七年级上册第四章几何图形初步411《立体图形与平面图形》课时练习.doc
人教版七年级数学上册第四章 4.1.1 立体图形与平面图形第1课时 认识几何图形 作业练习题
【素养提升】 9.(12分)观察图形,回答下列问题: (1)图中有哪些图形? (2)你可以发现什么样的变化规律? (3)图中有一处遗漏的图形,请你补充.
解:(1)圆、正方形、半圆、三角形、长方形、扇形 (2)每列的图形(从上到下)先由第一个图形上下对折取下半部分得到第二 个图形,再由第二个图形左右对折取右半部分得到第三个图形 (3)如图所示
6.(4分)下列几何体中,不同类的是( C )A①B.②C.③
D.④
7.(4分)用一副七巧板拼成如图一幅“美丽的小天鹅”图形,其中有 __5__个直角三角形,__2__个平行四边形,__1__个正方形.
8.(6分)某五金厂生产的螺母形状如图所示. (1)图中包含哪些平面图形,请写出来; (2)这个几何体可以看做是哪几种基本的立体图形的组合?你能描述一 下它的特征吗? 解:(1)图中包含的平面图形有长方形、圆、六边形 (2)这个几何体可以看做是由六棱柱及圆柱组成,这个图形是一个六棱 柱,中间是一个空的圆柱
3.(8分)将下列几何体与它的名称连接起来. 解:如图
4.(4分)下列几何图形:三角形、圆锥、长方形、正方体、圆、球,其
中平面图形有( C )
A.1个 B.2个 C.3个 D.4个
5.(4分)如图是一座房子的平面图,组成这幅图的几何图形有( C )
A.三角形、长方形 B.三角形、正方形、长方形 C.三角形、长方形、梯形 D.正方形、长方形、梯形
数学
七年级上册 人教版
第四章 几何图形初步
4.1.1 立体图形与平面图形 第1课时 认识几何图形
1.(4分)下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆
锥;⑥圆柱.其中属于立体图形的是( A )
A.③⑤⑥ B.①②③
人教版数学 七年级上册 4.1.1 立体图形与平面图形 课后练习题
一、单选题1. 一个正方体每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“大”字相对的面上所写的字是()A.中B.梦C.的D.国2. 下列四个几何体中,从左面看到的图形为圆的是()A.B.C.D.3. 在如图所示的图形中是正方体的展开图的有()A.3种B.4种C.5种D.6种4. 如图是一个正方体的平面展开图,把展开图折叠成一个正方体后,和“你”字相对的面上的字是()A.考B.试C.顺D.利5. 下图是正方体的展开图,把它折叠成正方体后,与“荣”字所在面相对的面上的字是().A.“石”B.“实”C.“以”D.“我”二、填空题6. 如图,在长方体中,与棱CG、CB都异面的棱是棱______.7. 如图为正方体的表面展开图,六个面上分别标注了“我要细心检查”.那么折成正方体后,“我”的对面是“________”.8. 如图,是正方体的一种平面展开图,六个面上分别写有一个字,如果把它折成正方体,则“创”字对面的字是__________.三、解答题9. 用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形中的字母表示在该位置上小立方体的个数,请回答下列问题:(1)填空:_________,_________;(2)这个几何体最多由_________个小立方体搭成;(3)当,时,画出这个几何体从左面看得到的形状图.10. 如图是某几何体的三视图.(1)说出这个几何体的名称;(2)画出它的立体图形和表面展开图;(3)根据有关数据计算几何体的表面积和体积.11. 如图,是由若干个完全相同的小正方体组成的一个几何体,请在方格纸中用实线画出这个几何体的从正面看,从左面看和从上面看的平面图形.。
新人教版数学七年级上册4.1.1立体图形与平面图形课时练习
新人教版数学七年级上册4.1.1立体图形与平面图形课时练习姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·肥城模拟) 下列四个几何体中,主视图与左视图相同的几何体有()A . 1个B . 2个C . 3个D . 4个2. (2分)如图,将△ABC绕点C顺时针旋转40°得△A′CB′,若AC⊥A′B′,则∠BAC等于()A . 50°B . 60°C . 70°D . 80°3. (2分)下面的几何体中,属于棱柱的有()A . 1个B . 2个C . 3个D . 4个4. (2分)(2016·泰州) 如图所示的几何体,它的左视图与俯视图都正确的是()A .B .C .D .5. (2分)(2020·黑龙江) 如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A .B .C .D .6. (2分)如图,立体图形由小正方体组成,这个立体图形有小正方体()个.A . 9个B . 10个C . 11个D . 12个7. (2分)如图所示几何体的主视图是()A .B .C .D .8. (2分) (2018七上·阿城期末) 如图是从不同方向看某个几何体得到的图形,则这个几何体是()A . 正方体B . 长方体C . 圆柱D . 球9. (2分) (2016七上·五莲期末) 如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A . 中B . 钓C . 鱼D . 岛10. (2分) (2020七上·东兰期末) 生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于()A . 圆柱体B . 球体C . 圆D . 圆锥体11. (2分)如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为()A .B .C .D .12. (2分)李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A .B .C .D .