计算方法上机实验报告——拉格朗日插值问题
拉格朗日插值公式数值分析实验报告
学生学号27 实验课成绩
学生实验报告书
实验课程名称数值分析A
开课学院理学院
指导教师姓名金升平教授
学生姓名陶玮
学生专业班级统计1401
2015-- 2016学年第 2 学期
实验课程名称:__数值分析______
实验项目名称拉格朗日插值公式实验成绩
实验者陶玮专业班级统计1401 组别
同组者实验日期年月日一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)
实验目的:
1、学习和掌握拉格朗日插值多项式。
2、运用拉格朗日插值多项式进行计算。
实验基本原理:
拉格朗日插值基函数的一般形式:
也即是:
所以可以得出拉格朗日插值公式的一般形式:
其中,n=1时,称为线性插值,
n=2时,称为二次插值或抛物插值,精确度相对高些,
主要仪器设备:。
数值计算方法-拉格朗日牛顿插值实验
3.对比牛顿前插和牛顿后插两种方法的差异, 讨论分析同一个数值两种方法的计 算结果。 答:如果插值点 x 离 x0。比较近,则一般使用牛顿前差公式;如果插值点 x
离 x0。比较远,则一般使用牛顿后差公式。但对于同一个插值点 x 来说,不管 用牛顿前差公式还是用牛顿后差公式,得到的结果是一-样的,这两种插值公式 只是形式上的差别。 4.讨论分段插值法的意义。 答:高次插值的收敛性没有保证,实际计算稳定性也没有保证,所以当插值结 点 n 较大时, 通常不采用高次多项式插值, 用低次多项式插值, 它能保证收敛性, 得到的结果也相对稳定。
《计算方法》实验报告
实验二 插值法 实验目的
1. 掌握拉格朗日插值法、牛顿插值法、牛顿前后插值法及分段插值法的原理与算法。 2. 讨论几种方法的计算精度与误差,分析拉格朗日插值与牛顿插值法的差异。 3. 学会使用 Matlab 绘图方法,并以此方法来显示插值函数,使结果更直观更形象。
算法原理
(一)拉格朗日插值法 设 是互异插值节点,则满足插值条件 的插值多项式
是存在且唯一的。那么可以得到 n+1 个插值方程,求解 这个方程组,可以得到 n 次拉格朗日插值公式: ‴ , (二)牛顿插值法
其中:
(三)牛顿前后插值法 牛顿前插法为: th t t t t t t t t t t t t t t t t
牛顿后插法为: th
程序代码
拉格朗日插值 +
牛顿插值法运行脚本
牛顿向前插值法
牛顿向后插值法
牛顿向前插值作业
牛顿向后插值
数据测试结果
(1)选取 n=7,拉格朗日插值结果为:
(2)选取 n=7,牛顿插值法结果为:
(3) (4)X1=1.3,x2=5.6,牛顿向前向后插值法结果为:
《计算方法》实验四插值法
《计算方法》实验四插值法
一、实验目的:
掌握拉格朗日插以及多项式插值的震荡问题
二、实验任务:
考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时,是否也更加靠近被逼近的函数。
龙格(Runge)给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数
三、实验内容:
考虑区间[-1,1]的一个等距划分,分点为
则拉格朗日插值多项式为
其中的是n次拉格朗日插值基函数。
四、上机习题:
(1)选择不断增大的分点数目n=2,3….,画出原函数f(x)及插值多项式函数在[-1,1]上的图像,比较并分析实验结果。
(2)选择其他的函数,例如定义在区间[-5,5]上的函数
重复上述的实验看其结果如何。
(3)区间[a,b]上切比雪夫点的定义为
以为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果。
拉格朗日插值牛顿插值C语言实验报告
实验报告:数学与统计学系信息与计算科学专业实验报告一、题目1、上机作业题程序12、上机作业题程序2二、算法1、Lagrange 插值//输入被插值点的数目POINT;int main(){int n;inti,j;POINT points[MAX_N+1];double diff[MAX_N+1];doublex,tmp=0,lagrange=0,tx,ty;printf("\nInput n value:");scanf("%d",&n);if(n>MAX_N){printf("The input n is larger thenMAX_N,please redefine the MAX_N.\n");return 1;}if(n<=0){printf("Please input a number between 1 and %d\n",MAX_N);return 1;}//输入被插值点printf("Now input the (x_i,y_i),i=0,...,%d:\n",n);for(i=0;i<=n;i++)scanf("%lf%lf",&points[i].x,&points[i].y);printf("Now input the x value:"); //输入计算Lagrange插值多项式的x值scanf("%lf",&x);for(i=0;i<=n;i++){diff[i]=0;tx=1;ty=1;for(j=0;j<=n;j++){if(i!=j){tx=tx*(x-points[j].x);ty=ty*(points[i].x-points[j].x);}}diff[i]=tx/ty;}for(i=0;i<=n;i++){tmp=points[i].y*diff[i];printf("%f",tmp);lagrange+=tmp;}printf("lagrange(%f)=%f\n",x,lagrange);return 0;}2、Newton 插值//输入被插值点的数目POINT;int main(){ int n;inti,j;POINT points[MAX_N+1];double diff[MAX_N+1];doublex,tmp,newton=0;printf("\nInput n value: ");scanf("%d",&n);if (n>MAX_N){printf("The input n is larger thenMAX_N,please redefine the MAX_N.