 的长方形被直线分成面积为x ,y 两部分,则y 与x 之间的函数关系只可能是 ( )5.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D点,则橡皮筋被拉长了 ( )A .2cmB .3cmC .4cmD .5cm6.若点A (-3,y 1),B (2,y 2),C (1+2,y 3)是函数2+-=x y 图像上的点,则( )A .321y y y >>B .321y y y <<C .231y y y <<D .132y y y >>7. 一次函数y =kx +b ,y 随x 的增大而减小,且kb <0,则它的大致图象是 ( )8.若函数y =⎩⎨⎧x 2 + 2 (x ≤2)2x (x > 2),则当函数值y =8时,自变量x 的值是 ( ) A .6± B .4 C .6±或4 D .4或6- 9.如图,在平面直角坐标系中,线段AB 的端点坐标为A(-2,4),B(4,2),直线y=kx -2与线段AB 有交点,则k 的值不可能是 ( )A .-5B .-2C .3D . 510.如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F ,连接B ′D ,则B ′D 的最小值是( )A .2﹣2 B .6 C .2﹣2 D .4(第5题) AB C D二、填空题:(本大题每空2分,共20分)11.2的倒数是;把19547精确到千位的近似数是.12.函数21yx=-中自变量x的取值范围是 .点M(-2,k)在直线y=2x+1上,则点M到x 轴的距离为____________.13.若一个三角形的三边长分别是3,4,7,则这个三角形最长边上的中线长是.14.函数y=kx+b(k≠0)的图象平行于直线y=2x+3,且交y轴于点(0,-1),则其函数表达式是_____________.15.若点P(a,b)在第二象限内,则直线y=ax+b不经过第_______象限.16.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为17.在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,则△ABC的面积为.18.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,则AE的长为三、解答题:(本大题共有8小题,共60分)19计算或求值:(每题3分,共9分)⑴()8-13222823++——(2))273182(1834⨯÷-(3)求x值:()241x4312=—20.(本题6分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.21.(本题5分)如图,已知点P在∠AOB内部,请你利用直尺(没有刻度)和圆规在∠AOB的角平分线上求作一点Q,使得PQ⊥OB.(不要求写作法,但要保留作图痕迹)(第16题)F EDB CA(第17题)(第18题)FEDC BAPA22.(本题5分)已知一次函数y=kx+b的图像经过点(-1,-5),且与正比例函数y=x21的图像相交于点(2,a)求⑴a、k、b的值;⑵这两个函数图像与x轴所围成的三角形面积.23.(本题6分)如图,直线y=2x+3与x轴交于点A,与y轴交于点B.⑴求A、B两点的坐标;⑵过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.24.(本题9分)某市化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.结合表中提供的信息,解答问题:⑴设装运A种物资的车辆数为x,装运B种物资的车辆数为y.⑴求y与x的函数关系式;⑵如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;⑶在⑵的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.物资种类 A B C每辆汽车运载量(吨)12 10 8每吨所需运费(元/吨)240 320 20025.(本题11分)如图①,在矩形ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D 路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD 上相距的路程S(cm)与时间t(s)之间的函数关系图象.⑴请解释图中点H的实际意义?⑵求P、Q两点的运动速度;⑶将图②补充完整;⑷当时间t为何值时,△PCQ为等腰三角形?请求出t的值.。

苏科版八年级数学上册 周练试题.docx

苏科版八年级数学上册 周练试题.docx

初中数学试卷桑水出品周练试题一、轴对称的概念1、如图所示的两位数中,是轴对称图形的有()A.1个B.2个C.3个D.4个二、对称轴1、下列图形都是轴对称图形吗?各有几条对称轴?2、以下四个图形中,对称轴条数最多的一个图形是()三、识别轴对称图形1、下列图形中,不是轴对称图形的有四、轴对称的应用1、如图,一个算式在镜中所成的像构成的算式是正确的,但是在实际中是正确的吗?实际中这个算式是什么?2、如图,正方形ABCD,点M在CD上,在AC上确定点N,使DN+MN最小3、.如图,M、N分别是△ABC的边AC、BC上的点,在AB上求作一点P,使△PMN的周长最小,并说明你这样作的理由.4、如图,AD是△ABC的外角平分线,点P在射线AD上,你能说明PB+PC≥AB+AC的理由吗?5、已知:如图,CDEF是一个矩形的台球面,有黑白两球分别位于点A、B两点,试问怎样撞击黑球A,使A先碰到台边EF反弹后再击中白球B?6、如图,一个台球桌是直角三角形的,如果从斜边上某点朝着垂直于斜边的方向击出台球,那么球在其他两个直角边上反弹后,又能回到斜边上,请证明:台球滚过的距离长与击球点的位置无关。

五、线段的垂直平分线的应用1、如图,在△ABC中,DE垂直平分线AB,AE=5cm,△ACD的周长为17cm,求△ABC的周长。

六、设计轴对称图案1、将1,1,1,2,2,2,3,3,3九个数字分别填入一个3×3的方格,使之成为一个三阶幻方(各行、各列和各条对角线上的数字的和都相等),若将幻方沿某条对角线对折,对称位置的数字相同,则称这个幻方为“对称幻方”。

试作出一个对称幻方。

2、将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(七)所示。

最后将图(七)的色纸剪下一纸片,如图(八)所示。

若下列有一图形为图(八)的展开图,则此图为?( )3、将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()4、如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是。

苏科版八年级数学上学期第十八周周练试卷文库.doc

苏科版八年级数学上学期第十八周周练试卷文库.doc

八年级数学试题(A)满分值时间制卷审核得分10045分钟洪雪婵祁丽丽一、选择题(每题2分,共20分)1.如果y =(,n-l)x2-/w2+3是一次函数,那么加的值是()2.若函数y= (k+1)x+k2・1是正比例函数,则k的值为()A. 0 B・ 1 C. ±1 D. - 13•若点A (-2, m)在正比例函数y = -—x的图象上,则m的值是()2A. —B. —C. 1D. —14 44.若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是()7.要从尸的图象得到直线尸鲨纟,就要将直线y=-|x()A・向上平移丄个单位 B.向下平移2个单位3 3C.向上平移2个单位D.向下平移2个单位8.两个一次函数yi=mx+n,y2=nx+m,它们在同一■坐标系中的图象可能是图中()A. 1B. -1C. ±1D. ±72A. m<0B. m>0 C・ mV25.直线尸kx+b不经过第四象限,则(A. k>0, b>0 B・ k<0, b>06.已知函数y=ax+b经过(1, 3), (0,A. -1B. -3C. 3D. 7D・ m>2)C. kMO, bMO D・ k<0, bMO -2),则a-b=( )9.已知直线I经过点A(l,0),且与直线y = x垂直,则直线I的函数表达式为()A. y — ~x +1 ;B. y ——x — 1 ;C. y = x + l ;D. y = x-\;10. 如图,在平面直角坐标系中,边长为1的正方形ABCD 中,AD 边的中点处有一动点P,动点P 沿P-D-C-B-A-P 运动一周,则P 点的纵坐标y 与点P 走过的路程$之间的函数关系用图象表示大致是( )二、填空题:(本题共10小题,每小题2分,共20分) 211. 函数y = ------ 中自变量x 的取值范围是 _____________ .X — 112. 已知加是整数,且一次函数y =(加+ 4)兀+加+ 2的图像不经过第二象限,则m = _____ .13. ____________________________________________________________ 己知一次函数y = kx + k-3的图像经过点(2, 3),则k 的值为 _________________ ・14•请你写出一个图像过点(0, 2),且歹随x 的增大而减小的一次函数的解析 式 __________________ ・15•—次函数y=2x-6的图象与x 轴的交点坐标为 ___________ .与y 轴的交点坐标 为 ______ ・与两坐标轴围成的三角形面积为 ______ •16. ____________________________________________________________ 如果直线y=kx+b 经过第一、三、四象限,那么直线y=・bx+k 经过第 ___________ 象 限。

八年级上册江阴数学全册全套试卷测试与练习(word解析版)

八年级上册江阴数学全册全套试卷测试与练习(word解析版)

