第二章---参数估计

合集下载

数理统计: 参数估计方法

数理统计: 参数估计方法
23
引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ

1 n
n i 1
Xi

X
(
x)

1

e

x

,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi

X
2
;
s
1 n1
n i 1
( xi

第二章参数估计(作业)

第二章参数估计(作业)

3 . 7 0 3 . 3 0
3 . 2 8 3 . 0 5
3 . 3 5 3 . 3 3
3 . 2 0 3 . 2 7
3 . 1 2 3 . 2 8
3 . 2 5 3 . 2 5
2 。构造两个总体方差比 1
2 的 95%的置信区间。 2
2 答案: 已知, x1 =3.33, =0.006, 根据自由度 n1=21-1=20 和 n2=21-1=20, x 2 =3.27, s12 =0.06, s2
z 2
s =3.31± 0.53,则该校大学生平均上网时间 n
的置信区间为(2.78,3.84) 。 当置信水平为 99%时,z/2=2.58 , x 的置信区间为(2.62,0.69,则该校大学生平均上网时间 n
3、在一项家电市场调查中,随机抽取了 200 个居民户,调查他们是否拥有某一品牌的电视 机。其中拥有该品牌电视机的家庭占 23%。求总体比例的置信区间,置信水平分别为 90% 和 95%。 答案:已知 n=200,P=23%,则
第二章参数估计
1、某快餐店想要估计每位顾客午餐的平均花费金额,在为期 3 周的时间里选取 49 名顾客
组成了一个简单随机样本。 (1) 假定总体标准差为 15 元,求样本均值的抽样标准误差; (2) 在 95%的置信水平下,求边际误差; (3) 如果样本均值为 120 元,求总体均值 的 95%的置信区间。
6、生产工序的方差是工序质量的一个重要度量。当方差较大时,需要对工序进行改进以减 小方差。两部机器生产的袋茶重量(单位:g)的数据如下:
机 3 3 器 . . 1 4 2 5 0 机 3 3 器 . . 2 2 3 2 8
3 . 2 2 3 . 3 0

第二章 参数估计.pdf

第二章   参数估计.pdf

22、设总体 X 在区间 [, +1] 上服从均匀分布,则 的矩估计 ˆ =

3
D(ˆ) =

23、设总体 X ~ N(, 2 ) ,若 和 2 均未知, n 为样本容量,总体均值 的置 信水平为1 − 的置信区间为 (X − , X + ) ,则 的值为________;
24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置
解: E(ˆ1) = E(ˆ2), D(ˆ1) D(ˆ2) . 12、设ˆ1 和ˆ2 均是未知参数 的无偏估计量,且 E(ˆ12 ) E(ˆ22 ) ,则其中的统计
量 更有效。
13、在参数的区间估计 (1,2 ) 中,当样本容量 n 固定时,精度2 −1 提高时,置
信度1 −

14、设 X1, X 2 ,, X n 是来自总体 X ~ N(,1) 的样本,则 的置信度为 0.95 的置
9、什么是最优无偏估计量? 10、什么是一致最小方差无偏估计量? 11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。 14、试述评价一个置信区间好坏的标准。 15、描述区间估计中样本容量、精度、置信度的关系。
三、单选题 1、设总体未知参数 的估计量 满足 E( ) = ,则 一定是 的( )
的关系为

6 、 称 统 计 量 T = T ( X1, X 2 ,, X n ) 为 可 估 函 数 g() 的 ( 弱 ) 一 致 估 计 量 是


7、判断对错:设总体 X ~ N(, 2 ) ,且 与 2 都未知,设 X1, X 2 ,..., X n 是来自
1
该总体的一个样本,设用矩法求得 的估计量为 ˆ1 、用极大似然法求得 的