\n");return 1;}if(n<=0){printf("Please input a number between 1 and %d\n",MAX_N);// getch(); return 1;}//输入被插值点printf("Now input the (x_i,y_i),i=0,...,%d:\n",n);for (i=0;i<=n;i++)scanf("%lf%lf",&points[i].x,&points[i].y);printf("Now input the x value: ");//输入计算Newton插值多项式的x值scanf("%lf",&x);for (i=0;i<=n;i++)diff[i]=points[i].y;for (i=0;i<n;i++){for (j=n;j>i;j--){diff[j]=(diff[j]-diff[j-1])/(points[j].x-points[j-1-i].x);}//计算f(x_0,…,x_n)的差商}tmp=1;newton=diff[0];for(i=0;i<n;i++){tmp=tmp*(x-points[i].x);newton=newton+tmp*diff[i+1];}printf("newton(%f)=%f\n",x,newton);return 0;}三、C程序1、Lagrange 插值#include <stdio.h>#define MAX_N 20typedefstructtagPOINT{double x;double y;}POINT;int main(){int n;inti,j;POINT points[MAX_N+1];double diff[MAX_N+1];doublex,tmp=0,lagrange=0,tx,ty;printf("\nInput n value:");scanf("%d",&n);if(n>MAX_N){printf("The input n is larger thenMAX_N,please redefine the MAX_N.\n");return 1;}if(n<=0){printf("Please input a number between 1 and %d\n",MAX_N); return 1;}printf("Now input the (x_i,y_i),i=0,...,%d:\n",n);for(i=0;i<=n;i++)scanf("%lf%lf",&points[i].x,&points[i].y);printf("Now input the x value:");scanf("%lf",&x);for(i=0;i<=n;i++){diff[i]=0;tx=1;ty=1;for(j=0;j<=n;j++){if(i!=j){tx=tx*(x-points[j].x);ty=ty*(points[i].x-points[j].x);}}diff[i]=tx/ty;}for(i=0;i<=n;i++){tmp=points[i].y*diff[i];printf("%f",tmp);lagrange+=tmp;}printf("lagrange(%f)=%f\n",x,lagrange);return 0;}2、Newton 插值#include <stdio.h>#define MAX_N 20typedefstructtagPOINT{ double x;double y;} POINT;int main(){ int n;inti,j;POINT points[MAX_N+1];double diff[MAX_N+1];doublex,tmp,newton=0;printf("\nInput n value: ");scanf("%d",&n);if (n>MAX_N){printf("The input n is larger thenMAX_N,please redefine the MAX_N.\n");return 1;}if (n<=0){printf("Please input a number between 1 and %d.\n",MAX_N);return 1;}//输入被插值点(x_i,y_i)printf("Now input the (x_i,y_i),i=0,...,%d:\n",n);for (i=0;i<=n;i++)scanf("%lf%lf",&points[i].x,&points[i].y);printf("Now input the x value: ");scanf("%lf",&x);for (i=0;i<=n;i++)diff[i]=points[i].y;for (i=0;i<n;i++){for (j=n;j>i;j--){diff[j]=(diff[j]-diff[j-1])/(points[j].x-points[j-1-i].x);}}tmp=1;newton=diff[0];for(i=0;i<n;i++){tmp=tmp*(x-points[i].x);newton=newton+tmp*diff[i+1];}printf("newton(%f)=%f\n",x,newton);return 0;}四、运行结果1、Lagrange 插值1910年Larange插值计算得到的人口数:1965年Larange插值计算得到的人口数:2002年Larange插值计算得到的人口数:从插值计算得出的结果1910年的人口数是31872000人,1965年的人口数约为193081511人,2002年的人口数约为26138748,而1910年的实际人口数为91772000人,1960年的实际人口数为179323000人,1970年的人口数为203212000人,所以拉格朗日插值计算得出的结果只有1965年的人口数与实际值相差较近,而1910年和2002年的计算结果都与实际值相差较大,所以插值计算得到的数据准确性并不高。
拉格朗日插值上机实验报告
计算机科学与技术学院
姓名:程伟业
学号:U200714790
一、题目:完成L-插值公式的编程,并由下表求f(x*),x*=4.31.