八年级上册江阴数学全册全套试卷测试与练习(word解析版)一、八年级数学三角形填空题(难)1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.2.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.3.如果一个n边形的内角和是1440°,那么n=__.【答案】10【解析】∵n边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.4.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.5.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠A=60°,则∠BFC=______.【答案】120【解析】【分析】根据角平分线的定义可得出∠CBF=12∠ABC、∠BCF=12∠ACB,再根据内角和定理结合∠A=60°即可求出∠BFC的度数.【详解】∵∠ABC、∠ACB的平分线BE、CD相交于点F,∴∠CBF=12∠ABC,∠BCF=12∠ACB.∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC =180°﹣(∠CBF +BCF )=180°﹣12(∠ABC +∠ACB )=120°. 故答案为120°.【点睛】 本题考查了三角形内角和定理,根据角平分线的定义结合三角形内角和定理求出角的度数是解题的关键.6.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .【答案】280°【解析】试题分析:先根据邻补角的定义得出与∠EAB 相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.解:如图,∵∠EAB+∠5=180°,∠EAB=100°,∴∠5=80°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360﹣80°=280°故答案为280°.考点:多边形内角与外角.二、八年级数学三角形选择题(难)7.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠,...,6A BC ∠与6A CD ∠的平分线相交于点7A ,得7A ∠,则7A ∠=( )A .32αB .64αC .128αD .256α 【答案】C【解析】【分析】 根据角平分线的性质及外角的性质可得11122A A α∠=∠=,同理可得2212A α∠=,3312A α∠=,由此可归纳出12n nA α∠=,易知7A ∠. 【详解】 解:ABC ∠与ACD ∠的平分线交于点1A1111,22A BC ABC ACD ACD ∴∠=∠∠=∠ 111ACD A BC A ∠=∠+∠ 11122ACD ABC A ∴∠=∠+∠ ACD ABC A ∠=∠+∠111222ACD ABC A ∴∠=∠+∠ 11122A A α∴∠=∠= 同理可得21211112222A A αα∠=∠=⨯=,3231122A A α∠=∠=,…,由此可知12n n A α∠=, 所以7712128A αα∠==. 故选:C.【点睛】本题考查了角平分线的性质及图形的规律探究,灵活的利用角平分线的性质及外角的性质确定角的变化规律是解题的关键.8.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【答案】D【解析】【分析】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95 n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D.【点睛】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.9.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【答案】D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.10.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.11.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()A.24°B.25°C.30°D.35°【答案】D【解析】【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=85°,∴∠2=120°-85°=35°.故选:D.【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.12.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A .110︒B .115︒C .120︒D .125︒【答案】A【解析】【分析】 根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC ,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A .【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.三、八年级数学全等三角形填空题(难)13.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.【答案】658【解析】【分析】 过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.【详解】解:∵AC ∥BD ,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF ⊥AB ,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD ,∴∠8=∠1,在△BHE 和△BGD 中,8143BE BD ∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△BHE ≌△BGD (ASA ),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD ⊥BD∴∠BDM=90°,∴BC ∥MD ,∴∠5=∠MDG ,∴∠7=∠MDG∴MG=MD ,∵BC=7,BG=4,设MG=x ,在△BDM 中,BD 2+MD 2=BM 2,即()2227=4x x ++,解得x=338, 在△ABC 和△MBD 中=8=1BC B ACB MDB D∠∠∠∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△MBD (ASA ) AB=BM=BG+MG=4+338=658. 故答案为:658.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.14.如图,在△ABC中,AB=8,AC=5,AD是∠BAC的角平分线,点D在△ABC内部,连接AD、BD、CD,∠ADB=150°,∠DBC=30°,∠ABC+∠ADC=180°,则线段CD的长度为________.【答案】3【解析】【分析】在AB上截取AE=AC,证明△ADE和△ADC全等,再证BDE是等腰三角形即可得出答案.【详解】在AB上截取AE=AC∵AD是∠BAC的角平分线∴∠EAD=∠CAD又AD=AD∴△ADE≌△ADC(SAS)∴ED=DC,∠ADE=∠ADC∵∠ADB=150°∴∠EDB+∠ADE=150°又∵∠DBC=30°,∠ABC+∠ADC=180°∴∠ABD+∠DBC+∠ADC=180°即∠ABD +∠ADC=150°∴∠ABD=∠EDB∴BE=ED即BE=CD又AB=8,AC=5CD=BE=AB-AE=AB-AC=3故答案为3【点睛】本题考查的是全等三角形的综合,解题关键是利用截长补短法作出两个全等的三角形.15.在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,∠C<90°,若∠B满足条件:______________,则△ABC≌△DEF.【答案】∠B≥∠A.【解析】【分析】虽然题目中∠B为锐角,但是需要对∠B进行分类探究会理解更深入:可按“∠B是直角、钝角、锐角”三种情况进行,最后得出∠B、∠E都是锐角时两三角形全等的条件.【详解】解:需分三种情况讨论:第一种情况:当∠B是直角时:如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC与△DEF一定全等,依据的判定方法是HL;第二种情况:当∠B是钝角时:如图②,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H.∵∠B=∠E,且∠B、∠E都是钝角.∴180°-∠B=180°-∠E,即∠CBG=∠FEH.在△CBG和△FEH中,CBG FEHG HBC EF∠∠⎧⎪∠∠⎨⎪⎩===∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,AC DF CG FH⎧⎨⎩=,= ∴Rt △ACG ≌Rt △DFH (HL ),∴∠A=∠D , 在△ABC 和△DEF 中,A DB EAC DF ∠∠⎧⎪∠∠⎨⎪⎩==,=∴△ABC ≌△DEF (AAS );第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D ,假设E 与B 重合,F 与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等,所以有两边和其中一边的对角对应相等的两个三角形不一定全等;由图③可知,∠A=∠CDA=∠B+∠BCD ,∴∠A >∠B ,∴当∠B≥∠A 时,△ABC 就唯一确定了,则△ABC ≌△DEF .故答案为:∠B≥∠A .【点睛】本题是三角形综合题,考查全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键.16.如图,在四边形ABCD 中,∠DAB =∠DCB =90°,CB =CD ,AC =6,则四边形ABCD 的面积是_________.【答案】18.【解析】【分析】根据已知线段关系,将△ACD 绕点C 逆时针旋转90°,CD 与CB 重合,得到△CBE ,证明A、B、E三点共线,则△ACE是等腰直角三角形,四边形面积转化为△ACE面积.【详解】∵CD=CB,且∠DCB=90°,∴将△ACD绕点C逆时针旋转90°,CD与CB重合,得到△CBE,∴∠CBE=∠D,AC=EC,∠DCA=∠BCE.根据四边形内角和360°,可得∠D+∠ABC=180°,∴∠CBE+∠ABC=180°,∴A、B、E三点共线,∴△ACE是等腰直角三角形,∴四边形ABCD面积=△ACE面积= 12AC2=18.故答案为:18.【点睛】本题考查了旋转的性质以及转化思想,解决这类问题要结合已知线段间的数量关系和位置关系进行旋转,使不规则图形转化为规则图形.17.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF;⑤S四边形AEDF=14AD2,其中正确结论是_____(填序号)【答案】①②③【解析】【分析】先由ASA证明△AED≌△CFD,得出AE=CF,DE=FD;再由全等三角形的性质得到BE+CF=AB,由勾股定理求得EF与AB的值,通过比较它们的大小来判定④的正误;先得出S四边形AEDF=S△ADC=12AD2,从而判定⑤的正误.【详解】解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD =45°,AD =BD =CD ,∵∠MDN =90°,∴∠ADE +∠ADF =∠ADF +∠CDF =90°,∴∠ADE =∠CDF .在△AED 与△CFD 中,EAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CFD (ASA ),∴AE =CF ,ED =FD .故①②正确;又∵△ABD ≌△ACD ,∴△BDE ≌△ADF .故③正确;∵△AED ≌△CFD ,∴AE =CF ,ED =FD ,∴BE +CF =BE +AE =AB =2BD ,∵EF =2ED ,BD >ED ,∴BE +CF >EF .故④错误;∵△AED ≌△CFD ,△BDE ≌△ADF ,∴S 四边形AEDF =S △ADC =12AD 2.故⑤错误. 综上所述,正确结论是①②③.故答案是:①②③.【点睛】 考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.18.如图,△ABC 中,AB =AC ,∠BAC =56°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为_____度.【答案】112.【解析】【分析】连接OB、OC,根据角平分线的定义求出∠BAO=28°,利用等腰三角形两底角相等求出∠ABC,根据线段垂直平分线上的点到两端点的距离相等可得OA=OB,再根据等边对等角求出∠OBA,然后求出∠OBC,再根据等腰三角形的性质可得OB=OC,然后求出∠OCE,根据翻折变换的性质可得OE=CE,然后利用等腰三角形两底角相等列式计算即可得解.【详解】如图,连接OB、OC,∵OA平分∠BAC,∠BAC=56°,∴∠BAO=12∠BAC=12×56°=28°,∵AB=AC,∠BAC=56°,∴∠ABC=12(180°﹣∠BAC)=12×(180°﹣56°)=62°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠BAO=28°,∴∠OBC=∠ABC﹣∠OBA=62°﹣28°=34°,由等腰三角形的性质,OB=OC,∴∠OCE=∠OBC=34°,∵∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠OEC=180°﹣2×34°=112°.故答案是:112.【点睛】考查了翻折变换,等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.四、八年级数学全等三角形选择题(难)19.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=12BF;④AE=BG.其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12 AC.又由(1),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD.又DH⊥BC,∴DH垂直平分BC.∴BG=CG.在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.20.如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有()A.2种B.3种C.4种D.6种【答案】C【解析】【分析】①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:证△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:证△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:证△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.【详解】解:有①②,①③,②④,③④,共4种,①②,理由是:∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形;①③,理由是:∵在△EBO和△DCO中BEO CDOEOB DOC OB OC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴∠EBO=∠DCO,∵∠OBC=∠OCB(已证),∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;②④,理由是:∵在△EBO和△DCO中BEO CDOEOB DOC BE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC是等腰三角形;③④,理由是:∵在△EBO和△DCO中BEO CDOEOB DOC BE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBO≌△DCO,∴∠EBO=∠DCO,OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,即AB=AC,∴△ABC 是等腰三角形; 故选C .21.如图,△ABC 是等边三角形,AQ =PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS .