材料表界面高分子材料的表面改性
表面改性
层材料的光,电,热,化学性能等来表征表面改性的效果。
纳米二氧化硅的表面改性
由于纳米二氧化硅的粒径小、比表面大、比表面能高 ,表面带有羟基,呈亲水性,所以能否发挥其在复合材料 中的作用关键在于它的分散和与聚合物的复合。当二氧化 硅表面未经改性,与聚合物共混、共聚或接枝时,纳米二 氧化硅容易团聚,与聚合物产生相分离或发生相反转。所 以,对其进行改性是解决纳米二氧化硅团聚,制备无机有 机纳米复合材料的重要步骤。 二氧化硅的表面未经改性,体系的粘度较大,经表面 改性后,即使二氧化硅的含量高达35%(质量分数)时, 体系的粘度仍适中。 加入改性二氧化硅的复合材料的存 储模量大约是未加改性剂的2倍,丙烯酸酯的粘弹性及耐 磨性随二氧化硅含量的增加而提高。但如果纳米二氧化硅 加入过量,也会导致体系粘度增加。一般在30%~35%.
应用:
广泛应用于机械工业、国防工业航空航天领域,通过表 面改性可以使材料性能提高,产品质量提高,降低企业成 本.在提高零部件的使用寿命和可靠性,提高产品质量,以 及节约材料,节约能源等方面都有着十分重要的意义。
工艺:
表面改性工艺依表面改性的方法、设备和粉体制备方 法而异。目前工业上应用的表面改性工艺主要有干法工 艺、湿法工艺、复合工艺三大类。
表面改性方法
到填料表面改性的工艺。 反应,对粉体颗粒表面进行包覆,使颗粒表面改性的方 法。
面形成一层和多层包覆膜,以改善粉体表面性质。
物理涂覆:利用高聚物或树脂等对材料表面进行处理以 达
化学包覆:利用有机物分子中的官能团与填料表面发生化学
沉淀反应:通过无机化合物在颗粒表面沉淀反应,在颗粒表
插层改性:利用层状结构的粉体颗粒晶体层之间结合力较弱
反应,并且烷氧基硅烷价格较高,在乳液聚合中易形成凝胶
基于超星学习通的高分子材料专业教学模式的改革探讨——以《材料的表面与界面》为例
2021年第2期广东化工第48卷总第436期 · 233 ·基于超星学习通的高分子材料专业教学模式的改革探讨——以《材料的表面与界面》为例熊贤强1,张晓2*,余彬彬1,金燕仙1(1.台州学院医药化工与材料工程学院,浙江台州318000;2.台州学院生命科学学院,浙江台州318000) [摘要]超星学习通是一款为高校师生提供教育教学的移动平台,可以通过“网上+线下”模式将课堂教学与网上教学融合在一起,打造材料的表面和界面翻转课程的有效载体。
基于超星学习通平台搭建材料的表面和界面翻转课堂,改变传统“老师讲、学生听”的大水漫灌式教学方式,提升课程教学质量。
本文以超星学习通平台搭建材料的表面和界面翻转课堂,探索研究新形势下“互联网+教学”模式改革。
[关键词]超星学习通;教学改革;翻转课堂[中图分类号]G4 [文献标识码]A [文章编号]1007-1865(2021)02-0233-02Discussion on the Reform of the Teaching Mode of Polymer Material Specialty Based on Chaoxing Learning Platform—Taking “The Surface and Interface ofMaterials” as an ExampleXiong Xianqiang1, Zhang Xiao2*, Yu Binbin1, Jin Yanxian1(1. School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000;2. College of Life Science, Taizhou University, Taizhou 318000, China)Abstract: Chaoxing Learning is a mobile platform that provides education and teaching for teachers and students in colleges and universities. It can integrate traditional offline teaching with online teaching through the “online + offline” mode to create an effective carrier for material surface and interface flipped course. Based on the Chaoxing Learning platform, the surface and interface flipped classroom of materials are built to change the traditional teaching method of “teacher speaks, student listens” and improve the teaching quality. In this paper, the superstar learning platform is used to build the surface and interface flipped classroom of materials and explore the reform of “Internet + teaching” mode under the new situation.Keywords: Chaoxing Learning Platform;teaching reform;flipped classroom1 引言高分子材料专业是研究高分子材料的设计、合成、制备以及组成、结构和性能学科,目前是国民经济发展的支柱产业之一,主要培养适应现代经济发展需要,具备高分子材料合成与改性方面的技术研发、工艺设计、生产管理等的高端人才。
第三章聚合物的表面改性 材料表界面课件
interface will influence its properties.