x
1
2
3
4
5
6
7
f(x)
8
3
-1
2
-1
4
5
二、程序设计与分析
L-插值公式:
N
Yቤተ መጻሕፍቲ ባይዱ
三、原代码与运行结果
代码如下:
/*完成拉格朗日插值公式编程*/
#include<stdio.h>
float M(float x[],float y,int i,int n)
{float m=1; int j;
for(j=0;j<=n;j++)
if(j!=i)
m=m*(y-x[j]);
return m;
}/*构造函数M=(x-x[0])*(x-x[1])……(x-x[i-1])(x-x[i+1])……(x-x[n])*/
s=s+M(a,x,i,k)/M(a,a[i],i,k)*b[i];/*Largrange插值公式*/
printf("The result is %f\n",s);
}
运行结果:
void main()
{
float s=0,x;/*s用来记录结果,x是待估计的点*/
int n,k,i=0;
float a[20],b[20];/*用数组存储插值节点及其函数值*/
printf("Please enter n:\n");
数值分析上机实验报告(插值)
数值分析第一次上机练习实验报告——Lagrange 插值与三次样条插值一、 问题的描述设()2119f x x =+, []1,1x ∈-,取15iix =-+,0,1,2,...,10i =.试求出10次Lagrange 插值多项式()10L x 和三次样条插值函数()S x (采用自然边界条件),并用图画出()f x ,()10L x ,()S x .二、 方法描述——Lagrange 插值与三次样条插值我们取15i ix =-+,0,1,2,...,10i =,通过在i x 点的函数值()2119i i f x x =+来对原函数进行插值,我们记插值函数为()g x ,要求它满足如下条件:()()21,0,1,2,...,1019i i i g x f x i x ===+ (1)我们在此处要分别通过Lagrange 插值(即多项式插值)与三次样条插值的方法对原函数()2119f x x=+进行插值,看两种方法的插值结果,并进行结果的比较。
10次的Lagrange 插值多项式为:()()10100i i i L x y l x ==∑ (2)其中:()21,0,1,2,...,1019i i iy f x i x ===+ 以及()()()()()()()()()011011......,0,1,2,...,10......i i n i i i i i i i n x x x x x x x x l x i x x x x x x x x -+-+----==----我们根据(2)进行程序的编写,我们可以通过几个循环很容易实现函数的Lagrange 插值。
理论上我们根据区间[]1,1-上给出的节点做出的插值多项式()n L x 近似于()f x ,而多项式()n L x 的次数n 越高逼近()f x 的精度就越好。
但实际上并非如此,而是对任意的插值节点,当n →+∞的时候()n L x 不一定收敛到()f x ;而是有时会在插值区间的两端点附近会出现严重的()n L x 偏离()f x 的现象,即所谓的Runge 现象。
lagrange插值法上机实践报告
五、计算结果的分析
三次Lagrange插值多项式为:
;
2.125000000000000; 0.375000000000000; 3.625000000000000.
六、计算中出现的问题,解决方法及体会
从上面的试验结果中我们可以看出拉格朗日插值法在实际中的巨大作用,它能使因试验得到的复杂数据处理更简单化,对于一些没有明确函数关系的数据处理,通过插值法构造的近似函数能有效的反映原数据的特性,又在插值法中,拉格朗日插值是一种多节点选取的插值法,其构造结果更加渐进真实结果,则在实际中用的更多,所以在今后的操作中,如何得到更加近似于原试验数据的构造函数,即如何减小拉格朗日插值多项式误差计算问题是我们以后做研究时要重点关注和去解决的难点。
四、数值结果五、计算结果的分析 六、计算中出现的问题,解决方法及体会
一、实验目的、内容
实验目的:
1.了解lagrange插值法的基本原理和方法;
2.掌握拉格郎日插值多项式的用法,适用范围及精确度;
3.学习掌握MATLAB软件有关的命令。
内容:
已知数据点 ,求三次Lagrange插值多项式 , 并求
二、相关背景知识介绍
令
其中 为以 为节点的n次插值基函数,则 是一次数不超过n的多项式,且满足
, j=0,1,…,n
再由插值多项式的唯一性,得
上式表示的插值多项式称为拉格朗日(Lagrange)插值多项式。
三、代码(Matlab)
functiony = lagrange(x0,y0,x)
n = length(x0);
m = length(x);
(3)拉格朗日插值法的概述
拉格朗日插值用来求n个节点的(n-1)次插值多项式,它就是线性插值和抛物线插值的推广和延伸。我们设有n个节点,则拉格朗日插值的表达式表示为:
计算方法实验四拉格朗日插值实验报告
实验报告学院:电子信息工程实验课程:计算方法学生姓名:学号:专业班级:通信工程17-3班级实验四 Lagrange 插值1 目的与要求(1)进一步理解和掌握Lagrange 插值的数值算法。
(2)能够根据给定的函数值表求出插值多项式和函数在某一点的近似值以解决实际问题2 实验内容已知函数表如下,通过编制程序,试用拉格朗日插值多项式求0.5,0.7,0.85三点处的近似函数值。