第二章 多元正态分布及参数的估计

第二章   多元正态分布及参数的估计

27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB


0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0



1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e

1 2
(
x12

x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6

第二章参数估计

第二章参数估计

第二章 参数估计【学习目标】1、掌握矩估计的替代原则;会求已知分布中未知参数的矩估计(值)2、熟练掌握极大似然估计的思想及求法3、估计量的评价标准:无偏性、有效性、相合性的定义4、统计量的无偏性的判断;两个无偏估计的有效性判断;会用Fisher 信息量及c-R 下界进行统计量的UMVUE 充分性判断5、掌握区间估计的定义6、单个正态总体均值的区间估计(包括方差已知、方差未知);单个正态总体方差的区间估计(包括均值已知、均值未知)7、两个正态总体均值差的区间估计(方差未知);两个正态总体方差比的区间估计 8、单侧置信区间的求法 【典型例题讲解】例1、设1,,n X X 是来自均匀分布(,1)U θθ+的总体的容量为n 的样本,其中θ-∞<<+∞为未知参数,试证:θ的极大似然估计量不止一个,例如1(1)ˆXθ=,2()ˆ1n X θ=-,3(1)()11ˆ()22n XXθ=+-都是θ的极大似然估计。

解:(,1)U θθ+分布的密度函数为11()0x f x θθ≤≤+⎧=⎨⎩其他似然函数(1)()11()0n x x L θθθ≤≤≤+⎧=⎨⎩其他由于在(1)()1n x x θθ≤≤≤+上()L θ为常数,所以凡是满足:(1)()ˆˆ1n x x θθ≤≤≤+的ˆθ均为θ的极大似然估计。

从而(1)1(1)ˆX θ=满足此条件,故1(1)ˆX θ=是θ的极大似然估计;(2)由于()(1)1n X X -≤,故2()(1)()2ˆˆ11n n X X X θθ=-≤≤=+,所以2()ˆ1n Xθ=-为θ的极大似然估计;(3)由于()(1)1n X X -≤,故(1)()(1)12n X X X +-≤,(1)()()12n n X X X ++≥,从而有3(1)()(1)()(1)()31111ˆˆ()()12222n n n XXXXXXθθ=+-≤≤≤++=+,故3ˆθ也为θ的极大似然估计。

应用多元统计分析 第二章正态分布的参数估计答案

应用多元统计分析 第二章正态分布的参数估计答案

练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。

数值分析答案第二章参数估计习题

数值分析答案第二章参数估计习题
数值分析答案第二章参数估计习题数值分析习题解答数值分析课后习题答案参数估计练习题数值分析习题参数估计习题参数估计习题及答案数值分析习题解答pdf数值分析习题集及答案数值分析习题答案
f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ

x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =

X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α

第二章 参数估计

第二章 参数估计

0


x 2de
x

2xe
x
dx

2

xde
x
0
x
0
0
2 e dx 2 2
0
9
例4:设X1, … , Xn为取自 N ( , 2 ) 总体的
样本,求参数 , 2 的矩估计。
: E( X ) D( X ) 2 E( X 2 ) [E( X )]2
极大似然法是由德国数学家G.F.Gauss在1821年提 出的.然而这个方法通常归于英国统计学家 R.A.Fisher,因为他在1912年里发现了这一方法,并 且首先研究了这种方法的性质.
设总体的密度函数为f(x,θ), θ为待估参数,θ∈Θ,Θ
为参数空间.当给定样本观察值 x (x1, x2 , xn )后,f(x,
以随便给的,所以根据统计思想建立各种点估计方法
和评价点估计的好坏标准便是估计问题的研究中心.
这里先介绍三个常用的标准:无偏性、有效性和一致
性.
1
有效性
^
^
设 i i ( X1,, X n ), i 1, 2分别是参数 的两个无偏估计,
^
^
^
^
若D 1 D 2 至少有一个n使 成立 , 则称 1比 2 有效.
总体k阶矩 样本k阶矩
k E(Xk )
Ak

1 n
n i 1
X
k i
的矩估计量是
约定:若


是未知参数的矩估计,则u()的矩
估计为u(


),
6
例2、:设X1, … , Xn为取自参数为的指数分布 总体的样本,求的矩估计。

参数估计2

参数估计2

n
e n
i
x !
i 1 n i 1
ii ) ln L( x1 , x 2 ,..., x n ; ) xi ln n ln xi !
i 1
xi ln L( x1 , x2 ,...,xn ; ) i 1 n 0 iii)令 : 1 n iv)解之得 : xi x为 的极大似然估计值 , n i 1 1 n X i X 为 的极大似然估计量 . n i 1
(1)正态分布N (u, 2 ) (2)指数分布Z ( ) (3)均匀分布U (a, b) (4)二项分布B(n, p) (3)泊松分布 ( ) 试求其中未知参数的矩 估计. 解 : (1)
因为X ~ N ( , 2 ), E ( X ) , D( X ) 2 故有 X ,
注2
若 为 的矩估计量, g ( )为 的连续函数, 亦称g ( )为g ( )
2 2 例如S n 为总体方差D( X )的矩估计量, 则S n S n 为标准差 D( X )