下列结论:①点P 在∠A 的角平分线上;②AS =AR ;③QP ∥AR ;④△BRP ≌△QSP .其中,正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上,故①正确;由①可知,PB =PC ,∠B =∠C ,PS =PR ,∴△BPR ≌△CPS ,∴AS =AR ,故②正确;∵AQ =PQ ,∴∠PQC =2∠PAC =60°=∠BAC ,∴PQ ∥AR ,故③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,故④也正确,∵①②③④都正确,故选D .点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.22.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF,∵△ABC是等腰直角三角形,∴∠FCB=∠A=45,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF是等腰直角三角形(故(1)正确).当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴242DE DF=故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.23.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结论:①45ADC ∠=︒;②12BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )A .1个B .2个C .3个D .4个 【答案】D【解析】试题解析:如图,过E 作EQ ⊥AB 于Q ,∵∠ACB=90°,AE 平分∠CAB ,∴CE=EQ ,∵∠ACB=90°,AC=BC ,∴∠CBA=∠CAB=45°,∵EQ ⊥AB ,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ ,∴∠QEB=45°=∠CBA ,∴EQ=BQ ,∴AB=AQ+BQ=AC+CE ,∴③正确;作∠ACN=∠BCD ,交AD 于N ,∵∠CAD=12∠CAB=22.5°=∠BAD ,∴∠ABD=90°-22.5°=67.5°,∴∠DBC=67.5°-45°=22.5°=∠CAD ,∴∠DBC=∠CAD ,在△ACN 和△BCD 中,DBC CAD AC BCACN DCB ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ACN ≌△BCD ,∴CN=CD ,AN=BD ,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDA=45°,∴∠ACN=45°-22.5°=22.5°=∠CAN ,∴AN=CN ,∴∠NCE=∠AEC=67.5°,∴CN=NE ,∴CD=AN=EN=12AE , ∵AN=BD ,∴BD=12AE , ∴①正确,②正确;过D 作DH ⊥AB 于H ,∵∠FCD=∠CAD+∠CDA=67.5°,∠DBA=90°-∠DAB=67.5°,∴∠FCD=∠DBA ,∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,∴DF=DH ,在△DCF 和△DBH 中90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△DCF ≌△DBH ,∴BH=CF ,由勾股定理得:AF=AH , ∴2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF+++++++====, ∴AC+AB=2AF ,AC+AB=2AC+2CF ,AB-AC=2CF ,∵AC=CB,∴AB-CB=2CF,∴④正确.故选D24.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A.①②③B.①③④C.①②④D.②③④【答案】C【解析】试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,∴点P在∠BAC的平分线上,即AP平分∠BAC,故①正确;∴∠PAR=∠PAQ,∵AQ=PQ,∴∠APQ=∠PAQ,∴∠APQ=∠PAR,QP AB∴,故④正确;在△APR与△APS中,AP AP PR PS=⎧⎨=⎩,(HL)APR APS∴≌,∴AR=AS,故②正确;△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.五、八年级数学轴对称三角形填空题(难)25.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=22,∴OA=OP=22,∴P的坐标是(﹣22,0).综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.∥,26.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.∥,若ABC的周长为12cm,则PD PE PFPF AC【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP 是平行四边形∴PD=HB∵ABC 为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∵PE BC ∥∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE 是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE 是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm .【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.27.如图,在△ABC 中,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,若∠BAC=126°,则∠EAD=_____°.【答案】72°【解析】【分析】根据AB 的中垂线可得BAD ∠,再根据AC 的中垂线可得EAC ∠,再结合∠BAC=126°即可计算出∠EAD .【详解】根据AB 的中垂线可得BAD ∠=B根据AC 的中垂线可得EAC ∠=C ∠18012654B C ︒︒︒∠+∠=-=又 126BAD DAE EAC BAC ︒∠+∠+∠=∠=+C+126B DAE ︒∴∠∠∠=72DAE︒∴∠=【点睛】本题主要考查中垂线的性质,重点在于等量替换表示角度.28.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.【详解】∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.在△ABE和△DBC中,∵BD BAABE DBCBE BC∠∠=⎧⎪=⎨⎪=⎩,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;在△ABF和△DBG中,60BAF BDGAB DBABF DBG∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF=CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE ≌△DBC 是解题的关键.29.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB -∠ACD=50°,即∠DCB=50°,∵DB=DC ,∴∠DBC=∠DCB ,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.30.如图,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.【答案】2018180 2⎛⎫⨯ ⎪⎝⎭【解析】【分析】根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.【详解】解:∵在△CBA1中,∠B=20°,A1B=CB,∴∠BA1C=°180-2B∠=80°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×80°;同理可得∠EA3A2=(12)2×80°,∠FA4A3=(12)3×80°,∴第n个三角形中以A n为顶点的底角度数是(12)n-1×80°.∴第2017个三角形中以A2019为顶点的底角度数是(12)2018×80°,故答案为:(12)2018×80°.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.六、八年级数学轴对称三角形选择题(难)31.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】A【解析】【分析】 根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.【详解】∵CE 垂直平分AD∴AC=CD =6cm ,ACE ECD ∠=∠∵CD 平分BCE ∠∴BCD ECD ∠=∠∴30ACE ECD DCB ︒∠=∠=∠=∴60A ︒∠=∴30B BCD ︒∠==∠∴6CD BD AC cm ===故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.32.如图,30MON ∠=︒.点1A ,2A ,3A ,⋯,在射线ON 上,点1B ,2B ,3B ,⋯,在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,⋯均为等边三角形,若11OA =,则201920192020A B A ∆的边长为( )A .20172B .20182C .20192D .20202【答案】B【解析】【分析】 根据等边三角形的性质和30MON ∠=︒,可求得1130∠=︒OB A ,进而证得11OA B ∆是等腰三角形,可求得2OA 的长,同理可得22OA B ∆是等腰三角形,可得222=A B OA ,同理得规律333、、=⋅⋅⋅=n n n A B OA A B OA ,即可求得结果. 【详解】解:∵30MON ∠=︒,112A B A ∆是等边三角形,∴11260∠=︒B A A ,1112A B A A =∴1111230∠=∠-∠=︒OB A B A A MON ,∴11∠=∠OB A MON ,则11OA B ∆是等腰三角形,∴111=A B OA ,∵11OA =,∴11121==A B A A OA =1,21122=+=OA OA A A ,同理可得22OA B ∆是等腰三角形,可得222=A B OA =2,同理得23342==A B 、34482==A B ,根据以上规律可得:2018201920192=A B ,即201920192020A B A ∆的边长为20182,故选:B .【点睛】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.33.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A ,()21,13A --,()31,13A -,4(0,2)A ,()52,223A --,……,按此规律排下去,则2019A 的坐标为( )A .(673,6736733-B .(673,6736733--C .(0,1009)D .()674,6746743- 【答案】A【解析】【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A 2019的横坐标为 12⨯1346=673.点A 2019的纵坐标为673-13463⨯=673﹣6733.故点A 2019的坐标为:()673,6736733-.故选:A .【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A 2019所在三角形是解答本题的关键.34.如图,P 为∠AOB 内一定点,M 、N 分别是射线OA 、OB 上一点,当△PMN 周长最小时,∠MPN=110°,则∠AOB=( )A .35°B .40°C .45°D .50°【答案】A【解析】【分析】 作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA ,OB 的交点时,△PMN 的周长最短,根据对称的性质可以证得:∠OP 1M=∠OPM=50°,OP 1=OP 2=OP ,根据等腰三角形的性质求解.【详解】作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA ,OB 的交点时,△PMN 的周长最短,连接P 1O 、P 2O ,∵PP 1关于OA 对称,∠MPN=110°∴∠P 1OP=2∠MOP ,OP 1=OP ,P 1M=PM ,∠OP 1M=∠OPM ,同理可得:∠P 2OP=2∠NOP ,OP=OP 2,∴∠P 1OP 2=∠P 1OP+∠P 2OP=2(∠MOP+∠NOP )=2∠AOB ,OP 1=OP 2=OP ,∴△P 1OP 2是等腰三角形.∴∠OP 2N=∠OP 1M ,∴∠P 1OP 2=180°-110°=70°,∴∠AOB=35°,故选A .【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P 1OP 2是等腰三角形是.35.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )A .5B .4C .3D .2【答案】B【解析】【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,在DAF △和ABH 中 ()AFD BHA DAF ABHAAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF △≌ABH .∴DF AH =.⑤正确:∵150CAD ︒∠=,AH CD ⊥,∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.36.如图,等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上的一点,当PA =CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )A .PD =DQB .DE =12AC C .AE =12CQD .PQ ⊥AB【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ 中,FPD QPDE CDQPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,∵AE=EF,∴DE=12AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=12AP=12CQ,∴C选项正确,故选D.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.()()()()242212121 (21)n++++=()A.421n-B.421n+C.441n-D.441n+【答案】A【解析】【分析】先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n212121 (21)++++=(2-1)()()()()242n212121 (21)++++=24n-1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.38.已知4821-可以被在0~10之间的两个整数整除,则这两个数是()A.1、3 B.3、5 C.6、8 D.7、9【答案】D【解析】248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.故选D.点睛:平方差公式:a 2-b 2=(a +b )(a -b ).39.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.40.规定一种运算:a*b=ab+a+b ,则a*(﹣b )+a*b 的计算结果为( )A .0B .2aC .2bD .2ab【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b )+a*b=a (﹣b )+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B .考点:整式的混合运算.41.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 2。