3 实验原理拉格朗日插值多项式:4 程序设计 (1)流程图拉格朗日插值程序流程图∑===ni 0i ii )x (l y y )x x ()x x )(x x ()x x ()x x ()x x )(x x ()x x ()x (l n i 1i i 1i i 0i n 1i 1i 0i --------=+-+-(2)程序代码#include<stdio.h>#include<math.h>#define n 5double lagrange(long double a[n],long double b[n],double x){int k,l;long double y1,m;y1=0.0;for(k=0;k<n;k++){m=1.0;for(l=0;l<n;l++){if(l!=k){m=m*(x-a[l])/(a[k]-a[l]);}}y1=y1+m*b[k];}return y1;}void main(){double x,y;long double a[n]={0.4,0.55,0.8,0.9,1};long double b[n]={0.41075,0.57815,0.88811,1.02652,1.17520};printf("\n输入要求的自变量的值\n");scanf("%lf",&x);y=lagrange(a,b,x);printf ("拉格朗日插值后的近似值%lf",y); }5 实验结果与分析0.5处的近似函数值为:0.7处的近似函数值为:0.85处的近似函数值为:分析:(1)通过完成拉格朗日插值法的编程实验,在对程序的修改中,我认为我最大的收获是我对C语言中数据类型具有了更为深刻的认识,进一步掌握了拉格朗日插值法。
插值数值实验报告(3篇)
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
拉格朗日插值实验报告
引言概述:
拉格朗日插值是一种常用的数值分析方法,旨在通过已知的离散数据点来近似拟合出一个多项式函数,从而实现对未知数据点的预测和估计。
该方法在信号处理、图像处理、金融模型和机器学习等领域具有广泛的应用。
本实验报告将详细介绍拉格朗日插值的原理、算法和实验结果。
正文内容:
1.拉格朗日插值的原理
1.1多项式插值的概念
1.2拉格朗日插值多项式的形式
1.3拉格朗日插值多项式的唯一性证明
2.拉格朗日插值的算法
2.1插值多项式的计算方法
2.2插值多项式的复杂度分析
2.3多点插值方法的优缺点
3.拉格朗日插值的实验设计
3.1实验目的和步骤
3.2数据采集和预处理
3.3插值多项式的建模
3.4实验环境和工具选择
3.5实验结果分析和评估
4.拉格朗日插值的应用案例
4.1信号处理领域中的插值应用
4.2图像处理中的插值算法
4.3金融模型中的拉格朗日插值
4.4机器学习中的插值方法
5.拉格朗日插值的改进和发展
5.1经典拉格朗日插值的局限性
5.2最小二乘拉格朗日插值的改进
5.3多项式插值的其他方法
5.4拉格朗日插值在新领域的应用前景
总结:
拉格朗日插值作为一种经典的数值分析方法,在实际应用中具有广泛的用途。
本文通过介绍拉格朗日插值的原理和算法,以及实验设计和应用案例,全面展示了该方法的特点和优势。
同时,本文还指出了经典拉格朗日插值的局限性,并介绍了一些改进和发展的方向。
可以预见,拉格朗日插值在信号处理、图像处理、金融模型和机器学习等领域将继续发挥重要作用。
计算方法上机实验报告——拉格朗日插值问题
计算方法上机实验报告——拉格朗日插值问题一、方法原理n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。
对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x)上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。
可求得lk三.计算方法及过程:1.输入节点的个数n2.输入各个节点的横纵坐标3.输入插值点4.调用函数,返回z函数语句与形参说明程序源代码如下:形参与函数类型参数意义intn节点的个数doublex[n](double*x)存放n个节点的值doubley[n](double*y)存放n个节点相对应的函数值doublep指定插值点的值doublefun()函数返回一个双精度实型函数值,即插值点p处的近似函数值#include<iostream>#include<math.h>usingnamespacestd;#defineN100doublefun(double*x,double*y,intn,doublep);voidmain(){inti,n;cout<<"输入节点的个数n:";cin>>n;doublex[N],y[N],p;cout<<"pleaseinputxiangliangx="<<endl;for(i=0;i<n;i++)cin>>x[i];cout<<"pleaseinputxiangliangy="<<endl;for(i=0;i<n;i++)cin>>y[i];cout<<"pleaseinputLagelangrichazhiJieDianp="<<endl;cin>>p;cout<<"TheAnswer="<<fun(x,y,n,p)<<endl;system("pause");}doublefun(doublex[],doubley[],intn,doublep){doublez=0,s=1.0;intk=0,i=0;doubleL[N];while(k<n){if(k==0){for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);L[0]=s*y[0];k=k+1;}else{s=1.0;for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));for(i=k+1;i<n;i++)s=s*((p-x[i])/(x[k]-x[i]));L[k]=s*y[k];k++;}}for(i=0;i<n;i++)z=z+L[i];returnz;}四.运行结果测试:五.实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。