-C-C-
Woven carbon fiber composite
-C-O -C=O
XPS limitations:
1. Inability to detect hydrogen (H) and Helium (He) 2. X-Ray beam diameter is wider (limit is about 150
。
3.3.2 火焰处理和热处理
● 火焰处理是用可燃性气体的热氧化焰对聚合物表面进行 瞬间高温燃烧,使其表面发生氧化反应而达到处理的⻋ 的。
可燃性气体通常采用焦炉煤气、甲烷、丙烷、丁烷、天然气和 一定比例的空气或氧气;
瞬间:0.01~0.1s内;高温:1000~2700 ℃; 氧化过程按自由基机理进行,表面可被氧化引入含氧基团,并 随着发生断链反应。
或单体在等离子体的作用下发生反应。
聚合物表面与氧等离子体发生的反应:
□ CO2,CO,H2O及其它含氧的气体在等离子状态下也 可分解为原子氧,也具有氧等离子作用。
□ 等离子体表面氧化反应是自由基连锁反应,反应不仅引 入了大量的含氧基团,如羰基,羧基及羟基,而且对材 料表面有刻蚀作用。
□ 氮等离子体中有N,N+,N-,N*等活性粒子,与聚合 物 表面自由基反应,引入含氮的活性基团。
Electromagnetic spectrum
Various processes (b, c) can take place after hole generation (a)
Why UHV for Surface Analysis?
■
Degree of Vacuum
材料表界面 第六章 高分子材料的表面张力
6.3 表面张力与相对分子质量的关系
特例
聚乙二醇分子端基上的羟基之间发生氢键缔合作用,结果 使低聚物的性能变得像相对分子质量无穷大一样。
6.4 表面张力与分子结构的关系
等张比容经验公式:
摩尔体积
(P /V )4
等张比容
等张比容是与物质的分子结构密切有关的量,摩尔体积与物 质的密度有关,因而也与温度有关。因此,影响表面张力的两个 重要因素是温度和分子结构。
6.1 表面张力与温度的关系
利用表面张力与温度的线性关系,可间接地测试固态聚合物的 表面张力。--------第一种得到表面张力的方法
缺点: (1)没有考虑相 变的影响 (2)测试结果不 准确
6.1 表面张力与温度的关系
Macleod (麦克劳德)方程:
0 n log n log A
材料表界面课程主要内容
材料表界面
一、绪论
二、液体界面
三、固体表面 四、固液界面
表界面基础知识
五、表面活性剂
六、高分子材料的表面张力
七、聚合物的表面改性
八、金属材料的表面
九、无机非金属材料的表界面
十、复合材料的界面
第六章 高分子材料的表面张力
什么是高分子材料?
高分子材料:以高分子化合物为基础的材料。
包括橡胶、塑料、纤维、涂料、胶材料在国民经济中的地位
高分子材料占飞机总重的65%。
(即使采用最轻铝/钛合金,其比重也大于2.7,而高分子材料的比重为1.5左右)
高分子材料的重要性
高分子材料表界面特性
高分子材料表界面特性
合成纤维 表面的染色
塑料表面 的喷金
高聚物对 其他材料 的粘接
如果使高聚物熔体在具有不同表 面能的表面上冷却,可得到结晶 度不同的表面,这类表面具有不 同的表面张力。
难粘高分子材料的表面处理技术
难粘高分子材料的表面处理技术聚乙烯(PE)、聚丙烯(PP)等聚烯烃和聚四氟乙烯(PTFE)类含氟高分子材料,若不经特殊的表面处理,是很难用普通胶粘剂粘接的,这类材料通常称为难粘高分子材料或难粘塑料。
聚烯烃类塑料由于性能优良、成本低廉,其薄膜、片材及各种制品在日常生活中大量地应用着。
而氟塑料则因具有优异的化学稳定性、卓越的介电性能和极低的摩擦系数以及自润滑作用,使其在一些特殊领域中具有重要的用途。
但是,这类材料在应用过程中,不可避免地会遇到同种材料之间或与其它材料的粘接问题,因此,人们曾对这类难粘高分子材料的难粘原因及表面处理方法进行了不断深入的研究。
难粘高分子材料的难粘原因是多方面的1.润湿能力差一般胶粘剂在未固化前都呈流动态,粘接过程是胶液在粘接件表面浸润,然后固化的过程,对粘接来说,润湿接触是粘接的首要条件。
液体与固体接触,其润湿程度可用接触角表示,几种塑料的表面特征数据见表1。
从表1可以看出水对它们的接触角都比较大,表面张力小,接着能不大,润湿能力就差,比较难粘。
2.结晶度高这几种难粘塑料都是高结晶度物质,所以化学稳定性好,它们的溶胀和溶解都比非结晶高分子困难,当与溶剂型胶粘剂粘接时,很难发生高聚物分子链的扩散和相互缠结,不能形成很强的粘附力。