江苏省无锡市查桥中学2020-2021学年苏科版八年级数学上学期第十八周周练试卷

江苏省无锡市查桥中学2020-2021学年苏科版八年级数学上学期第十八周周练试卷

江苏省无锡市查桥中学2020-2021学年初二数学上学期第十八周周练试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列说法正确的是 ( ) A .16的平方根是4 B .8的立方根是±2 C .-27的立方根是-3 D .=±72、由四舍五入法得到的近似数为1.10×104,这个数是精确到 ( )A .十位B . 百位C .千位D . 万位 3、下列二次根式中,最简二次根式是 ( )A .B .C .D .4.下列一次函数中,y 随x 增大而增大的是 ( ) (A )y =x -2 (B )y =-3x (C )y =-2x +3 (D )y =3-x 5.点P 1 (x 1,y 1)和点P 2(x 2,y 2)在同一直线y=-4x+3的图象上,且x 1<x 2,则y 1与y 2 的关系是 ( ) A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .y 1>y 2>06.已知一次函数y=kx+b ,若k+b=1,则它的图象必过点 ( ) A .(-1,-1) B .(1,1) C .(-1,1) D .(1,-1)7. 当0,0a b ≤≥时,化简2320a b 得 ( )A.2325a bB.2325a b -C.25ab bD.25ab b -8.无沦m 为何实数,直线y=x+2m 与y=-x+4的交点都不可能在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.已知点P (1-2m ,m -1),则不论m 取什么值,该P 点必不在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.如图是一次函数y=kx +b 的图象,当x<0时,y 的取值范围是 ( ) A .y>0 B .y<0 C .一2<y<0 D .y<一2 二、填空题:(本大题共8小题,每空2分,共16分.) 11、已知a 、b 为两个连续的整数,且28a b <<,则a b += .12.当1≤x<5时,()215x x -+-=_____ __.13.化简1143+的结果是 . 14.已知y 与2x-1成正比例,且当x=1时,y=3,写出y 与x 的函数关系式 . 15.直线y=kx+b 与y=-5x+1平行,且经过(2,1),写出y 与x 的函数关系式 . 16.若正比例函数mx y =的图像经过点A (1x ,1y )和点B (2x ,2y ),当1x <2x 时1y >2y , 则m 的取值范围是 .17.在平面直角坐标系中,点A (2,0),B (0,4),作△BOC ,使△BOC 与△ABO 全等,则点C 坐标为 .18.如图,直线y =﹣x +m 与y =nx +4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式 ﹣x +m >nx +4n >0的整数解为 .三.解答题19.(本题共2小题,每小题4分,满分8分)(1)()1-22116-1-⎪⎭⎫ ⎝⎛+ (2)求等式中x 的值 ()5112=+-x20.(本题满分12分)已知一次函数y=(2m+1)x+m -3。

苏科版八年级数学上册初级中学-第一学期初二数学.docx

苏科版八年级数学上册初级中学-第一学期初二数学.docx

初中数学试卷 桑水出品江苏省无锡市江阴初级中学2013-2014学年度第一学期初二数学周末自主测试题 班级 姓名 一、选择题(本大题共10小题,每小题3分,共30分) 1.下列图形中,不是..轴对称图形的是( )2.下列运算正确的是( ) A .33--= B .1133-⎛⎫=- ⎪⎝⎭C .93=±D .3273-=- 3.对于四舍五入得到的近似数41081.1⨯,下列说法正确的是( )A .精确到百位B .精确到个位C .精确到万位D .精确到百分位4.在311-,237,3π,3343,0.202 002 000 2,32中,无理数的个数有( ) A .6个 B .5个 C .4个 D .3个5.一次函数y = −3x − 2的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知点(8,y 1),(2,y 2)在直线y =k x +b (k<0)上,则y 1、y 2大小关系是 ( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定7.下列条件中,不能判断△ABC 为直角三角形的是 ( ▲ )A . 1.5b=2, c=2.5a =,B .345a =:b :c :: C .∠A +∠B=∠C D .∠A :∠B :∠C=3:4:58.等腰三角形的底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为( )A .6B .5C .6或10D .3或59.如图,正方形ABCD 的面积为36,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为 ( )A .5B .6C .7D .810.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为1 , l 2,l 3之间的距离为2 ,则AC 的长是( )A .13B .20C .5D .2611. 4的平方根是 .(1,3)P -轴的对称点的坐标为 。

苏科版八年级数学上册初二数学第18周练习卷年1月9日.docx

苏科版八年级数学上册初二数学第18周练习卷年1月9日.docx

o无锡市羊尖中学初二数学第18周练习卷2014年1月9日一、选择题1、将△ABC 向左平移3个单位得到△A'B'C',已知A 点的坐标是(-3,7),则A'的坐标是( ) A. (-6,4) B. (0,10) C. (-6,7) D. (0,7)2、在227,3.33,5π-, ,0,0.454454445…,327-,9.0- ,127中,无理数的个数有( ) A.2个 B.3个 C.4个 D.5个3、如图是一次函数y=kx+b(k 、b 为常数,k ≠0)的图像,则不等式kx+b>0的解集是( ) A 、x>-2 B 、x>0 C 、x<-2 D 、x<04、如图,D 为等边△ABC 内一点,DB =DA ,BF ==∠2 ( )A .15°B .20°C .30°D .45° 5、一次函数的图像过点(-1、2),且函数y 随自变量x 的增大而减小,则下列函数符合上述条件的是( ) A 、y=4x+6 B 、y=-x C 、y=-x+2 D 、y=-3x-1 6、小明在用图象法解二元一次方程组时所画图象如图,那么这个方程组的解是 ( )A .x =2,y =1B .x =1,y =2C .x =2,y =2D .x =1,y =17、如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为 ( ) A .2x <- B .21x -<<- C .20x -<< D .10x -<< 8、如图是一张直角三角形纸片,直角边AC=5 cm ,BC=10 cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为 ( )A .252mB .152mC .254cmD .154cm9、一考生步行前往考场,10分钟走了总路程的41,估计步行不能准时 到达,于是改乘出租车赶往考场,他的行程与时间关系如图(假定 总路程为1),则他到达考场所花时间比一直步行提前了( )A. 20分钟B. 22分钟C. 24分钟D. 26分钟–2 x yy O xB A –1 1 2 3 –1–2 –3 1 2310、在直角坐标系中,对于平面内任一点(a、b),若规定以下三种变换①f(a,b)=(-a,b),如f(1,3)=(-1,3)②g(a,b)=(b,a),如g(1,3)=(3,1),③h(a,b)=(-a,-b),如h(1,3)=(-1,-3),按照以上变换有f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于( )A、(-5,-3)B、(5,3)C、(5,-3)D、(-5,3)二、填空题11、16的算术平方根是,3125-= 。

苏教版初中数学八年级上册第一学期第18周周考试卷

苏教版初中数学八年级上册第一学期第18周周考试卷

苏教版初中数学八年级上册第一学期第18周周考试卷一、选择题(3X9=27)1.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣12.下列函数中y随x的增大而减小的是()A.y=x﹣m2 B.y=(﹣m2﹣1)x+3 C.y=(|m|+1)x﹣5 D.y=7x+m3.已知一次函数y=kx﹣k,y随x的增大而减小,则函数图象不过第()象限.A.第一象限B.第二象限C.第三象限D.第四象限4.要由直线得到直线,直线应()A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位5.若直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()A.y=2x+3 B.C.y=3x+2 D.y=x﹣16.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()A B.C.D.7.要从的图象得到直线,就要将直线()A.向上平移个单位B.向下平移个单位C.向上平移2个单位D向下平移2个单位8.两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()A.B. C.D.9.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行,且经过点A(1,﹣2),则kb=.A.6 B.8C.-6 D.﹣8二、填空题(3X9=27)10.如果直线y=kx+b经过第一、三、四象限,那么直线y=﹣bx+k经过第象限.11.通过平移把点A(2,﹣3)移到点A′(4,﹣2),按同样的平移方式,点B(3,1)移到点B′,则点B′的坐标是.12.已知一次函数y=(m+2)x+1,函数y的值随x值的增大而增大,则m的取值范围是.13.已知一次函数y=2x+4的图象经过点(m,8),则m=.14.若一次函数y=kx+b的图象经过(﹣2,﹣1)和点(1,2),则这个函数的图象不经过象限.15.要把直线y=3x﹣2向上平移,使其图象经过点(2,10),需要向平移个单位.16.已知一次函数y=﹣2x+3中,自变量取值范围是﹣3≤x≤8,则当x=时,y有最大值.17.已知点A(3,0)、B(0,﹣3)、C(1,m)在同一条直线上,则m=.18.已知直线y=2x﹣4,则此直线与两坐标轴围成的三角形面积为.三、解答题19. (15)已知直线l经过点(﹣1,5),且与直线y=﹣x平行.(1)求直线l的解析式;(2)若直线l分别交x轴、y轴于A、B两点,求△AOB的面积.20(16)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.根据图象解决下列问题:(1)谁先出发先出发多少时间谁先到达终点先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)在这一时间段内,请你根据下列情形,分别列出关于行驶时间x的方程或不等式(不化简,也不求解):①甲在乙的前面;②甲与乙相遇;③甲在乙后面.21.(15)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米?选做题22.有一个附有进水管、出水管的水池,每单位时间内进出水管的进、出水量都是一定的,设从某时刻开始,4h内只进水不出水,在随后的时间内不进水只出水,得到的时间x(h)与水量y(m3)之间的关系图(如图).回答下列问题:X k B 1 . c o m(1)进水管4h共进水多少?每小时进水多少?(2)当0≤x≤4时,y与x有何关系?(3)当x=9时,水池中的水量是多少?(4)若4h后,只放水不进水,那么多少小时可将水池中的水放完?23.某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调彩电进价(元/台)5400 3500售价(元/台)6100 3900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?。