二、填空题 (共5题;共9分)13. (1分) (2019七上·昌平期中) 如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.14. (2分)①一段烟囱(无烟囱帽);②一段圆钢;③铅锤;④烟囱帽.①②都呈________的形状;③④都呈________ 的形状.15. (4分) (2019七上·且末期末) 边长为2㎝的正方体有 ________个面,________ 个顶点,________ 条边,表面积是 ________cm2 .16. (1分) (2018七上·阜宁期末) 一个正方体有________个面.17. (1分) (2020七上·黄岛期末) 如图,将一个正方体的表面沿某些棱剪开,展成一个平面图形,已知正方体相对两个面上的数互为倒数,则ab=________.三、解答题 (共6题;共48分)18. (13分)在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有________个正方体只有一个面是黄色,有________个正方体只有两个面是黄色,有________个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?19. (5分)在图①、②中分别添加一个或两个小正方形,使该图形经过折叠后能围成一个以这些小正方形为面的立方体.20. (5分)如图是一个正方体盒子的展开图,要把﹣6、、﹣1、6、﹣、1这些数字分别填入六个小正方形中,使得按虚线折成的正方体相对面上的两个数互为相反数.21. (5分)回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.22. (5分)如图,将一张正方形纸片的4个角剪去4个大小一样的小正方形,然后折起来就可以制成一个无盖的长方体纸盒,设这个正方形纸片的边长为a,这个无盖的长方体盒子高为h.(1)若a=18cm,h=4cm,则这个无盖长方体盒子的底面面积为;(2)用含a和h的代数式表示这个无盖长方体盒子的容积V=;(3)若a=18cm,试探究:当h越大,无盖长方体盒子的容积V就越大吗?请举例说明;这个无盖长方体盒子的最大容积是.23. (15分)观察下图,思考问题:(1)你认识上面的图片中的哪些物体?(2)这些物体的表面形状类似与哪些几何体?说说你的理由。
人教版七年级上4.1.1 立体图形与平面图形练习含答案
人教版七年级上4.1.1 立体图形与平面图形练习含答案一、填空题:请将答案填在题中横线上.1.下列图形中,表示平面图形的是__________;表示立体图形的是_________.(填入序号)【答案】①③;②④2.正方体有__________个面,__________个顶点,经过每个顶点有__________条棱.【答案】6,8,33. 若一个棱柱有7个面,则它是__________棱柱.【答案】5二、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.4.下列图形中,含有曲面的立体图形是A.B.C.D.【答案】D5.如图所示的四种物体中,哪种物体最接近于圆柱A.B.C.D.生日蛋糕弯管烟囱酒瓶【答案】A6.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是A.正方体B.球C.圆锥D.圆柱体【答案】D7.下面的几何体是棱柱的为A.B.C.D.【答案】C8.下列几何体中,是圆柱的为A.B.C.D.【答案】A三、解答题:解答应写出文字说明、证明过程或演算步骤.9.将下列几何体与它的名称连接起来.【答案】如图:10.如图所示的正方体的六个面分别标着连续的整数,求这六个整数的和.11.一个长方体如图所示.(1)求它的体积和表面积;(用含a、b的代数式表示)(2)当a=10,b=8时,该长方体的表面积是__________.【答案】(1)体积为a⋅b⋅6=6ab,表面积为2(ab+6a+6b)=2ab+12a+12b.(2)当a=10,b=8时,原式=2×10×8+12×10+12×8=376。
故答案为376.。
人教版七年级上册数学 第四章 几何图形初步 习题
第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形与平面图形基础题知识点1 认识立体图形1.(丽水中考)下列图形中,属于立体图形的是(C)A B C D2.下列物体中,最接近圆柱的是(C)3.下面几何体中,既不是柱体,又不是锥体的是(C)4.请写出图中的立体图形的名称.(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.5.如图,把下列物体和与其相似的立体图形连接起来.解:如图.知识点2 认识平面图形6.以下图形中,不是平面图形的是(C)A.线段B.角C.圆锥D.圆7.【关注社会生活】如图是交通禁止驶入标志,组成这个标志的几何图形有(A)A.圆、长方形B.圆、线段C.球、长方形D.球、线段8.如图所示的是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形9.如图是由平面图形正方形和半圆构成的.10.下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.易错点忽视柱体上、下底面“平行且相等”这一条件而致错11.如图所示的立体图形中,不是柱体的是(D)中档题12.下列几何图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱,其中立体图形有m个,平面图形有n 个,则m-n的值为(D)A.3B.2C.1D.013.如图,用简单的平面图形画出三位携手同行的小人物,请你仔细观察,图中三角形有4个,圆有6个.14.