3.是非极性高分子聚乙烯、聚丙烯、聚四氟乙烯等都是非极性高分子,它们的表面只能形成较弱的色散力,而缺少取向力和诱导力,因而粘附性能较差。
4.存在弱的边界层这些高聚物难粘除了结构上的原因外,还在于材料表面存在弱的边界层。
聚烯烃类树脂本身含有低分子量物质以及在加工过程中加入的添加剂(如滑爽剂、抗静电剂等),这类小分子物质极容易析出、汇集于树脂表面、形成强度很低的薄弱界面层,表现出粘附性差,不利用于印刷、复合和粘接等后加工。
基于上述认识,人们采取了多种手段对难粘高分子材料表面进行改性处理:一在聚烯烃等难粘材料表面的分子链上导入极性基团;二提高材料的表面能;三提高制品表面的粗糙度;四消除制品表面的弱界面层,以提高难粘材料的粘附性能和粘接强度。
生物材料的表面和界面改性研究进展
生物材料的表面和界面改性研究进展引言:生物材料的表面和界面改性是一项重要的研究领域,涉及到生物医学工程、组织工程、药物传递系统等多个领域。
通过改变材料的表面性质和界面特性,可以实现生物材料的生物相容性、机械性能和药物传递性能的改善。
本文将介绍生物材料表面和界面改性的研究进展,包括表面修饰技术、生物相容性改善、界面相互作用等方面的内容。
一、表面修饰技术的发展表面修饰技术是改变材料表面性质的关键手段,其发展对于生物材料的应用和性能提升至关重要。
目前,包括物理方法、化学方法和生物方法等多种表面修饰技术被广泛应用于生物材料的改性。
1. 物理方法物理方法是通过改变表面形貌和结构来实现材料性能的调控。
常见的物理方法包括沉积薄膜、等离子体处理、溶液喷雾等。
例如,利用磁控溅射技术可以在材料表面形成一层均匀的薄膜,改变表面的化学反应性,提高材料的生物相容性和耐磨性。
2. 化学方法化学方法是通过表面化学反应来改变材料的表面性质。
其中,最常见的化学方法是控制材料表面的化学组成和功能团的引入。
例如,通过溶液法或气相法在材料表面修饰一层功能化分子,可以增强材料的生物相容性或控制材料的附着行为。
3. 生物方法生物方法是利用生物分子的特异性识别和作用来实现材料的表面修饰。
生物方法基于生物分子与材料表面之间的特异性相互作用,可以制备具有特定生物活性和生物识别特性的材料。
例如,利用抗体与特定抗原的配对作用,可以在材料表面制备具有高度选择性的生物传感器。
二、生物相容性改善的研究进展生物相容性是生物材料在生物体内具有良好的生物适应性和稳定性的能力。
通过表面和界面的改性可以改善材料的生物相容性,降低材料在体内引起的炎症反应和排异反应。
1. 表面形貌对生物相容性的影响表面形貌是材料表面粗糙度和微观结构的表征。
研究表明,改变材料的表面形貌可以影响细胞黏附、增殖和分化等过程,进而影响生物材料的生物相容性。
例如,通过控制材料表面的纳米结构,可以实现细胞的定向分化和组织再生。
表面改性技术
➢ 中频淬火常用在大直径工件和硬化层深度较深的 场合。
7.2 表面热处理
② 火焰加热表面淬火
火焰加热表面淬火是应用氧一乙炔或其他可燃气 体对零件表面加热,随后淬火冷却的工艺。
7.2 表面热处理
与感应加热表面淬火相比优点如下:
设备简单,操作灵活; 适用钢种广泛; 零件表面清洁、一般无氧化和脱碳、畸变小。
1. 在组织结构上,亚晶粒极大地细化,位错密度增加,晶 格畸变度增大;
2. 形成了高的宏观残余压应力。
7.1 金属表面形变强化
表面压应力可防止裂纹在受压的表层萌生 和扩展。
经喷丸和滚压后,金属表面产生的残余压 应力的大小,不但与强化方法、工艺参数 有关,还与材料的晶体类型、强度水平以 及材料在拉伸时的硬化率有关。
➢ 集肤效应:感应电流 集中分布于工件表面, 使受热区迅速加热到 钢 的 相 变 临 界 温 度 Ac3 或Accm之上,然后在冷 却介质中快速冷却, 使工件表层获得马氏 体。
7.2 表面热处理
感应电流透入深度
➢ 感应电流透入深度,即从电流密度最大的工件表面 到电流值为表面的1/e(e=2.718)处的距离,用Δ表 示。Δ的值(单位为mm)可根据下式求出:
喷丸表面形变强化工艺及应用
2. 喷丸强化用的设备
喷丸采用的专用设备,按驱动弹丸的方式可分 为机械离心式喷丸机和气动式喷丸机两大类。
喷丸机又有干喷和湿喷之分。干喷式工作条件 差,湿喷式是将弹丸混合在液态介质中形成悬 浮状混合物,然后喷丸,因此工作条件有所改 善。
7.1 金属表面形变强化
机械离心式喷丸机
具有高硬化率的面心立方晶体的镍基或铁 基奥氏体热强合金,表面产生的压应力高,
材料表界面-第一篇章
在能源、环境、医疗等领域,材料表界面的研究 成果具有广泛的应用前景,能够推动相关领域的 技术进步和创新发展。