拉格朗日牛顿插值法实验报告
拉格朗日牛顿插值法实验报告-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN标题:实验一拉格朗日插值法算法与牛顿插值算法一、实验目的:1.体会并了解拉格朗日插值法,用计算机插入x值,输出相应的y值。
2.体会并了解牛顿插值法,用计算机插入x值,输出相应的y值。
二、实验原理:1.拉格朗日插值法的插值公式:L n(x)=∑y knk=0(x−x0)(x−x1)?(x−x n)(x−x k)(x k−x0)?(x k−x k−1)(x k−x k+1)?(x k−x n)2.牛顿插值法的插值公式:P n(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+?+f[x0,x1,?,x n](x−x0)?(x−x n−1)f[x0,x1,?,x k]=∑f(x j)(x j−x0)?(x j−x j−1)(x j−x j+1)?(x j−x k)kj=0三、算法设计与程序流程图:1.拉格朗日插值法算法分析:a.输入节点的个数j。
b.输入节点的横纵坐标。
c.输入新插入的节点的横坐标。
d.通过两次循环求得新插入节点的纵坐标。
程序流程图:2.牛顿插值算法分析:a.输入节点的个数j。
b.输入节点的横纵坐标。
c.输入新插入的节点的横坐标。
d.通过两次循环求得新插入节点的纵坐标。
程序流程图:四、源程序:#include ""#include ""int main(){float x[20],y[20];int k,j,i,flag;float a,b1,b2,c,d,e,f,w1,w2,l,L,newx,P;w1=1;w2=1;L=0;P=0;printf("请输入数据,不得超过20组。
\n");printf("输入的数据为几组:");scanf("%d",&j);for(i=0;i<=j-1;i++){printf("第%d组为:\n",i+1);printf("x=");scanf("%f",&x[i]);printf("y=");scanf("%f",&y[i]);}printf("请选择:1,拉格朗日插值。
拉格朗日插值实验报告
拉格朗日插值实验报告一、实验目的本实验旨在通过实际实验,深入理解拉格朗日插值法的原理和应用,掌握其计算过程和相关技巧。
二、实验原理Pn(x) = ∑ [yi * li(x)]其中,li(x)称为拉格朗日基函数,具体的计算公式如下:li(x) = ∏ [(x-xj)/(xi-xj)] (i≠j)利用拉格朗日插值法可以对数据进行插值计算,从而得到原函数未知的点的函数值。
三、实验步骤1.根据实验要求,选择一组离散的数据点,确保它们在横坐标轴上不共线。
2. 使用拉格朗日插值法计算插值多项式的各个基函数li(x)。
3.对插值多项式进行求和,得到最终的插值多项式Pn(x)。
4.在给定的范围内选择一些未知数据点,利用插值多项式Pn(x)计算其函数值。
5.将实际计算的函数值与原函数值进行对比,评估插值方法的准确性和精确度。
四、实验结果以实验要求给定的数据点为例,具体数据如下:x:1,2,3,4,5,6y:5,19,43,79,127,187根据拉格朗日插值法的计算公式,可以得到以下结果:l0(x)=(x-2)(x-3)(x-4)(x-5)(x-6)/(-120)l1(x)=(x-1)(x-3)(x-4)(x-5)(x-6)/120l2(x)=(x-1)(x-2)(x-4)(x-5)(x-6)/(-48)l3(x)=(x-1)(x-2)(x-3)(x-5)(x-6)/48l4(x)=(x-1)(x-2)(x-3)(x-4)(x-6)/(-20)l5(x)=(x-1)(x-2)(x-3)(x-4)(x-5)/20插值多项式Pn(x)=5*l0(x)+19*l1(x)+43*l2(x)+79*l3(x)+127*l4(x)+187*l5(x)综合以上计算结果,可以对给定范围内的未知数据点进行插值计算,从而得到相应的函数值。
五、实验分析与结论在实际实验中,我们可以利用拉格朗日插值法对任意给定的函数进行逼近计算,从而得到函数在离散数据点之间的近似值。
数值分析拉格朗日插值法上机实验报告
X[0]: 1
x[1]:-1
x[2]:2
y[0]:0
y[1]:-3
y[2]:4
Input xx:
x二,y=
3
拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格 朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新 计算。且当增大插值阶数时容易出现龙格现象。
在物理化学,资产价值鉴定工作和计算某一时刻的卫星坐标和钟差等 这些方面可以应用Lagrange插值。采用拉格朗日插值法计算设备等 功能重置成本,计算精度较高,方法快捷。但是这方法只能针对可比 性较强的标准设备,方法本身也只考虑了单一功能参数,它的应用范 围因此受到了一定的限制。作为一种探索,我们可以将此算法以 及其它算法集成与计算机评估分析系统中,作为传统评估分析方法的 辅助参考工具,以提高资产价值鉴定工作的科学性和准确性。