的矩估计量. 的矩估计量.
例1.1
设X 1 , X 2 ,..., X n为来自正态总体 X 的样本, X的分布为
i 1 n n
( X为连续型)
(1.4) (1.5)

L( x1 , x2 ,..., xn ) PX i xi ;
i 1
( X为离散型)
达到最大值

L( x1 , x2 ,..., xn ; ) max L( x1 , x2 ,..., xn ; )

(1) 利用求导法求极大然估 计步骤 i )建立似然函数: L( x1 , x 2 ,..., x n ; 1 , 2 ,..., r ) f ( xi ; 1 , 2 ,..., r )

应用数理统计第二章参数估计(3)区间估计

应用数理统计第二章参数估计(3)区间估计

例1 有一大批月饼,现从中随机地取16袋,称得重量(以克 计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 ,设袋装月饼的重量近似地服从正态 分布,试求总体均值的置信度为0.95的置信区间。 解: 2未知, 1-=0.95, /2=0.025,n-1=15, t0.975 (15) 2.1315 由已知的数据算得 x 503.75, S* 6.2022
n1 (n2 1) S12 12 n1 (n2 1) S12 P F (n 1, n1 1) 2 F (n 1, n1 1) 1 2 /2 2 2 1 / 2 2 2 n2 (n1 1) S2 n2 (n1 1) S2
10
得所求的标准差的置信区间为 (4.58, 9.60)
2.4.3 两个正态总体参数的区间估计
在实际中常遇到下面的问题:已知产品的某一质量指标 服从正态分布,但由于原料、设备条件、操作人员不同,或 工艺过程的改变等因素,引起总体均值、总体方差有所改变, 我们需要知道这些变化有多大,这就需要考虑两个正态总体 均值差或方差比的估计问题。
ˆ a ˆ b} {g(a) T ( X , X ,..., X ; ) g(b)} { 1 2 n
其中g ( x )为可逆的已知函数, T ( X 1 , X 2 ,..., X n ; 况
设总体X~N(,2),X1, X2, …,Xn是总体X的样本,求,2 /2 /2 的置信水平为(1)的置信区间.
求得 的置信水平为(1)的置信区间: ( 2未知)
S S* t1 2 (n 1) or X t1 2 (n 1) X n1 n

《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案

《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案

第二章 参数估计课后习题参考答案2.1 设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。

解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12解上述关于N 、p 的方程得:2.2 对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。

解:122()()a E x xx dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。

2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。

⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ解:()()()∑∑====-====ni i ni i S X X n X D X X n X E 12210255.014025.23212.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。

解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:2.5 设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。