02 材料表界面基础
CHAPTER
表界面定义
总结词
表界面是材料中两个相的交界面,具有独特的结构和性能。
详细描述
表界面是指两种不同的材料在接触时形成的交界面,这个交界面通常具有独特的结构和性能,与材料 的其他部分存在明显的差异。表界面在材料中的作用至关重要,它可以影响材料的物理、化学和机械 性能。
研究领域
涵盖了物理、化学、材料 科学等多个学科领域,对 于材料的应用和发展具有 重要意义。
研究方向
包括表面改性、界面反应、 表面增强等方向,旨在提 高材料的性能和功能。
研究背景与意义
1 2 3
研究背景
随着科技的发展,对材料性能的要求越来越高, 材料表界面研究的重要性逐渐凸显。
研究意义
通过研究材料表界面,可以深入了解材料的性质 和行为,为新材料的研发和应用提供理论支持和 实践指导。
模拟法
模拟法是通过计算机模拟来研究材料表界面的方法。它利用分子动力学、蒙特卡洛方法等计算方法, 模拟材料表界面的结构和性质,从而获得关于材料表界面的信息。
模拟法具有高效性和可重复性,可以在短时间内对大量材料进行表界面研究。此外,模拟法还可以预 测实验难以观测的现象和性质。然而,模拟法的结果受到模型和参数选择的限制,需要谨慎验证和校 准。
生物材料
利用材料表界面调控细胞行为, 促进组织再生和修复,为生物医 学工程和再生医学提供关键材料。
药物传递
通过材料表界面改善药物释放的 效率和靶向性,提高药物治疗效 果和降低副作用。
医学诊断
利用材料表界面提高生物标志物 的检测灵敏度和特异性,推动医 学诊断技术的发展。
第6章 生物材料表面改性
材料表面改性方法包括化学和物理方 法,通常化学方法较为繁琐,应用大量有 毒化学试剂,对环境造成污染,对人体也 有极大危害。物理方法具有工艺简单、操 作方便、对环境无污染等优点,日益受到 重视。
UHMWPE接枝丙烯酸的红外光谱图
XPS分析
a: PE,C的XPS峰
b: PE-AA,C的XPS峰
聚乙烯的C1s主要由两个峰组成,分别归属于C1和C2峰,其结合能分别为285ev 和289ev。结合图和表可以看出,未接枝聚乙烯表面有C2电子峰,但是含量很少, 可能是聚乙烯表面的杂质,可忽略,接枝聚乙烯表面碳原子的结合形式发生了变化 ,即C1含量降低,C2含量增加,C2/C1由0.068增加到0.297,增加了337%,说 明接枝聚乙烯表面碳元素产生了新的官能团。光敏剂二苯甲酮受紫外光引发,从 PE大分子链上夺取氢,产生大分子自由基,从而引发丙烯酸(AA)单体的接枝聚 合,因此,接枝链末端应有-COOH存在,而O=C-O的结合能为289ev,从而证明 了丙烯酸已经被成功接枝到聚乙烯表面。
通常辐射接枝的接枝率正比于吸收剂量,但超过某一剂量 范围时接枝率的增加趋于缓慢。
单体浓度过高会阻碍单体的接枝,。
反应温度对接枝共聚的影响是复杂的,多方面的,如反应 在高粘度介质中进行时常产生凝胶效应、能量转移与链转 移、侧链长度变化、单体扩散速度改变以及相分离等,对 辐射接枝来说提高反应温度通常对提高接枝率有利。
上述方法现已发展为可控自由基聚合(CRP),又 称为活性自由基聚合。
表面改性原理
表面改性原理
表面改性是一种通过在材料表面引入新的物质或改变材料表面结构,从而改变其性质和功能的方法。
其主要目的是提高材料的性能,例如增加材料的化学稳定性、耐磨性、耐腐蚀性或增强材料的粘附能力等。
表面改性可以通过多种方法实现,包括化学方法、物理方法和生物方法等。
化学方法中常用的表面改性技术包括溶液处理、电沉积和化学气相沉积等。
溶液处理是将材料浸泡在含有特定化学物质的溶液中,使化学物质与材料表面发生反应,形成新的物质层。
电沉积是利用电解作用,在材料表面沉积一层新的金属或化合物。
化学气相沉积则是将特定气体在高温条件下与材料表面反应,生成新的表面物质。
物理方法中常用的表面改性技术包括离子注入、磁控溅射和激光处理等。
离子注入是将高能离子轰击材料表面,使离子能量转化为材料表面的热能,从而改变表面结构和性质。
磁控溅射是利用磁场控制金属靶材上的离子,将其沉积在材料表面形成薄膜。
激光处理则是利用激光束对材料表面进行表面熔化或表面重结晶,改变材料的组织和性质。
生物方法中常用的表面改性技术包括生物功能化修饰和生物分子固定化等。
生物功能化修饰是将生物大分子或生物活性物质修饰在材料表面,从而赋予材料特定的生物功能,如抗菌、抗炎或细胞黏附等。
生物分子固定化是将特定的生物分子固定在材料表面,用于生物传感、靶向治疗等应用。
总之,表面改性是一种有效的方法,在不改变材料体积和内部结构的情况下,对材料表面进行改变,从而获得新的表面性能和功能。