int i, j ;
float *a,yy二;/*a作为临时变量,记录拉格朗日插值多项*/
a= (f I oat*) ma I loc (n*s i zeof (f I oat));
for(i=0;i <=n-1;i++)
{
a[i]=y[i];
for(j=0;j<=n-1;j++)
if (j! = i)
{
pr i ntf (Error! The vaIue of n must in (0,20).);
getch () ; return 1 ;
}
for (i=0;i<=n-1;i++)
{
抽潼晴龙學扌追???探
scanf (%f, &x[i]);
)
拉格朗日插值法实验报告
拉格朗日插值法实验报告一、实验目的本实验旨在通过使用拉格朗日插值法,以给定的一些数据点为基础,来预测其他未给定数据点的函数值。
通过实验,掌握拉格朗日插值法的具体计算步骤和应用范围。
二、实验原理给定 n+1 个互异的点 (x0, y0), (x1, y1), ..., (xn, yn),其中n 为自然数,我们希望通过这些点来构建一个多项式函数 P(x),满足P(xi) = yi,其中 i = 0, 1, ..., n。
构建多项式的具体步骤如下:1. 对于每个 xi,令Li(x) = ∏ (x - xj) / (xi - xj),其中 j ≠ i。
2. 最终的多项式P(x) = ∑ yi * Li(x)。
三、实验步骤1. 给定一组数据点 (x0, y0), (x1, y1), ..., (xn, yn)。
2. 对于每个 xi,计算Li(x) = ∏ (x - xj) / (xi - xj),其中 j ≠ i。
3. 构建多项式P(x) = ∑ yi * Li(x)。
4.给定一个新的x值,使用多项式P(x)预测对应的函数值。
四、实验结果和分析在本实验中,我们给定了如下的一组数据点:(0,1),(1,5),(2,17),(3,41),(4,83)。
根据计算步骤,我们计算出每个Li(x)和多项式P(x)的具体形式如下:L0(x)=(x-1)(x-2)(x-3)(x-4)/(-24)L1(x)=(x-0)(x-2)(x-3)(x-4)/6L2(x)=(x-0)(x-1)(x-3)(x-4)/(-4)L3(x)=(x-0)(x-1)(x-2)(x-4)/6L4(x)=(x-0)(x-1)(x-2)(x-3)/(-24)P(x)=1L0(x)+5L1(x)+17L2(x)+41L3(x)+83L4(x)使用上述多项式预测x=5时的函数值,得到P(5)=309我们可以将预测值与实际值进行比较,确认预测的准确性。
如果有多组数据点,我们可以使用更多的数据点来构建多项式,提高预测的精度。
拉格朗日插值 实验报告
拉格朗日插值实验报告拉格朗日插值实验报告引言:拉格朗日插值是一种常用的数值分析方法,用于在给定一组已知数据点的情况下,通过构造一个多项式函数来逼近这些数据点。
该方法在科学计算、数据处理和图像处理等领域中被广泛应用。
本实验旨在通过实际操作和计算,深入了解拉格朗日插值的原理和应用。
实验目的:1. 理解拉格朗日插值的原理和基本思想;2. 学会使用拉格朗日插值方法进行数据逼近;3. 掌握拉格朗日插值的优缺点及适用范围。
实验步骤:1. 收集一组已知数据点,包括自变量和因变量;2. 根据数据点,构造拉格朗日插值多项式;3. 利用插值多项式,计算给定自变量对应的因变量;4. 分析插值结果的准确性和逼近程度。
实验结果与分析:在实验中,我们选取了一组简单的数据点进行拉格朗日插值的计算和分析。
数据点包括自变量x和因变量y,如下所示:x | 0 | 1 | 2 | 3 | 4 |y | 1 | 2 | 3 | 5 | 8 |根据这组数据点,我们构造了拉格朗日插值多项式:L(x) = y₀ * L₀(x) + y₁ * L₁(x) + y₂ * L₂(x) + y₃ * L₃(x) + y₄ * L₄(x)其中,L₀(x),L₁(x),L₂(x),L₃(x),L₄(x)分别是拉格朗日插值多项式的基函数,计算公式如下:L₀(x) = (x - x₁) * (x - x₂) * (x - x₃) * (x - x₄) / (x₀ - x₁) * (x₀ - x₂) * (x₀- x₃) * (x₀ - x₄)L₁(x) = (x - x₀) * (x - x₂) * (x - x₃) * (x - x₄) / (x₁ - x₀) * (x₁ - x₂) * (x₁- x₃) * (x₁ - x₄)L₂(x) = (x - x₀) * (x - x₁) * (x - x₃) * (x - x₄) / (x₂ - x₀) * (x₂ - x₁) * (x₂- x₃) * (x₂ - x₄)L₃(x) = (x - x₀) * (x - x₁) * (x - x₂) * (x - x₄) / (x₃ - x₀) * (x₃ - x₁) * (x₃- x₂) * (x₃ - x₄)L₄(x) = (x - x₀) * (x - x₁) * (x - x₂) * (x - x₃) / (x₄ - x₀) * (x₄ - x₁) * (x₄- x₂) * (x₄ - x₃)通过计算,我们可以得到给定自变量x对应的因变量y的逼近值。
拉格朗日插值实验报告
实验名称: 实验一 拉格朗日插值1 引言我们在生产生活中常常会遇到这样的问题:某个实际问题中,函数f (x)在区间[a,b]上存在且连续,但却很难找到其表达式,只能通过实验和观测得到有限点上的函数表。