第二章多元正态分布的参数估计

第二章多元正态分布的参数估计

第二章多元正态分布的参数估计多元正态分布是在多个随机变量之间存在相互依赖关系时使用的一种概率分布。

它在许多统计分析和机器学习领域中都有广泛的应用。

在实际应用中,我们通常需要使用样本数据对多元正态分布的参数进行估计。

多元正态分布由均值向量和协方差矩阵两个参数来描述。

均值向量表示各个随机变量的平均值,而协方差矩阵表示各个随机变量之间的协方差。

参数估计的目标就是通过样本数据来估计这两个参数。

首先,我们需要收集一个具有充分样本量的数据集。

对于一个具有n个样本的多元正态分布,我们可以将样本数据表示为一个n行d列的矩阵X,其中每一行是一个d维的样本向量。

其中n表示样本数量,d表示随机变量的个数。

接下来,我们可以根据样本数据来估计多元正态分布的均值向量和协方差矩阵。

1.均值向量的估计:多元正态分布的均值向量可以通过样本均值向量来估计。

样本均值向量的计算公式如下:μ = (1/n) * Σxi其中μ是估计得到的均值向量,xi表示样本矩阵X的第i行。

2.协方差矩阵的估计:多元正态分布的协方差矩阵可以通过样本协方差矩阵来估计。

Σ=(1/(n-1))*(X-μ)'*(X-μ)其中Σ是估计得到的协方差矩阵,X是样本矩阵,μ是估计得到的均值向量。

需要注意的是,在计算协方差矩阵时,我们使用的是样本协方差矩阵而不是总体协方差矩阵。

这是因为样本协方差矩阵能更好地反映样本数据的真实情况。

以上就是多元正态分布的参数估计方法。

通过样本数据,我们可以使用样本均值向量和样本协方差矩阵来估计多元正态分布的参数。

这些参数估计能为我们提供关于多元正态分布的统计属性和特征,进而用于进一步的分析和应用。

第二章1-矩估计和极大似然估计

第二章1-矩估计和极大似然估计

0
解法二
E
X
x
1
x
e dx
1
x
x e dx (2)
2
0
即 E|X|
1 n
用 n i1 X i
替换
EX
即得的另一矩估计量为
ˆ 1
n
n i 1
Xi
16
• 矩估计的优点 – 不依赖总体的分布,简便易行 – 只要n充分大,精确度也很高。
• 矩估计的缺点 – 矩估计的精度较差; – 要求总体的某个k阶矩存在; – 要求未知参数能写为总体的原点矩的函数形 式
得和2的估计值分别为13(mm)和 0.133(mm)2
12
例2 设总体X的概率密度为
f
( x;
)
x 1 ,
0,
0 x 1 其它
X1,X2,,Xn为来自于总体X的样本,x1,x2, ,xn 为样本值,求参数的矩估计。
解: 先求总体矩
1
1
E( X ) x x 1dx x dx
x 1 1
ˆ2 (x1, x2 ,, xn )
数值
ˆk (x1, x2 ,, xn )
称数ˆ1,ˆ2 ,,ˆk 为未知参数1,2 ,,k 的估计值 对应的统计量为未知参数1,2 ,,k 的估计量
问题 如何构造统计量?
6
二.点估计的方法
1、矩方法;(矩估计) 2、极大似然函数法(极大似然估计).
1. 矩方法
• 极大似然估计的缺点 要求必须知道总体的 分布函数形式
29
多参数情形的极大似然估计
若总体X的概率密度为:f (x;1,2 , ,k )
其中
1
,
2
,,

应用数理统计(武汉理工大)2-参数估计

应用数理统计(武汉理工大)2-参数估计


1
D(S 2 )nI (
2)

n 1 n
1,
n


故S 2是渐进有效的。
第二章 参数估计
例: 设总体X (), X1, X 2 , , X n是X的一个样本, 讨论的无偏估计X的有效性。
解:lnp( X
,)

ln

X e
X!


X
ln


ln( X
!)

区间估计的关键: 用合适的方法确定两个统计量
1(X1, X2 , , Xn), 2(X1, X2 , , Xn)
第二章 参数估计
1.区间估计的定义及计算步骤
3) 区间估计的例子
例1 设总体X~N(μ , σ2), σ2已知,μ未知,设X1,…,Xn是X的样本, 求μ的置信度为1-α的置信区间。
)

2
n
,
D(ˆ2 )

D(nZ )

n2D(Z )

n2

n
2



2
当n 1时,显然D(ˆ1) D(ˆ2 ),故ˆ1比ˆ2有效。
第二章 参数估计
最小方差无偏估计问题 设 若 及T对 任(g意X(1, , X)的2都,任有一 , XD无n()T是 偏) g估(D计()T的量')一, T '个 ( X无1, X偏2估 , 计, X量n ), 则 无称 偏T估(计X1,, X或2 ,者,称X为n )是最g优(无)的偏一估致计最。小方差
其它类型的估计,如 贝叶斯估计…
第二章 参数估计
2.1参数的点估计
1. 矩估计 2. 极大似然估计 3. 点估计量的评价