这些技术在材料科学和工程领域中具有广泛的应用前景。
材料表面处理对复合材料界面性能的影响研究
材料表面处理对复合材料界面性能的影响研究复合材料广泛应用于航空航天、汽车制造和建筑等领域,因为它们具有优异的力学性能和轻质化特征。
然而,复合材料的界面区域对整体性能至关重要。
为了增强界面性能,材料表面处理技术成为研究的热点之一。
本文将探讨材料表面处理对复合材料界面性能的影响。
一、材料表面处理方法材料表面处理方法广泛应用于改善复合材料的界面性能。
其中包括物理方法和化学方法。
物理方法主要包括射线辐照、机械磨削和喷砂等,旨在提高材料表面的粗糙度和附着力。
化学方法如表面活性剂的引入、化学改性和表面微结构的修饰等,以提高界面的亲合力和粘附力。
二、材料表面处理对界面粘附强度的影响表面处理对复合材料界面的粘附强度具有显著影响。
一方面,物理方法如机械磨削和喷砂可以增加界面的粗糙度,增强了界面的机械锁合效应,从而提高了复合材料的粘附强度。
另一方面,化学方法如引入表面活性剂可以增加界面的化学键数量,提高了界面的粘附强度。
研究发现,采用化学方法处理复合材料的表面,能够使界面粘附强度相较于未处理表面提高10%-20%。
三、材料表面处理对界面能量耗散的影响界面能量耗散是衡量界面性能的重要指标之一。
表面处理能够有效提高复合材料的界面能量耗散能力。
通过物理方法处理复合材料表面,如喷砂或机械磨削,能够增加界面的粗糙度,增加位移钳合阻力,从而提高界面的能量耗散能力。
此外,通过化学方法处理表面,如引入表面活性剂,可以增加界面的摩擦阻尼,提高能量的耗散。
实验证明,经过表面处理的复合材料界面能量耗散能力相比未处理表面提高了15%-30%。
四、材料表面处理对界面的耐久性的影响表面处理技术在提高界面的耐久性方面发挥了重要作用。
物理方法处理表面,如射线辐照或喷砂处理,可以去除材料表面的污染和氧化层,减少界面的缺陷和腐蚀,从而提高界面的耐久性。
化学方法可以改变表面的化学特性,增加界面的抗腐蚀性能。
实验研究表明,经过表面处理的复合材料界面耐久性相较于未处理表面有所提高,延长了复合材料的使用寿命。
材料表面与界面的物理与化学性质研究
材料表面与界面的物理与化学性质研究材料表面与界面的物理与化学性质一直以来都是材料科学研究的重要方向,其研究不仅有助于深入了解材料的结构与性能之间的关系,还能为材料的设计和应用提供有力的支持。
本文将就这一主题展开讨论,从介观尺度的物理与化学性质入手,分析材料表面与界面的特点和研究方法。
一、表面与界面的介观尺度特征材料的表面和界面通常被视为材料结构的特殊区域,在微观尺度上具有与体相不同的特征。
一方面,材料表面具有较高的比表面积,这使得它们在许多材料的物理和化学过程中起着至关重要的作用。
另一方面,材料界面是材料间相互作用的平台,其特性直接影响材料的宏观性能。
因此,深入研究材料表面与界面的物理与化学性质具有重要的科学和应用价值。
表面和界面的特征主要包括表面形貌、表面能、界面结构、界面能等。
表面形貌直接反映了材料表面的细节结构,不同的形貌将导致不同的表面性能。
表面能反映了表面原子与周围环境的相互作用强度,它决定材料表面的润湿性、粘附性等特性。
界面结构是指两个不同材料之间的交界面,根据不同的材料特性和界面条件,界面结构可以发生不同的变化。
界面能主要研究材料界面的能量状态和热力学特性,对于材料的粘接、分离等过程有重要影响。
二、材料表面与界面性质研究方法在研究材料表面与界面的物理与化学性质时,科学家们尝试了多种研究方法,其中一些方法也适用于表征材料的界面结构。
下面介绍几种常用的研究方法。
1. 表面分析技术:表面分析技术包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等。
这些技术能够观察材料的表面形貌和表面原子级别的化学状态,从而得到表面的物理和化学信息。
2. 界面能测量:界面能测量是研究界面物理性质的重要手段,主要通过接触角测量和界面力学测试来实现。
接触角测量可以定量表征材料的润湿性和界面能,在微纳尺度上研究材料的表面能。
界面力学测试可以测量材料界面的拉伸、剪切等力学性能,对于材料的界面粘附等过程具有重要意义。
生物材料的表面与界面材料表界面ppt课件
3.3 生物相容性的研究意义
生物相容性是生物材料极其重要的性能,是区 别于其他材料的标志,是生物医用材料能否安 全使用的关键性能。
控制和改善生物材料的表面性质,是促进材料 表面与生物体间的有利相互作用、抑制不利相 互作用的关键途径。
如何提高材料的生物相容性
?