江阴二中9月12日八年级上周练数学试卷含答案解析

江阴二中9月12日八年级上周练数学试卷含答案解析

2022-2023江苏省无锡市江阴二中八年级(上)周练数学试卷(9.12)一、选择题1.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°2.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF3.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.A.1个B.2个C.3个D.4个4.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则此工件的外径必是CD之长了,其中的依据是全等三角形的判定条件()A.SSS B.SAS C.ASA D.AAS5.如图,在△ABC中,AB=AC,D、E在BC上,BD=CE,AF⊥BC于F,则图中全等三角形的对数为()A.1 B.2 C.3 D.46.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°7.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二、填空题9.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.10.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)11.如图,点B、E、C、F在一条直线上,AB∥DE,且AB=DE,请添加一个条件,使△ABC≌△DEF.12.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.13.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为度.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC 的序号是.16.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.17.如图,已知OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA=2,则PQ的最小值为,理论根据为.三、解答题(共56分)18.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.19.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.求证:△ABE≌△CDF.20.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.21.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D,E,AD与BE相交于点F,若BF=AC,求证:BD=AD.22.如图,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN,BE⊥MN,垂足分别为点D,E.求证:(1)△ADC≌△CEB;(2)DE=AD+BE.23.如图1,在△ABC中,∠ACB=90°,分别以边AB、AC向外作正方形ABDE和正方形ACFG,连接CE,BG,EG.(1)试猜想线段CE和BG的数量及位置关系,并证明你的猜想;(2)填空:△ABC与△AEG面积的关系;(3)如图2,学校教学楼前的一个六边形花圃被分成七个部分,分别种上不同品种的花卉,已知△CDG是直角三角形,∠CGD=90°,DG=3m,CG=4m,CD=5m,四边形ABCD、CIHG、GFED均为正方形,六边形花圃ABIHFE的面积为.2022-2023江苏省无锡市江阴二中八年级(上)周练数学试卷(9.12)参考答案与试题解析一、选择题1.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【考点】全等三角形的性质.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.2.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF【考点】全等三角形的判定.【分析】要使△ABC≌△DEF,已知AB=ED,BE=CF,具备了两条边对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:可添加AC=DF,或AB∥DE或∠B=∠DEF,证明添加AC=DF后成立,∵BE=CF,∴BC=EF,又AB=DE,AC=DF,∴△ABC≌△DEF.故选D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.3.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】在等腰三角形中,顶角的平分线即底边上的中线,垂线.利用三线合一的性质,进而可求解,得出结论.【解答】解:∵△ABC是等腰三角形,AD是角平分线,∴BD=CD,且AD⊥BC,又BE=CF,∴△EBD≌△FCD,且△ADE≌△ADF,∴∠ADE=∠ADF,即AD平分∠EDF.所以四个都正确.故选D.【点评】本题考查了全等三角形的判定和性质;熟练掌握三角形的性质,理解等腰三角形中中线,平分线,垂线等线段之间的区别与联系,会求一些简单的全等三角形.做题时,要结合已知条件与全等的判定方法对选项逐一验证.4.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则此工件的外径必是CD之长了,其中的依据是全等三角形的判定条件()A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的应用.【分析】连接AB、CD,然后利用“边角边”证明△ABO和△DCO全等,根据全等三角形对应边相等解答.【解答】解:如图,连接AB、CD,在△ABO和△DCO中,,∴△ABO≌△DCO(SAS),∴AB=CD.故选:B.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.5.如图,在△ABC中,AB=AC,D、E在BC上,BD=CE,AF⊥BC于F,则图中全等三角形的对数为()A.1 B.2 C.3 D.4【考点】全等三角形的判定.【分析】因为AB=AC,AF⊥BC,所以F为BC的中点,BF=F,又因为BD=EC,所以有BE=DC,DF=FE,然后根据SSS或HL可得.【解答】解:因为AB=AC,AF⊥BC,所以F为BC的中点,BF=FC,又因为BD=EC,所以有BE=DC,DF=FE,因为AB=AC,AF⊥BC,AF=AF,根据HL,可得△ABF≌△AFC;AF=AF,DF=EF,AF⊥DE,根据HL,可得△ADF≌△AEF,AD=AE;AD=AE,BD=EC,AB=AC,根据SSS可得△ABD≌△ACE;AF=AF,DF=EF,AF⊥BC,根据HL可得△ADF≌△AEF;AB=AC,AD=AE,BE=CD,根据SSS可得△ABE≌△ACD;所以有4对全等三角形.故选D.【点评】本题考查了全等三角形的判定;要注意的问题是:不要忽视△ABE≌△ACD.做题时要从已知条件开始思考,结合图形,利用全等三角形的判定方法由易到难逐个寻找,做到不重不漏.6.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°【考点】全等三角形的判定与性质.【分析】利用正方形的性质,分别求出多组三角形全等,如∠1和∠7的余角所在的三角形全等,得到∠1+∠7=90°等,可得所求结论.【解答】解:由图中可知:①∠4=×90°=45°,②∠1和∠7的余角所在的三角形全等∴∠1+∠7=90°同理∠2+∠6=90°,∠3+∠5=90°∠4=45°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°故选B.【点评】考查了全等三角形的性质与判定;做题时主要利用全等三角形的对应角相等,得到几对角的和的关系,认真观察图形,找到其中的特点是比较关键的.7.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 【考点】全等三角形的判定;等边三角形的性质.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题9.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=5.【考点】全等三角形的性质.【分析】全等三角形,对应边相等,周长也相等.【解答】解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5.【点评】本题考查了全等三角形的性质;要熟练掌握全等三角形的性质,本题比较简单.10.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第③块去配,其依据是根据定理ASA(可以用字母简写)【考点】全等三角形的应用.【分析】显然第③中有完整的三个条件,用ASA易证现要的三角形与原三角形全等.【解答】解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第③块.故答案为:③;ASA.【点评】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题数学化石正确解答本题的关键.11.如图,点B、E、C、F在一条直线上,AB∥DE,且AB=DE,请添加一个条件∠A=∠D,使△ABC≌△DEF.【考点】全等三角形的判定.【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠A=∠D,或BC=EF或BE=CF或∠ACB=∠F.【解答】解:可添加条件为∠A=∠D或BC=EF或BE=CF或∠ACB=∠F.理由如下:∵AB∥DE,∴∠B=∠DEF.∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).故答案是:BE=CF或∠A=∠D或BC=EF(填一个即可).【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.12.如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.【考点】全等三角形的判定.【分析】根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD ≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【解答】解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目13.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为65度.【考点】全等三角形的判定与性质.【分析】根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA 全等,再根据全等三角形对应角相等解答.【解答】解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB 长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=65°.故答案为:65.【点评】本题考查了全等三角形的判定与性质,根据作法得到全等三角形相等的边是解题的关键.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.15.在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC 的序号是①②④.【考点】全等三角形的判定.【分析】在△ADB和△ADC中,已知一条公共边AD,然后根据全等三角形的判定定理确定需要添加的条件.【解答】解:①在△ADB和△ADC中,AD=AD,若添加条件BD=DC,AB=AC,根据全等三角形的判定定理SSS可以证得△ADB≌△ADC;故本选项正确;②在△ADB和△ADC中,AD=AD,若添加条件∠B=∠C,∠BAD=∠CAD,根据全等三角形的判定定理AAS可以证得△ADB≌△ADC;故本选项正确;③在△ADB和△ADC中,AD=AD,若添加条件∠B=∠C,BD=DC,由SSA不可以证得△ADB≌△ADC;故本选项错误;④在△ADB和△ADC中,AD=AD,若添加条件∠ADB=∠ADC,BD=DC,根据全等三角形的判定定理SAS可以证得△ADB≌△ADC;故本选项正确;综上所述,符合题意的序号是①②④;故答案是:①②④.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60度.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为:60.【点评】本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.17.如图,已知OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA=2,则PQ的最小值为2,理论根据为角平分线上的点到角两边的距离相等.【考点】角平分线的性质;垂线段最短.【分析】过P作PQ⊥OM于Q,此时PQ的长最短,根据角平分线性质得出PQ=PA=2即可.【解答】解:过P作PQ⊥OM于Q,此时PQ的长最短,∵OP平分∠MON,PA⊥ON,PA=2,∴PQ=PA=2(角平分线上的点到角两边的距离相等),故答案为:2,角平分线上的点到角两边的距离相等.【点评】本题考查了角平分线性质,勾股定理的应用,注意:角平分线上的点到角两边的距离相等.三、解答题(共56分)18.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.【考点】全等三角形的性质.【分析】(1)根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案;(2)根据全等三角形的性质得出∠B=∠DEF,根据平行线的判定得出即可.【解答】解:(1)∵∠A=85°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=8﹣2=6;(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B,∴AB∥DE.【点评】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB=DE,∠B=∠DEF,∠ACB=∠F,注意:全等三角形的对应边相等,对应角相等,难度适中.19.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.求证:△ABE≌△CDF.【考点】全等三角形的判定.【分析】由AB∥CD可得∠BAC=∠DCA,由AF=CE可得AE=CF,可证得△ABE≌△CDF.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA,∵AF=CE,∴AF+EF=EF+CE,在△ABE和△CDF中∴△ABE≌△CDF(AAS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.20.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】先证出∠ACB=∠DCE,再由SAS证明△ABC≌△DEC,得出对应角相等即可.【解答】证明:∵∠ACD=∠BCE,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.21.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D,E,AD与BE相交于点F,若BF=AC,求证:BD=AD.【考点】全等三角形的判定与性质.【分析】由条件可证明△BDF≌△ADC,可求得BD=AD.【解答】证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=∠C+∠CAD,∴∠DBF=∠DAC,在△BDF和△ADC中∴△BDF≌△ADC(AAS),∴BD=AD.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(对应边相等、对应角相等)是解题的关键.22.如图,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN,BE⊥MN,垂足分别为点D,E.求证:(1)△ADC≌△CEB;(2)DE=AD+BE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证出△ADC和△CEB全等即可;(2)由(1)可推出CD=BE,AD=CE,进而可证明DE=AD+BE.【解答】解:(1)证明:∵∠ACB=90°,AD⊥MN,BE⊥MN,∴∠BEC=∠ACB=∠ADC=90°,∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)∵△ADC≌△CEB∴BE=CD,AD=CE,∵CD+CE=DE,∴DE=AD+BE.【点评】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明△ADC和△CEB全等的三个条件.23.如图1,在△ABC中,∠ACB=90°,分别以边AB、AC向外作正方形ABDE和正方形ACFG,连接CE,BG,EG.(1)试猜想线段CE和BG的数量及位置关系,并证明你的猜想;(2)填空:△ABC与△AEG面积的关系S△ABC =S△AEG;(3)如图2,学校教学楼前的一个六边形花圃被分成七个部分,分别种上不同品种的花卉,已知△CDG是直角三角形,∠CGD=90°,DG=3m,CG=4m,CD=5m,四边形ABCD、CIHG、GFED均为正方形,六边形花圃ABIHFE的面积为74m2.【考点】四边形综合题;三角形的面积;全等三角形的判定与性质;正方形的性质.【分析】(1)易证∠EAC=∠BAG,即可证明△EAC≌△BAG,可得CE=BG,∠AEC=ABG,即可证明CE⊥BG;(2)先判断出∠EAH=∠BAC,从而△EHA≌△BCA,即可得出EH=BC,最后用三角形的面积公式计算即可得出结论;(3)由(2)结论得出S△BCI=S△CDG,S△ADE=S△CDG,而△CDG和△FGH面积相等,最后用求得七部分面积的和即可.【解答】解:(1)线段CE和BG的数量及位置关系:CE=BG,CE⊥BG.证明:∵∠EAB=∠GAC=90°,∴∠EAC=∠BAG,在△EAC和△BAG中,,∴△EAC≌△BAG(SAS),∴CE=BG,∠AEC=ABG,∵∠AEC+∠APE=90°,∠APE=∠BPC,∴∠BPC+∠ABG=90°,∴CE⊥BG;(2)如图1,过点E作EH⊥AG交GA延长线于H,∴∠EHA=∠90°=∠BCA,∵∠EAH+∠BAH=90°,∠BAC+∠BAH=90°,∴∠EAH=∠BAC,在△EHA和△BCA中,,∴△EHA≌△BCA(AAS),∴EH=BC,∵S△ABC =AC×BC=AC×EH,S△AGE=AG×EH=AC×EH,而AC=AG,∴△ABC与△AEG面积相等.故答案为:S△ABC=S△AEG;(3)如图2,∵四边形ABCD,CIHG、GFED均为正方形,∠CGD=90°,∴CG=GH=4,DG=FG=3,△CDG与△HGF全等,同(2)的方法可得,S△BCI=S△CDG,S△ADE=S△CDG∴S六边形ABIHFE=S正方形ABCD+S△BCI+S正方形CIHG+S△FGH+S正方形DEFG+S△ADE+S△CDG=S正方形ABCD+S△CDG+S正方形CIHG+S△FGH+S正方形DEFG+S△CDG+S△CDG=S正方形ABCD+S正方形CIHG+S△FGH+S正方形DEFG+3S△CDG=CD2+CG2+GH×FG+DG2+3×CG×DG=52+42+×4×3+32+3××4×3=25+16+6+9+18=74(m2).故答案为:74m2.【点评】此题属于四边形的综合题,主要考查了全等三角形的判定和性质,同角的余角相等,三角形的面积公式,正方形的面积公式的综合应用,解本题的关键是作辅助线构造全等三角形,运用等底等高的三角形面积相等,得出S△ABC =S△AGE.e;gbl210;郭静。