第二章 参数估计

第二章 参数估计

ˆ = q ( X , K , X ) , q k k 1 n
k = 1, 2, L , m
(2.2)
ˆ 为 q 的矩估计, g ( x 若 q ) 为连续函数,则也称 g (qˆ k k k ) 为 g (q k ) 的矩估计.
【例 2.1】 设总体 X 服从参数为 l 的泊松分布,X 1 , K , X n 为来自总体的样本, 求l 的 矩估计. 解: a1 = EX = l
i =1
定义 2.1:设总体 X 的概率函数为 f ( x;q ) , x1 ,L , x n 是来自总体的样本,则称
n
L(q ) = Õ f ( xi ;q )
i =1
(2.4)
为总体 X 对应样本 x1 ,L , x n 的似然函数.
L(q ) 越大,越有利于样本 x1 ,K , x n 被观察到.
-l ì l x e ï f ( x 0,1, 2, L 其它
或简写为
f ( x) =
-l l x e
x !
x = 0,1, 2, L
§2.1 点估计
我们经常会遇到这样的问题: 总体 X 的分布函数 F ( x,q ) 的形式已知, 但其中的参数q 未知, 希望利用 X 的样本 x1 ,K , x 这类问题称为参数的点估计 (point n 对 q 的值进行估计, estimation)问题. 比如,已知某种电子元件的寿命 X ~ N ( m , s ) ,即 X 的分布密度
P( X = xi ) = p( xi ,q ), i = 1, 2,L ,
其中q 为未知参数,q Î Q . 设 X 1 , K , X n 是来自总体 X 的一组样本, 观察值为 x1 ,K , x n .我们把观察到的样本看成 结果,而需要判断的是未知参数q 的取值,根据最大似然原理,应该选取一个最有利于结 果的发生的q 值作为 qˆ .

第二章 估计与检验

第二章 估计与检验

二、均值和方差的区间估计和假设 1、总体均值的区间估计
二、均值和方差的区间估计和假设 2、总体方差的区间估计
二、均值和方差的区间估计和假设
例1: 某种零件的重量服从于正态分布。现中 随机抽10件作为样本,观察到的重量(㎏)分 别是:4.8,4.7, 5.0,5.2,4.7,4.9,5.0, 4.6,4.7 ,5.1。估计零件的平均重量,在 95%的置信水平估计平均重量的区间。
MEANS 过程代码如下: Proc MEANS MEAN STD STDERR T PRT; var y; run;
MEANS过程后面的选择项可以选择 MEAN 、STD 、STDERR、 T、 PRT等基 本统计量。这些统计量可以根据研究的实 际需要自行添加删除。
均值 MEAN=0.1794,检验统计量 T= 0.86,其概率值 Pr>│T│=0.4037,大于显 著性水平⍺ ,所以接受原假设,拒绝备选假 设,即样本中的含量与标准相同。


一、基本统计概念
2.假设检验
假设检验是统计推断中另一个重要部分,它与参数估 计有着密切的联系。 假设检验要求先对总体的参数作出一个假设,称为原 假设;另外还要给出一个与其相互对立的备择假设,原假 设与备择假设有且仅有一个成立。然后构造一个合适的检 验统计量,并确定在原假设成立时该统计量的分布,在给 定的显著性水平下,从分布中可得出原假设的拒绝域。最 后由样本观测值计算该统计量的取值,如果取值落在原假 设的拒绝域中,则拒绝原假设,而取对应的备择假设。否 则,不能拒绝原假设。
结果给出了总体均值以及标准差在置信 度90%、95%、99%下的置信区间。
如在intervals语句下面添加alpha=0.05 type=lower;就能获得对应95%置信区间以及对应 的置信下限.

应用数理统计吴翊李永乐第二章-参数估计课后习题参考答案

应用数理统计吴翊李永乐第二章-参数估计课后习题参考答案

《应用数理统计》吴翊李永乐第二章-参数估计课后习题参考答案(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 参数估计课后习题参考答案设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。

解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12 解上述关于N 、p 的方程得:对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。

解:122()()a E x xx dx ααα==-⎰2222()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。

使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) ,,,,,⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ,,,,,试用矩法估计测量的真值和方差(设仪器无系统差)。

解:()()()∑∑====-====ni ini i S XX nX D X X n X E 12210255.014025.2321设子样,,,,,是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。

解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。

第二章-多元正态分布的参数估计

第二章-多元正态分布的参数估计

11 Σ 21
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22

X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 ,L , X p ) 服从 p
X
X1 X2
,
μ
1 2
,
Σ
2 1
1 2
1 2
2 2
易见,ρ是X1和 X2的相关系数。当|ρ|<1时,可得X的
概率密度函数为:
f
x1,
x2
1
21 2
1
2
exp 2
1
1 2
x1 1 1
2
2
x1 1 1
x2 2 2
x2 2 2
2
二元正态分布的密度曲面图
X3
1