生物材料的表面工程是一种非常重要的方法!
国内从事生物材料表界面研究的课题组
生物材料的表面改性与功能化;
蛋白质、细胞与材料表面的相互作用;
苏州大学陈红教授课题组
➢Combining surface topography wi生 polymer chemistry: exploring new interfacial biological phenomena. Polym. Chem., 2013, DOI: 10.1039/C3PY00739A ➢Aptamer-Modified Micro/Nanostructured Surfaces: Efficient Capture of Ramos Cells in Serum Environment. ACS Appl. Mater. Interfaces, 2013, 5, 3816.
第一部分:生物材料表界面学科的诞生
1. 生物材料的概念(Biomaterials):
与生物体相接触的、或移入生物体内起某种取代、 修复活组织,增进或恢复其功能的特殊材料。
2. 生物材料的发展阶段
➢最初:一些临床应用的生物材料并不专门针对医用设计 (实现基本临床功能,也带来了不良的生物反应)
➢20世纪60-70年代:第一代生物材料(惰性生物材料) (物理性能适宜、对宿主反应较小;寿命延长5-25年)
其他领域的表面工 程技术和材料引入 生物材料领域或基 于体内物质的初步 模仿
材料科学中的表面与界面
材料科学中的表面与界面材料科学是研究材料的性质、结构、制备、应用等方面的一门学科,而表面和界面是材料科学中非常重要的概念。
表面是指材料的表层,而界面则是不同材料或同一材料不同相之间的界面。
在材料制备、材料性能及材料应用等方面表面与界面都起着至关重要的作用。
表面对材料性能的影响材料的大部分性质都与材料的表面直接相关。
在一些材料中,表面的化学和物理性质与体积的性质有很大的不同。
表面可以影响材料的机械性能、光学性能、电学性能和化学反应等方面。
表面是由原子/分子组成的,当材料表面被处理时,会影响原子/分子的结构和间隙,从而产生不同的表面能、表面电位等物理和化学性质,如氧化、硫化、氢氟化等处理方式都会影响材料表面的性质。
表面的改性可以改变材料的结构和性能。
如铝合金表面的氧化处理可以形成氧化层,保护铝合金表面,提高铝合金的耐腐蚀性;金属材料表面经过镀铬、喷涂等处理可以提高银的光学透明度和化学稳定性。
此外,通过表面处理可以增加材料表面的疏水性或亲水性,进一步改变材料与周围环境的相互作用。
表面的改性也可以改善材料的生物学性能和生物适应性。
例如,医用材料如人工骨骼和人工关节一般要表面进行多次处理,以增加其生物相容性和降低其对周围组织的损伤。
界面对材料性能的影响界面是不同材料或同一材料不同相之间的界面。
在这些界面上,会有不同的物理和化学反应,从而产生不同的力、电学和光学性质。
例如,当两个金属接触时,界面处的电子相互作用可以导致金属表面发生化学反应,使得接合界面处形成化合物等化学反应。
界面的存在也会对材料力学性能产生影响。
在金属合金中,不同的晶体方向表现出不同的机械性能,即不同的力学属性。
当这些晶体遇到界面时,界面中的应力会产生影响,导致材料在局部区域的形变和塑性变形。
除此之外,在半导体工艺中,也需要对半导体材料进行热处理、光刻等工艺处理,生成不同的界面,从而制备出不同的器件。
而当这些器件的性质以及器件之间的交互作用都依赖于界面的存在和性质。
第七章固固界面
1+1 2 —— 协同效应 例:纤维材料纵向不能承压,而复合后纤维的压缩强度得到充分发挥;
玻璃纤维的断裂能约为10J/m2,聚酯的断裂能约为100J/m2,而复 合后的玻璃钢断裂能达105J/m2 • 产生协同效应的原因
2021/3/5
第七章 固固界面
21
第七章 固固界面
复合后两者的差别仅在于基体与纤维之间存在界面。 界面是产生协同效应的根本原因 复合材料的破坏过程
)m
,
如晶体熔化
• 发生二级相变时,表面张力不发生突变,但温度系数不
等,
( d
dT
)c
( d
dT
)m
如 :玻璃态
过冷液体转变
2021/3/5
第七章 固固界面
17
第七章 固固界面
7.2.3 表面张力和分子量的关系
高聚物的性质,如玻璃的转变温度、热容、比热、热膨胀系数,折射 率,拉伸强度等,与分子量之间存在如下关系。
2021/3/5
第七章 固固界面
23
第七章 固固界面
7.3.2 玻璃纤维增强塑料界面 1. 玻纤的性质 玻璃是各向同性的,无固定熔点,短程有序,又叫“冻结的液体” 玻纤外观是光滑的圆柱体,直径3~10 m,密度2.4-2.7 g/cm3 力学性能:拉伸强度高:1500-4000 MPa,直径越小,强度越大
• 晶界的简单模型
Mott的岛屿结构(1948):
认为晶界是由许多结构上的“岛屿”所组成,在岛屿内部的原子排列 属
于点阵结构,岛屿外部的结构属于非晶态区域,遍及整个晶界层内。
扩散结构:
以晶界的扩散机构来探讨结构的特点,认为在晶界中存在着成群的点
阵缺陷,这些缺陷在晶体内部的扩散机制中起着重要作用。
材料表界面第七章--高分子材料的表面改性
7.5.2 等离子体处理对聚合物表面的改性效果
(1)表面交联
CH2 CH2 + He+
.