显然,根据这些点的函数值来求其它点的函数值是非常困难的。
有些情况虽然可以写出表达式,但结构复杂,使用不方便。
所以我们总是希望根据已有的数据点(或函数表)来构造某个简单函数P (x)作为f (x)的近似值。
插值法是解决此类问题的一种比较古老的、但却很常用的方法。
它不仅直接广泛地应用于生产实际和科学研究中,而且也是进一步学习数值计算方法的基础。
2 实验目的和要求运用Matlab 编写三个.m 文件,定义三种插值函数,要求一次性输入整张函数表,并利用计算机选择在插值计算中所需的节点。
分别通过分段线性插值、分段二次插值和全区间上拉格朗日插值计算f (0.15),f (0.31),f (0.47)的近似值。
已知函数表如下:3 算法原理与流程图(1)原理设函数y=在插值区间[a,b]上连续,且在n+1个不同的插值节点a≤x 0,x 1,…,x n ≤b 上分别取值y 0,y 1,…,y n 。
目的是要在一个性质优良、便于计算的插值函数类Φ中,求一简单函数P (x),满足插值条件P (x i )=y i (i=0,1,…,n),而在其他点x≠x i 上,作为f (x)近似值。
求插值函数P (x)的方法称为插值法。
在本实验中,采用拉格朗日插值法。
①分段低次插值当给定了n+1个点x 0<x 1<…<x n 上的函数值y 0,y 1,…,y n 后,若要计算x≠x i 处函数值f (x)的近似值,可先选取两个节点x i-1与x i 使x ∈[x i-1,x i ],然后在小区间[x i-1,x i ]上作线性插值,即得11111)()(------+--=≈i i i i i i i i x x x x y x x x x y x P x f这种分段低次插值叫分段线性插值,又称折线插值。
拉格朗日插值算法及应用实验报告
拉格朗日插值算法及应用实验报告一、引言拉格朗日插值法是一种常用的数值插值方法,可用于在已知数据点之间估计函数值。
该方法的基本思想是通过构造一个多项式来逼近给定的数据点集合,从而实现对函数的插值。
本实验旨在通过实际计算的方式探讨拉格朗日插值法的基本原理与应用。
二、拉格朗日插值法原理拉格朗日插值法利用多项式的性质来对给定的数据进行插值。
给定n+1个不同的数据点(x_0,y_0),(x_1,y_1),...,(x_n,y_n),其中x_i表示自变量,y_i表示因变量。
拉格朗日插值多项式的表达式为:P_n(x)=y_0*L_0(x)+y_1*L_1(x)+...+y_n*L_n(x)其中L_i(x)为拉格朗日基函数,定义如下:L_i(x)=(x-x_0)(x-x_1)...(x-x_i-1)(x-x_i+1)...(x-x_n)/[(x_i-x_0)(x_i-x_1)...(x_i-x_i-1)(x_i-x_i+1)...(x_i-x_n)]三、应用实验本实验选取了不同的数据点集合,并利用拉格朗日插值法计算相应的拟合多项式,从而对函数进行插值。
数据点集合1:(x_0,y_0)=(0,1)(x_1,y_1)=(1,2)(x_2,y_2)=(2,3)(x_3,y_3)=(3,5)利用拉格朗日插值法得到的多项式为:P_3(x)=1*L_0(x)+2*L_1(x)+3*L_2(x)+5*L_3(x)将基函数带入,得到多项式表达式为:P_3(x)=1/6*x^3-3/2*x^2+11/6*x+1数据点集合2:(x_0,y_0)=(0,1)(x_1,y_1)=(1,4)(x_2,y_2)=(2,9)(x_3,y_3)=(3,16)利用拉格朗日插值法得到的多项式为:P_3(x)=1*L_0(x)+4*L_1(x)+9*L_2(x)+16*L_3(x)将基函数带入,得到多项式表达式为:P_3(x)=1/6*x^3+1/2*x^2+1/3*x+1四、实验结果与讨论通过利用拉格朗日插值法,我们得到了不同数据点集合的拟合多项式。
计算方法 实验报告 拉格朗日 龙贝格 龙格库塔
主界面:
/*lagrange.c*/
float real_value(float x) /*由被插值函数计算真实值*/
c=getchar();
if(c=='N'||c=='n') break;
}
}
/*romberg.c*/
double function(double x) /*被积函数*/
{
return 4.0/(1+(x)*(x));
}
double t(double a,double b,int m) /*计算T1*/
实验二(龙贝格公式)
§公式
§算法描述
§流程图
§运行结果
§结果分析:Romberg积分法是在积分步长逐步折半的过程中,用低精度求积公式的组合得到更高精度求积公式的一种方法,它算法简单,且收敛加速效果极其显著。
实验三(四阶龙格库塔)
§公式
k1=h*f(xn,yn);
k2=h*f(xn+h/2,yn+k1/2);
T1=t(a,b,0);
T2=T1/2.0+t(a,b,1);
S1=(4*T2-T1)/3.0;
T1=T2;
T2=T1/2.0+t(a,b,2);
S2=(4*T2-T1)/3.0;
C1=(16*S2-S1)/15.0;
T1=T2;
T2=T1/2.0+t(a,b,3);
S1=S2;
S2=(4*T2-T1)/3.0;
计算方法上机作业插值与拟合实验报告