(0,1,
0)
2
2
3
11 12 aΣa (0,1, 0) 21 22
31 32
13 0
23
1
22
33 0
(2) 其中
AX
1
0
0 0
0 1
X X X
1 2 3
X1
X
3
~
N
(Aμ
,AΣA
)

1 0
0 0
0 1
1 2 3
5 1
11
则X2和X3不独立,X1和(X2,X3)独立。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 参数估计一、填空题1、总体X 的分布函数为);(θx F ,其中θ为未知参数,则对θ常用的点估计方法有 , 。

2、设总体X 的概率密度为(),(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为_______3、设321,,X X X 是来自总体X 的简单随机样本,且μ=)(X E ,记3211313131X X X ++=μ,3212214141X X X ++=μ 2132121X X +=μ, 3214414141X X X ++=μ则哪个是μ的有偏估计 ,哪个是μ的较有效估计 。

4、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和极大似然估计量的关系为 。

5、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和最优无偏估计量的关系为 。

6、称统计量),,,(21n X X X T T =为可估函数)(θg 的(弱)一致估计量是指 。

7、判断对错:设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,...,,21是来自该总体的一个样本,设用矩法求得μ的估计量为1ˆμ、用极大似然法求得μ的估计量为2ˆμ,则1ˆμ=2ˆμ。

_________________8、ˆn θ是总体未知参数θ的相合估计量的一个充分条件是_______ .解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 9、已知1021,,x x x 是来自总体X 的简单随机样本,μ=EX 。

令∑∑==+=1076181ˆi i i i x A x μ,则当=A 时,μˆ为总体均值μ的无偏估计。

10、 设总体()θ,0~U X ,现从该总体中抽取容量为10的样本,样本值为0.51.30.61.7 2.21.20.81.5 2.01.6, , , , , , , , , 则参数θ的矩估计为 。

11、 设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .解:1212ˆˆˆˆ()(), ()()E E D D θθθθ=<. 12、设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

13、在参数的区间估计),(21θθ中,当样本容量n 固定时,精度12θθ-提高时,置信度α-1 。

14、设n X X X ,,,21 是来自总体)1,(~μN X 的样本,则μ的置信度为0.95的置信区间为 。

15、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则μ的置信度为0.95的置信区间为 。

16、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中μ未知,则2σ的置信度为0.95的置信区间为 。

17、设X 服从参数为λ的指数分布,)2(,,,,21>n X X X n 是来自总体X 的样本,X 为其样本均值,则X n λ2服从 分布。

18、设总体服从正态分布)1,(μN ,且μ未知,设n X X X ,...,,21为来自该总体的一个样本,记∑==ni i X n X 11,则μ的置信水平为1α-的置信区间公式是___________________________________;若已知95.01=-α,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取多大_______。

18、为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。

则大学生近视眼所占的百分比的95%的置信区间为 。

19、设总体X 未知参数为λ,X 为样本均值, X N(0,1),则λ的一个双侧近似1-α置信区间为 。

20、设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。

21、设总体212~(,),,,...,n X N X X X μσ为样本,μ、2σ 未知,则2σ的置信度为1-α的置信区间为 。

22、设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;D。

)ˆ(θ=23、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二、简述题1、描述矩估计法的原理。

2、描述极大似然估计法的原理。

3、极大似然估计法的一般步骤是什么?4、评价估计量好坏的标准有哪几个?5、什么是无偏估计?6、什么是较有效?7、什么叫有效估计量?8、判断可估函数)(θg 是有效估计量的充要条件是什么? 9、什么是最优无偏估计量?10、什么是一致最小方差无偏估计量?11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。