2 ( CH2 CH )
CH 2
.
CH
+H.
(2)极性基团的引入
.
CH2 CH
+ H. + He
CH2 CH
CH 2 CH
CH2 CH + H2
36
37
● 氩或氮等离子处理的聚乙烯和聚四氟乙烯表面的光电子能谱揭 示,处理后C1s峰或F1s峰减弱,O1s峰和N1s峰增强,表明表面 含氧基团或含氮基团的增加(图7-9) (图7-10)
17
7.3 化学改性
● 化学处理是使用化学试剂浸渍聚合物,使其表面发生化学的和物理的 变化。
7.3.1 含氟聚合物 含氟聚合物,具有优良的耐热性、化学稳定性、电性能以及抗水气
的穿透性能,在化学、电子工业和医学方面有广泛应用。但含氟聚合物 的表面能很低,是润湿性最差粘结最难的聚合物,使其应用受到限制。 因此必须表面改性。
C1s=~285eV; N1s=399~400eV; O1s=~533.0eV
单色化AlKα射线激发的聚苯氧基膦嗪的XPS谱来自
《聚合物表面分析》,[英],D 布里格斯 著
7
8
● 电晕放电处理: 氧化
● 火焰处理: 氧化
表
● 化学改性: 氧化, 粗糙化表面
面
● 等离子体改性: 交联,引入官能团等
可燃性气体通常采用焦炉煤气、甲烷、丙烷、丁烷、天然气和一定比例 的空气或氧气;
瞬间:0.01~0.1s内;高温:1000~2700 ℃; 氧化过程按自由基机理进行,表面可被氧化引入含氧基团,并随着发生 断链反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XPS简单介绍:
通过用X射线辐照样品,激发样品表面除H、He以 外所有元素中至少一个内能级的光电子发射,并对产生 的光电子能量进行分析,以研究样品表面的元素和含量。
Ek h EB
Ek为光电子动能;hν为激发光能量; EB为固体中电子结合能;Φ为逸出功
内能级结合能及其强度(谱峰面积)可分别作为元素 识别和原子相对浓度的测定。
7.3.2 聚烯烃的液态氧化处理
●聚乙烯和聚丙烯是大品种通用高分子材料,但他们的表面能低, 为提高聚烯烃的表面活性,通常需要他们进行表面改性。液态 氧化是聚烯烃的表面改性方法之一。
● 铬酸液是最重要的液态氧化体系,如重铬酸盐/硫酸。除了铬 酸系统外,其他氧化液体系有硫酸铵-硫酸银溶液;双氧水, 高锰酸钾-硝酸;氯磺酸;王水等。
前保险杆
汽车的前后保险杆
后保险杆
聚乙烯手提袋的印刷
聚合物在表面改性后,其表面化学、物理结构发生了变化, 表面改性的效果往往由材料使用性能评估。
● 表面物理性能:接触角,表面张力的测试; ● 表面形貌:电子显微镜观察; ● 表面化学组成:X射线光电子谱(XPS, X-ray
Photoelectron Spectroscopy,ESCA, Electron Spectroscopy for Chemical Analysis); ● 表面处理效果:性能的改进(粘结强度,印刷性、染色性 等)
可燃性气体通常采用焦炉煤气、甲烷、丙烷、丁烷、天然气和一定比例 的空气或氧气;
瞬间:0.01~0.1s内;高温:1000~2700 ℃; 氧化过程按自由基机理进行,表面可被氧化引入含氧基团,并随着发生 断链反应。
● 聚合物表面经火焰处理处理后,粘接性和可润湿性得到改善。
● 火焰处理的原理:火焰中含有许多激活的自由基、离子、电子和中 子,如处于激发态的O、NO、OH和NH等。这些基团能夺取聚合物 表面的氢,随后按自由基机理进行表面氧化反应,使聚合物表面生 成羰基、羧基、羟基等含氧活性基团和不饱和双键,从而提高聚合 物的表面活性。
● 这些高能粒子与聚合物表面作用,使聚合物表面产 生自由基和离子,在空气中氧的作用下,聚合物表面 可形成各种极性基团,因而改善了聚合物的粘接性和 润湿性。电晕处理可使薄膜的润湿性提高,对印刷油 墨的附着力显著改善。
电晕放电处理方式