江阴市江阴二中八年级上册压轴题数学模拟试卷及答案

江阴市江阴二中八年级上册压轴题数学模拟试卷及答案

江阴市江阴二中八年级上册压轴题数学模拟试卷及答案一、压轴题1.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2= ;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.2.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.3.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.4.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.5.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.6.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.7.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.8.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.9.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①.(1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)10.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.11.探究发现:如图①,在ABC 中,内角ACB ∠的平分线与外角ABD ∠的平分线相交于点E .(1)若80A ∠=︒,则E ∠= ;若50A ∠=︒,则E ∠= ;(2)由此猜想:A ∠与E ∠的关系为 (不必说明理由).拓展延伸:如图②,四边形ABCD 的内角DCB ∠与外角ABE ∠的平分线相交于点F ,//BF CD .(3)若125A ∠=︒,95D ∠=︒,求F ∠的度数,由此猜想F ∠与A ∠,D ∠之间的关系,并说明理由.12.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.13.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)14.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有________条对称轴,非正方形的长方形有________条对称轴,等边三角形有___________条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.15.数学活动课上,老师出了这样一个题目:“已知:MF NF ⊥于F ,点A 、C 分别在NF 和MF 上,作线段AB 和CD (如图1),使90FAB MCD ∠-∠=︒.求证://AB CD ”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.16.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.17.如图,在ABC 中,3AB AC ==,50B C ∠=∠=,点D 在边BC 上运动(点D 不与点,B C 重合),连接AD ,作50ADE ∠=,DE 交边AC 于点E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠= (2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请求出BDA ∠的度数;若不可以,请说明理由.18.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题. 材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:2114x x =+,求代数式x 2+21x的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z+的值. 解:令2x =3y =4z =k (k ≠0)则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.19.如图,在ABC 中,D 为AB 的中点,10AB AC cm ==,8BC cm =.动点P 从点B 出发,沿BC 方向以3/cm s 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以3/cm s 的速度向点A 运动,运动时间是ts .(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值; (2)在运动过程中,当BPD CQP ≌时,求出t 的值;(3)是否存在某一时刻t ,使BPD CPQ ≌?若存在,求出t 的值;若不存在,请说明理由.20.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1) ∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2) ∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α. 理由如下:如图3,设DP 与BE 的交点为F ,∵∠2+∠α=∠DFE ,∠DFE +∠C =∠1,∴∠1=∠C +∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE 与AC 的交点为G ,∵∠PGD =∠EGC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.2.(1)∠BPC =122°;(2)∠BEC =2a ;(3)∠BQC =90°﹣12∠A ,证明见解析 【解析】【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠1表示出∠2,再利用∠E 与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC 与∠ECB ,然后再根据三角形的内角和定理列式整理即可得解.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠, 12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122=︒+=︒,故答案为:122︒;(2)CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论:1902BQC A ∠=︒-∠.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(8,0).【解析】【分析】(1)根据A,B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12×, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=∴OD=OA−DA=8,∴点D 的坐标为(8-,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.4.(123【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中, ===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b ,∴2221=4a a +,2222=4b b +, 解得:3=3a ,23=3b , ∴222323⎛⎫+ ⎪ ⎪⎝⎭43 ∴22AP BP +()22AM PM BP ++221(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:23 ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:3∴AM=23,∴43 在△BPC 中,BP 2+CP 2=BC 2,即BC=222243221233BP CP⎛⎫+=+=⎪⎪⎝⎭,∴AB=BC=221 3.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.5.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=12CF=3.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF ,如图3所示:∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF 平分∠ABC ,∴∠ABF=∠CBF ,在△ABF 和△CBF 中,AB BC ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩, △ABF ≌△CBF (SAS ),∴AF=CF ,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH ⊥CD ,∴AH=12AF=12CF=3, ∵∠DEC=∠ABC+∠BDE ,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.6.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=,故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE AMC ︒∠+∠+∠=,112()90CMF ABE AMC ︒∴∠+∠+∠=,()1129090EMF A MC ︒︒∴-∠+∠=, ()112906090A MC ︒︒︒∴-+∠=, 1130AMC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.7.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC , ∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.8.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.9.(1)证明见解析;(2)证明见解析;(3)当AC =2BD 时,对于满足条件的任意点N ,AN =CP 始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD ,∠NEA=∠CDP=90°,AE=DP ,∴△NEA ≌△CDP (SAS ),∴AN=PC .【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.10.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.11.(1)40°25°;(2)12∠=∠E A (或2E ∠=∠A)(3)F ∠=()1902A D ∠+∠-︒ 【解析】【分析】(1)先根据两角平分线写出对应的等式关系,再分别写出两个三角形内角和的等式关系,最后联立两等式化解,将A ∠的角度带入即可求解;(2)由(1)可得,即可求解;(3)在DCB ∠与ABE ∠的平分线相交于点F ,可知1==2BCF DCF BCD ∠∠∠12EBF ABE ∠=∠,又因为//BF CD ,两直线平行内错角相等,得出F DCF ∠=∠,再根据三角形一外角等于不相邻的两个内角的和,得出+EBF F BCF ∠=∠∠,再由四边形的内角和定理得出++360ABC BCD A D ∠+∠∠∠=,最后在FBC 中:++180F FBC BCF ∠∠∠=,代入整理即可得出结论.