14、试述评价一个置信区间好坏的标准。

15、描述区间估计中样本容量、精度、置信度的关系。

三、单选题1、设总体未知参数θ的估计量θ满足()E θθ=,则θ一定是θ的( ) A 极大似然估计 B 矩估计 C 无偏估计 D 有效估计2、设总体未知参数θ的估计量θ满足()E θθ≠,则θ一定是θ的( )A 极大似然估计B 矩估计C 有偏估计D 有效估计3、设n X X X ,,,21 为来自均值为μ的总体的简单随机样本,则),,2,1(n i X i =( )A .是μ的有效估计量B .是μ的一致估计量C .是μ的无偏估计量D .不是μ的估计量4、估计量的有效性是指( ) A.估计量的抽样方差比较小 B.估计量的抽样方差比较大 C.估计量的置信区间比较宽 D.估计量的置信区间比较窄5、若置信水平保持不变,当增大样本容量时,置信区间( ) A .将变宽 B .将变窄 C .保持不变 D .宽窄无法确定6、一个95%的置信区间是指( ) A .总体参数有95%的概率落在这一区间内 B .总体参数有5%的概率未落在这一区间内C .在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D .在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数7、置信度α-1表示区间估计的( ) A .精确性 B .显著性 C .可靠性 D .准确性8、抽取一个容量为100的随机样本,其均值为x =81,标准差s =12。

总体均值μ的99%的置信区间为( )其中:58.2995.0=U 。

A 81±1.97B 81±2.35C 81±3.09D 81±3.52四、计算题 1、设1,,n X X 是来自总体X 的样本X 的密度函数为,0(),00,0x e x f x x λλλ-⎧>=>⎨≤⎩试求λ的极大似然估计量。

2、设总体X 服从参数为λ的泊松分布,求未知参数λ的矩估计量。

3、 设总体X 服从参数为λ的泊松分布,求未知参数λ的有效估计量。

4、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21 是来自X 的样本,求θ的矩估计量1θ∧5、设n X X X ,...,,21是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<=elsex xx f ,00,2)(2θθ其中 未知, >0。

试求 的矩估计和极大似然估计。

6、设n X X X ,...,,21 是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<-=else x x xx f ,00),(6)(3θθθ 其中θ 未知,0>θ 试求θ的矩估计θˆ。

7、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21 是来自X 的样本,(1)求θ的矩估计量1θ∧;(2)求θ的最大似然估计量2θ∧;(3)1θ∧和2θ∧是不是θ的无偏估计量(说明原因)?8、设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,,,21 为来自总体的一个样本,设∑==n i i X n X 11,∑=-=n i i X X n S 122)(1。

求μ与2σ的极大似然估计量9、设总体X 的概率分布为其中)30(<<θθ是未知参数,利用总体X 的如下样本值0,1,1,0,2,0,2,1,1,2(1)求θ的矩估计值;(2)求θ的最大似然估计值。

10、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(1) 当1=α时, 求未知参数β的矩估计量; (2) 当1=α时, 求未知参数β的最大似然估计量; (3) 当2=β时, 求未知参数α的最大似然估计量.11、 设)2(,,,21>n X X X n 为来自总体N (0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1) i Y 的方差(),1,2,,i D Y i n =;(2)1Y 与n Y 的协方差).,(1n Y Y Cov(3)若21)(n Y Y c +是2σ的无偏估计量,求常数c.12、设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(1) 求θ的矩估计;(2)求θ的最大似然估计13、设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他n X X X ,,,21 为来自总体X 的简单随机样本,X 是样本均值.(1)求参数θ的矩估计量θ;(2)判断24X 是否为2θ的无偏估计量,并说明理由.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-.(2)222211141 (4)44[()]4()424E X EX DX EX DX DX n n θθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22 (4)E X θ>.故24X 不是2θ的无偏估计量.14、设总体X 服从)0](,0[>θθ上的均匀分布,n X X X ,...,,21是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.15、 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,...,,21是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n x θθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为1111ln ni i x n θ==-∑.16、设总体的概率密度为101,,(;).0,x x f x θθθ-<<⎧=⎨⎩其它 (0)θ>试用来自总体的样本n X X X ,...,,21,求未知参数θ的矩估计和极大似然估计. 解:先求矩估计1101EX x dx θθμθθ===+⎰111μθμ∴=- 故θ的矩估计为1XX θ=-再求极大似然估计11111(,,;)()nn n i n i L x x x x x θθθθθ--===∏1ln ln (1)ln nii L n x θθ==+-∑1ln ln 0nii d L n x d θθ==+∑所以θ的极大似然估计为111ln ni i x n θ==-∑.17、已知分子运动的速度X 具有概率密度22(),0,0,()0,0.x x f x x αα-⎧>>=≤⎩n X X X ,...,,21为X 的简单随机样本(1)求未知参数α的矩估计和极大似然估计; (2)验证所求得的矩估计是否为α的无偏估计。

相关文档
最新文档