1. 在薄膜的生产线上进行,即通常所说的热膜处理。 优点:处理效果好; 限制性:适用于处理完就使用的场合,比如马上用于印刷、 涂布或复合;
第7章 聚合物的表面改性
改性原因: 聚合物表面(1)表面能低(2)化学惰性(3)表面污染
及存在弱边界层等原因,往往难以润湿和粘合。因此,常常要 对聚合物进行表面处理。
除了润湿和粘合性能,还包括:涂膜性、可染性、抗静电性、 印刷性、防雾滴性能、生物相容性等许多方面。
一般,讨论聚合物的表面改性,往往涉及表面能增大方面。 但事实上,也还有从表面能减小的方向进行改性,以达到具有 防污性的目的。
20s
36.6
7.7
44.3
70.2
60s
33.8
13.4
47.2
69.8
90s
34.9
14.5
49.4
71.1
120s
34.4
15.9
50.3
71.1
500s
34.2
15.7
49.9
72.2
1000s
35.4
15.1
ቤተ መጻሕፍቲ ባይዱ
50.5
71.8
FEP经Na/NH3溶液处理: 1. 对水的接触角变小;
2. 光电子能谱显示的F1s峰已完全消失,出现了一个强 O1s峰。 而C1s峰向低能方向移动。
C1s=~285eV; N1s=399~400eV; O1s=~533.0eV
单色化AlKα射线激发的聚苯氧基膦嗪的XPS谱来
自《聚合物表面分析》,[英],D 布里格斯 著
● 电晕放电处理: 氧化
● 火焰处理: 氧化
表
● 化学改性: 氧化, 粗糙化表面
面
● 等离子体改性: 交联,引入官能团等
改
● 辐照改性: 引入不同的聚合物链
7.3 化学改性
● 化学处理是使用化学试剂浸渍聚合物,使其表面发生化学的和物理的 变化。
7.3.1 含氟聚合物 含氟聚合物,具有优良的耐热性、化学稳定性、电性能以及抗水气
的穿透性能,在化学、电子工业和医学方面有广泛应用。但含氟聚合物 的表面能很低,是润湿性最差粘结最难的聚合物,使其应用受到限制。 因此必须表面改性。
性 的
● 光化学改性: 引入不同的聚合物链
方
● 力化学改性: 引入不同基团或聚合物链
法
● 偶联剂改性: 引入不同基团
● 溶剂洗涤: 清洁, 粗糙化表面
等等
7.1 电晕放电处理
● 聚乙烯、聚丙烯等聚烯烃是非极性材料,有高度的结晶性,其表面的 印刷、粘接、涂层非常困难。电晕放电因简便易行,处理效果好,是 聚烯烃薄膜中最常用的表面处理方法。
2. 在薄膜的再加工线上进行,及通常所说的冷膜处理。 限制性:处理效果与薄膜存放时间有关。处理完后就应用。
3. 进行两次处理。 既在生产线上处理,又在再加工线上处理,为了保证使用前 的表面质量
7.2 火焰处理和热处理
● 火焰处理是用可燃性气体的热氧化焰对聚合物表面进行瞬间高温燃 烧,使其表面发生氧化反应而达到处理的目的。
对含氟聚合物表面进行化学处理,广泛使用的是钠萘或钠氨溶液, 可提高其表面张力和可润湿性,改善其与其他材料的粘结性。
表4-1 钠-萘处理FEP的表面性能
表面张力/(mN/m)
粘附功
σd
σp
σ
(×10-7J/cm2)
FEP(未处理) 19.6
0.4
20.0
48.4
处理后
10S
35.4
5.3
40.7
68.0
● 电晕放电装置示意图如图7-1。
当施加高压电时,局部发光放电,产生电子、正 离子、负离子。结果在阳极和阴极之间产生电晕。
电晕的危害:1. 输电线上如果有电晕发生,则会有电晕电流,引起电力损耗; 2. 电晕放电具有脉冲的性质,会对广播电视产生干扰;3. 强的电磁场会对人体健 康产生影响,可能引起血压和脉搏的变动、心脏无节律波动、易于激动和疲劳等。
结论:说明表面处理的深度达到5-10nm(XPS对聚合物表面的分 析深度一般在10nm范围之内),在此范围内氟已完全被除去 并发生碳化作用,还引进了大量的C=C双键以及羰基和羧基。
C=C双键 的C1s约为 284.7ev。
含氟聚合物中C1s和F1s的化学位移,来自《聚合物表面分析》, [英],D 布里格斯 著