【详解】解:(1)由题可知:BE 为DBA ∠的角平分线,CE 为BCA ∠的角平分线,∴DBA ∠=2EBA ∠=2EBD ∠,BCA ∠=2BCE ∠,∴1802ABC EBA ∠=-∠,三角形内角和等于180,∴在ABC 中:+180A ABC BCA ∠∠+∠=,即:+(1802)2180A EBA BCE ∠-∠+∠=,220A EBA BCE ∠-∠+∠=①,在EBC 中:+180E EBC BCE ∠∠+∠=,即:+180-180E EBA BCE ∠∠+∠=(),-0E EBA BCE ∠∠+∠=②,综上所述联立①②,由①-②×2可得 :22-2-0A EBA BCE E EBA BCE ∠-∠+∠∠∠+∠=(),22-2+2-20A EBA BCE E EBA BCE ∠-∠+∠∠∠∠=,-20A E ∠∠=,1=2E A ∠∠, 当80A =∠,则E ∠=40;当50A ∠=,则E ∠=25;故答案为40,25;(2)由(1)知:12∠=∠E A (或2A E ∠=∠); (3)∵DCB ∠与ABE ∠的平分线相交于点F , ∴1==2BCF DCF BCD ∠∠∠,12EBF ABE FBA ∠=∠=∠ , 又∵//BF CD ,∴F DCF ∠=∠(两直线平行,内错角相等)BCF =∠,∵EBF ∠是CBF 的一个外角,∴+=2EBF F BCF F FBA ∠=∠∠∠=∠(三角形一外角等于不相邻的两个内角的和), 在四边形ABCD 中,四边形内角和为360,125A ∠=, 95D ∠=,∴++360ABC BCD A D ∠+∠∠∠=,∴360---=360---2ABC A D BCD A D F ∠=∠∠∠∠∠∠①,∴=360-125-95-2=140-2ABC F F ∠∠∠,即140-2ABC F ∠=∠,在FBC 中:++180F FBC BCF ∠∠∠=,2FBC FBA ABC F ABC ∠=∠+∠=∠+∠,由上可得:+2+180F F F ABC ∠∠=∠+∠,4180F ABC =∠+∠②,又∵=140-2ABC F ∠∠,∴-42014018F F ∠=∠+,240F ∠=,20F ∠=,由①②可得,-4-13608-20F A D F ∠+∠∠=∠,2+180F A D =∠+∠∠,+-9102F A D ∠∠=∠)(. 【点睛】本题主要考查了三角形的外角性质的应用和角平分线的定义,能正确运用性质进行推理和计算是解此题的关键,注意三角形的一个外角等于和它不相邻的两个内角的和.12.(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【解析】【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠ADB =∠CEA =90°∵∠BAC =90°∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°∴∠CAE =∠ABD∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD ,∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC ,∴∠ABD=∠CAE ,在△ABD 和△CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABD ≌△CAE (AAS )∴AE=BD ,AD=CE ,∴DE=AD+AE=BD+CE ;(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F ,由(1)可知,△AEC ≌△CFB ,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B 的坐标为B (1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.13.(1)90︒;(2)12K K ∠∠=,证明见解析;(3)111902n n K ∠++=⨯︒ 【解析】【分析】(1) 过 K 作KG ∥AB ,交 EF 于 G ,证出//AB CD ∥KG ,得到BEK EKG ∠∠=,GKF KFD ∠∠=,根据角平分线的性质及平行线的性质得到()2180BEK DFK ∠∠+=,即可得到答案;(2)根据角平分线的性质得到1112BEK KEK KEB ∠∠∠==,1112KFK DFK DFK ∠∠∠==,根据90BEK KFD ∠∠+=求出1145KEK KFK ∠∠+=,根据()()111180K KEF EFK KEK KFK ∠∠∠∠∠=-+-+求出答案;(3)根据(2)得到规律解答即可.【详解】(1) 过 K 作KG ∥AB ,交 EF 于 G ,∵//AB CD ,∴//AB CD ∥KG ,BEK EKG ∠∠∴=,GKF KFD ∠∠=,EK ,FK 分别为BEF ∠与EFD ∠的平分线,BEK FEK ∠∠∴=,EFK DFK ∠∠=,∵//AB CD ,180BEK FEK EFK DFK ∠∠∠∠∴+++=,()2180BEK DFK ∠∠∴+=,90BEK DFK ∠∠∴+=,则 90EKF EKG GKF ∠∠∠=+=;(2) 12K K ∠∠=,理由为:BEK ∠,DFK ∠的平分线相交于点1K ,1112BEK KEK KEB ∠∠∠∴==,1112KFK DFK DFK ∠∠∠==, 180BEK FEK EFK DFK ∠∠∠∠+++=,即 ()2180BEK KFD ∠∠+=, 90BEK KFD ∠∠∴+=,1145KEK KFK ∠∠∴+=,()()11118045K KEF EFK KEK KFK ∠∠∠∠∠∴=-+-+=,12K K ∠∠∴=;(3)由(2)知90K ∠=;1119022K K ∠∠==⨯ 同理可得2112K K ∠∠==14K ∠1904=⨯, ∴111902n n K ∠++=⨯. 【点睛】此题考查平行线的性质:两直线平行,内错角相等;平行公理的推论:平行于同一直线的两直线平行;角平分线的性质;(3)是难点,注意总结前两问的做题思路得到规律进行解答.14.(1)1,2,3;(2)答案见解析;(3)答案见解析;(4)答案见解析.【解析】【分析】(1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可; (2)中图1-2和图1-3都可以看作由图1-1修改得到的,在图1-4和图1-5中,分别仿照类似的修改方式进行画图即可;(3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形;(4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形.【详解】解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,故答案为1,2,3;(2)恰好有1条对称轴的凸五边形如图中所示.(3)恰好有2条对称轴的凸六边形如图所示.(4)恰好有3条对称轴的凸六边形如图所示.15.(1)见解析;(2)30ABE CDE ∠-∠=︒【解析】【分析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:AGC MCD ∠=∠,90F GAF ∠+∠=︒,再证明MCD BAG ∠=∠,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A 作//AG FM ,交CD 于G ,AGC MCD ∴∠=∠,90F GAF ∠+∠=︒,FN FM ⊥,90F ∴∠=︒,90GAF ∴∠=︒,90FAB MCD ∠-∠=︒,FAB GAF MCD BAG ∴∠-∠=∠=∠,//AB CD ∴;(2)解:30ABE CDE ∠-∠=︒,理由如下:如图3,//AB CD ,BPD ABE ∴∠=∠,BPD CDE BED ∠=∠+∠,30BED ∠=︒,30BPD CDE ∴∠-∠=︒,∴30ABE CDE ∠-∠=︒.【点睛】本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线的性质和判定是解决问题的关键.16.(1)AE//BF;QE=QF ;(2)QE=QF ,证明见解析;(3)结论成立,证明见解析.【解析】【分析】(1)根据AAS 得到AEQ BFQ ∆≅∆,得到AEQ BFQ ∠=∠、QE=QF ,根据内错角相等两直线平行,得到AE//BF ;(2)延长EQ 交BF 于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明;(3)延长EQ 交FB 的延长于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明.【详解】(1)AE//BF ;QE=QF(2)QE=QF。

苏科版八年级数学上册初二数学周末练习 .docx

苏科版八年级数学上册初二数学周末练习 .docx

初中数学试卷马鸣风萧萧初二数学周末练习一.选择题(每题3分)1、(﹣2)2的平方根是 ( ) A .2B .﹣2C .±2D .2、一次函数y =—2x +3的图象与两坐标轴的交点是( ) A .(3,1)(1,23) B .(1,3)(23,1) C .(3,0)(0,23) D .(0,3)(23,0) 3、如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为 ( ) A .65° B .60° C .55° D .45°4、如图,以直角三角形a 、b 、c 为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( )A .1B .2C .3D .45、下列各曲线中表示y 是x 的函数的是( )A .B .C .D .6、星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻 炼,她连续、匀速走了60min 后回家,图中的折线 段OA ﹣AB ﹣BC 是她出发后所在位置离家的距离 s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A .B .C .D .二.填空题(每题3分)1、点P (x ﹣2,x +3)在第一象限,则x 的取值范围是 .2、若函数y=(a ﹣3)x|a |﹣2+2a +1是一次函数,则a= .3、等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 .4、对于正比例函数y=m ,y 的值随x 的值增大而减小,则m 的值为 .5、函数y=的自变量x 的取值范围是 .6、下列函数中:①y=﹣x ;②y=;③y=﹣x 2;④y=﹣x +3;⑤2x ﹣3y=1.其中y 是x 的一次函数的是 (填所有正确菩案的序号). 7、已知y 是x 的一次函数,表中列出了部分 对应值,则m 等于8、点P (,﹣)到x 轴距离为 ,到y 轴距离为 .9、园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S 与时间t 的函数关系的图象如图所示,则休息后园林队绿化面积为 平方米.x﹣11 y1m﹣5xy 02310、如图,直角坐标系中,点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到三角形①、②、③、④、…则三角形⑩的直角顶点与坐标原点的距离为 . 三.解答题(1~4每题8分,第5、6每题10分)1、已知一次函数y=kx+b 的图像如图所示,求其函数关系式。