计算方法实验题目:班级:学号:姓名:目录计算方法实验 (1)1 实验目的 (3)2 实验步骤 (3)2.1环境配置: (3)2.2添加头文件 (3)2.3主要模块 (3)3 代码 (4)3.1主程序部分 (4)3.2多项式方程部分 (4)3.3核心算法部分 (8)3.4数据结构部分 (13)4运行结果 (19)4.1拉格朗日插值法运行结果 (19)4.2牛顿插值法运行结果 (20)4.3多项式拟合运行结果 (20)5总结 (21)拉格朗日插值法 (21)牛顿插值法 (21)多项式拟合 (21)6参考资料 (22)1 实验目的1.通过编程对拉格朗日插值法、牛顿插值法以及多项式拟合数据的理解2.观察上述方法的计算稳定性和求解精度并比较各种方法利弊2 实验步骤2.1环境配置:VS2013,C++控制台程序2.2添加头文件#include "stdio.h"#include "stdlib.h"#include "stdafx.h"2.3主要模块程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式方程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。
具体功能如下:●数据结构部分数据结构部分是整个程序的最底层,负责存储部分。
因方程系数作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看方便,故此程序选用顺序表保存系数。
数据结构文件中写的是有关顺序表的所有基本操作以供其他文件调用。
本次实验使用列主元高斯消元法作为求解方程组的方法,所以也用了二维顺序表存储数组。
综上,数据结构部分文件是前两个试验的文件内容和,稍作修改。
●常系数微分方程部分多项式方程部分是程序的第二层,内容主要是常系数微分方程导数的计算和显示菜单部分。
●算法部分算法部分分为两个文件,一个是插值部分,一个是拟合部分。
插值部分文件负责有关插值的核心算法,处于整个程序最上层部分,负责拉格朗日插值法和牛顿插值法的具体实现过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算方法上机实验报告——拉格朗日插值问题
一、方法原理
n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些
L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x
2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)
二、主要思路
使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。
对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x)
上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。
可求得lk
三.计算方法及过程:1.输入节点的个数n
2.输入各个节点的横纵坐标
3.输入插值点
4.调用函数,返回z
函数语句与形参说明
程序源代码如下:
形参与函数类型
参数意义
intn
节点的个数
doublex[n](double*x)
存放n个节点的值
doubley[n](double*y)
存放n个节点相对应的函数值
doublep
指定插值点的值
doublefun()
函数返回一个双精度实型函数值,即插值点p处的近似函数值
#include<iostream>
#include<math.h>
usingnamespacestd;
#defineN100
doublefun(double*x,double*y,intn,doublep);
voidmain()
{inti,n;
cout<<"输入节点的个数n:";
cin>>n;
doublex[N],y[N],p;
cout<<"pleaseinputxiangliangx="<<endl;
for(i=0;i<n;i++)cin>>x[i];
cout<<"pleaseinputxiangliangy="<<endl;
for(i=0;i<n;i++)cin>>y[i];
cout<<"pleaseinputLagelangrichazhiJieDianp="<<endl;
cin>>p;
cout<<"TheAnswer="<<fun(x,y,n,p)<<endl;
system("pause");}
doublefun(doublex[],doubley[],intn,doublep)
{doublez=0,s=1.0;
intk=0,i=0;
doubleL[N];
while(k<n)
{if(k==0)
{for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);
L[0]=s*y[0];
k=k+1;}
else
{s=1.0;
for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));
for(i=k+1;i<n;i++)s=s*((p-x[i])/(x[k]-x[i]));
L[k]=s*y[k];
k++;}
}
for(i=0;i<n;i++)z=z+L[i];
returnz;
}
四.运行结果测试:
五.实验分析
n=2时,为一次插值,即线性插值
n=3时,为二次插值,即抛物线插值
n=1,此时只有一个节点,插值点的值就是该节点的函数值
n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况
3<n<100时,也都有相应的答案
常用的是线性插值和抛物线插值,显然,抛物线精度相对高些
n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。
拟合曲线光顺性差。