江苏省无锡市利港中学-学年苏科版八年级数学上册第十八周周练试卷(Word版 无答案)

江苏省无锡市利港中学-学年苏科版八年级数学上册第十八周周练试卷(Word版 无答案)

江苏省无锡市利港中学2020-2021学年苏科版八年级数学上册第十八周周练试卷满分:120时间:100分钟 一、精心选一选(3′×10=30′)1. 下列无理数中,在﹣2与1之间的是 ( )A .﹣B .﹣C .D .2.在下列实数中:1.53,-2,,0,π,无理数有 ( )A .1个B .2个C .3个D .4个3.在平面直角坐标系中,点M (−2,3)落在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.函数y =-x+2的图象不经过 ( ) A .第一象限 B.第二象限 C.第三象限 D .第四象限5.关于函数y =-2x +1,下列结论正确的是 ( ) A .图象必经过(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y<06.若点A (3,y 1),B (-2,y 2),C (0,y 3)是函数图像上的点,则 ( )A .B .C .D .7.正比例函数y=kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y=kx -k 的图像大致是 ( )A .B .C .D .8.在无锡全民健身越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图像(全程)如图所示.下列四种说法:① 起跑后1小时内,甲在乙的前面; ② 第1小时两人都跑了10千米;③ 甲比乙先到达终点; ④ 两人都跑了20千米. 正确的有 ( )A .①②③④B .①②③C .①②④D .②③④42+-=x y 321y y y <<321y y y >>231y y y <<132y y y >>9.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =4,b =5,则该矩形的面积为( ) A .50B .40C .30D .2010.如图,在平面直角坐标系中,A (﹣3,0),B (3,0),C (3,4),点P 为任意一点,已知P A ⊥PB ,则线段PC 的最大值为( ) A .3 B .5C .8D .10二、细心填一填(3′×9=27′) 11.64的平方根是;12.点A (1,−2)关于x 轴的对称点的坐标是.13.七大洲的总面积约为149 480 000km 2,精确到百万位,可表示为.14.点P (2,-3)与点Q (3,-1)的中点M 的坐标________; 15.若函数是关于x 的一次函数,则m =.16.把直线y =2x 向下平移5个单位后所得直线l 的解析式为.17.已知一次函数y =kx +b 与y =mx +n 的图像,由图像可知:若0<kx +b <mx +n ,则x 的取值范围为__________________;若k(x+2)+b >0,则x 的取值范围为_____________ 18.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐标为(1,0),且∠AOB =30°点P 为斜边OB 上的一个动点,则P A +PC 的最小值为_________; 19.计算(6分)(1);(2)(2+3)(2-3).20.(6分)(1) 9x 2-121=0;(2)24(x ﹣1)3+3=0.2km 1)3(2--=-m xm y 3()123-272+-(第17题)Oxy 5 3 4 6 y =kx +by =mx +n21.(6分)已知y+2与x+1成正比例,且x=3时y=4.(1) 求y与x之间的函数关系式; (2) 当y=1时,求x的值.22.(本题10分)已知一次函数y1=mx+m-2与y2=2x-3的图象的交点A在y轴上,它们与x轴的交点分别为点B和点C.(1)求m的值及△ABC的面积;(2)求一次函数y=mx+m-2的图像上到x轴的距离等于2的点的坐标.(3)根据图像直接写出方程mx+m-2=0的解和不等式2x-3<mx+m-2<0的解集.23.(3+5=8分)如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,且S△AOP=6.(1)求△COP的面积;(2)求直线AP 的函数关系式.24(4+4=8分).某商场计划购进A,B两种台灯共100台,这两种台灯的进价、售价如表所示:类型进价(元/盏)售价(元/盏)价格A型30 45B型50 70(1)若商场预计进货款为4600元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?25.(本题4+3+4=11分)如图,在平面直角坐标系中,直线与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第二象限内作正方形ABCD . (1)求边AB 的长,并求点D 的坐标;(2)能否在x 轴上找一点M ,使△MDB 的周长最小?如果能,请求出M 点的坐标;如果不能,说明理由;(3)在y 轴上是否存在点P ,使△ABP 为等腰三角形,若存在请直接写出点P 坐标.不存在,说明理由.26.(本题3+5=8分)在一次全程为20km 的越野赛中,甲、乙两名选手所跑的路程y (km )与时间x (h )之间函数关系的图像如图中折线O —A —B —C 和线段OD 所示,两图像的交点为M .根据图中提供的信息,解答下列问题:(1)请求出图中a 的值;(2)在乙到达终点之前,问:当x 为何值时,甲、乙两人相距2 km ?122y x =+甲 乙x /hy /km O0.5 1 1.5 a 810 20 2.6 CD A B M。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX年高中测试






科目:
年级:
考点:
监考老师:
日期:
江苏省无锡市江阴二中2020-2021学年苏科版八年级数学上册第十八周周练试卷
一、选择题:(本大题共10小题,每题3分,共30分)
1.下列实数: 1.732、、、、、中,属于无理数的个数是----( ) A.2个 B.3个 C.4个 D.5个
2.如图,小手盖住的点的坐标可能为 ( )
A.(5,2) B.(-6,3) C. D.
3.下列二次根式中,最简二次根式是()
A.(x≥0) B. C. D.
4.一个长为4cm,宽为3cm的长方形被直线分成面积为x,y两部分,则y与x之间的函数
关系只可能是()
5.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm
至D
点,则橡皮筋被拉长了()
A.2cm B.3cm C.4cm D.5cm
6.若点A(-3,y1),B(2,y2),C(1+2,y3)是函数图像上的点,则()
A. B. C. D.
7. 一次函数y=kx+b,y随x的增大而减小,且kb<0,则它的大致图象是()
8.若函数y =⎩
⎨⎧x2 + 2 (x≤2)
2x (x > 2),则当函数值y =8时,自变量x 的值是
( )
A .
B .4
C .或4
D .4或
9.如图,在平面直角坐标系中,线段AB 的端点坐标为A(-2,4),B(4,2),直线y=kx -2与线段AB 有交点,则k 的值不可能是 ( )
A .-5
B .-2
C .3
D . 5
10.如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F ,连接B ′D ,则B ′D 的最小值是( ) A .2﹣2 B .6 C .2
﹣2
D .4
二、填空题:(本大题每空2分,共20分) 11.
的倒数是 ;把19547精确到千位的近似数是 .
12.函数
中自变量x 的取值范围是 . 点M (-2,k )在直线y=2x+1
上,则点M 到x 轴的距离为____________. 13.若一个三角形的三边长分别是3,4,
,则这个三角形最长边上的中线长是 .
14.函数y =kx +b (k ≠0)的图象平行于直线y =2x +3,且交y 轴于点(0,-1),则其
函数表 达式是_____________.
(第5
A B C D
15.若点P(a,b)在第二象限内,则直线y=ax+b不经过第_______象限.
16.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为
17.在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动
的路
程为x,△ABP的面积为y,则△ABC的面积为.
18.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰
好落在BC边的中点D处,折痕为EF,则AE的长为
三、解答题:(本大题共有8小题,共60分)
19计算或求值:(每题3分,共9分)
⑴(2)(3)求x值:
20.(本题6分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是
AB的中点.试判断OE和AB的位置关系,并给出证明.
(第16题)
F E
B C
A
(第17题)
(第18题)
21.(本题5分)如图,已知点P 在∠AOB 内部,请你利用直尺(没有刻度)和圆规在
∠AOB 的角平分线上求作一点Q ,使得PQ ⊥OB .(不要求写作法,但要保留作图痕
迹)
22.(本题5
分)已知一次函数y=kx+b 的图像经过点(-1,-5),且与正比例函数y =的图像相交于点(2,a )求⑴a 、k 、b 的值;⑵这两个函数图像与x 轴所围成的三角形面积.
P
A B
23.(本题6分)如图,直线y=2x+3与x轴交于点A,与y轴交于点B.
⑴求A、B两点的坐标;⑵过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP 的面积.
24.(本题9分)某市化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.结合表中提供的信息,解答问题:
⑴设装运A种物资的车辆数为x,装运B种物资的车辆数为y.⑴求y与x的函数关系式;
物资种类 A B C
每辆汽车运载量(吨)12 10 8
每吨所需运费(元/吨)240 320 200 ⑵如果装运A种物资的车辆数不少于5辆,装
运B种物资的车辆数不少于4辆,那么车辆
的安排有几种方案?并写出每种安排方案;
⑶在⑵的条件下,若要求总运费最少,
应采用哪种安排方案?请求出最少总运费.
25.(本题11分)如图①,在矩形ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿
D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t (s)之间的函数关系图象.
⑴请解释图中点H的实际意义?⑵求P、Q两点的运动速度;
⑶将图②补充完整;⑷当时间t为何值时,△PCQ为等腰三角形?请求出t的值.。

相关文档
最新文档