在如图所示的图形中,柱体有①②③⑦,锥体有⑤⑥,球体有④.15.指出图中各物体是由哪些立体图形组成的.解:(1)由正方体、圆柱、圆锥组成.(2)由圆柱、长方体、三棱柱组成.(3)由五棱柱、球组成.16.如图,有7种图形,请你选用这7种图形中的若干种(不少于两种)构造一幅画,并用一句话说明你的构想是什么?举例:如图,左框中就是一个符合要求的图案,请你在右框中画出一个与这个不同的图案,并加以说明.一辆汽车解:答案不唯一,略.综合题17.【注重动手操作】动手剪拼:下边的三幅图都是不规则图形,你能把它们各剪一刀,分成两部分,然后拼成正方形吗?试试看. 解:如图.第2课时立体图形与平面图形的相互转化基础题知识点1 从不同的方向观察立体图形1.(绍兴中考)如图的几何体是由五个相同的小立方体搭成,它从正面看到的平面图形是(A)A B C D2.有一种圆柱体茶叶筒如图所示,从正面看得到的平面图形是(D)3.如图所示的几何体,从左面看得到的平面图形是(B)A B C D4.如图是小李书桌上放的一本书,从上往下看得到的平面图形是(A)A B C D5.图中的两个圆柱体底面半径相同而高度不同,关于从不同的方向看这两个圆柱体得到的平面图形,说法正确的是(B)A.从正面看得到的平面图形相同B.从上面看得到的平面图形相同C.从左面看得到的平面图形相同D.从各个方向看得到的平面图形都相同6.下列几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2 立体图形的展开图7.如图所示的立体图形,它的展开图是(C)A B C D8.(常州中考)下列图形中,是圆锥的侧面展开图的是(B)9.(陕西中考)如图是一个几何体的表面展开图,则该几何体是(C)A.正方体B.长方体C.三棱柱D.四棱锥10.(无锡中考)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是(C)中档题11.(广安中考)如图所示的几何体,从上面看得到的平面图形是(D)12.(龙东中考)由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是(A)13.(绵阳中考)把图中的三棱柱展开,所得到的展开图是(B)14.(教材P123习题T10变式)(河南中考)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(D)A.厉B.害C.了D.我15.(连云港中考)由6个大小相同的正方体搭成的几何体如图所示,比较它从三个不同方向看到的平面图形的面积,则(C)A.一样大B.从正面看到的平面图形的面积最小C.从左面看到的平面图形的面积最小D.从上面看到的平面图形的面积最小16.如图是由一些相同的小正方体搭成的几何体从三个不同方向看到的图形,搭成这个几何体的小正方体的个数是4.17.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,试问共有4种添加方法.综合题18.如图是一个长方体的展开图,每一面上都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在长方体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)如果C面在前面,从上面看是D面,那么左面是哪个面?(4)如果B面在后面,从左面看是D面,那么前面是哪个面?(5)如果A面在右面,从下面看是F面,那么B面在哪里?解:(1)右面.(2)E面.(3)B面.(4)E面.(5)后面.小专题(十一)正方体的展开与折叠——教材P122习题T7、P123习题T10的变式与应用类型1 判断正方体的展开图教材母题:(教材P122习题T7)如图,这些图形都是正方体的展开图吗?如果不能确定,折一折,试一试.你还能再画出一些正方体的展开图吗?解:第一排第3个图不能,其余都能折成正方体.正方体的展开图可总结为如下图所示“一四一”“二三一”“三三”“二二二”四种类型,共11种情况. 1.一四一型2.二三一型3.三三型4.二二二型若小正方形摆成的平面图形呈“”“”“”型,则不能折成正方体.若出现“”型,则另两面必须在两侧.1.(长春中考)下列图形中,可以是正方体表面展开图的是(D)A B C D2.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)(D)A.1或2或3B.3或4或5C.4或5或6D.1或2或6类型2 找正方体的相对面或相邻面3.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(C)A.中B.考C.顺D.利4.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为7,则x+y的值是(C)A.7B.8C.9D.104.1.2 点、线、面、体基础题知识点1 点、线、面、体1.面与面相交,形成的是(B)A.点B.线C.面D.体2.下雨时汽车的雨刷把玻璃上的雨水刷干净,这属于的实际运用是(B)A.点动成线B.线动成面C.面动成体D.都不对3.下面现象能说明“面动成体”的是(A)A.旋转一扇门,门运动的痕迹B.扔一块小石子,小石子在空中飞行的路线C.天空划过一道流星D.时钟秒针旋转时扫过的痕迹4.长方体有6个面,12条棱,8个顶点;圆柱有3个面,其中有2个平面,1个曲面.5.如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.知识点2 由平面图形旋转而成的立体图形6.(长沙中考)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是(D)7.【易错】现有一个长为4 cm,宽为3 cm的长方形,绕它的一边旋转一周,得到的几何体的体积是36π cm3或48π cm3.中档题8.(教材P120练习T2变式)将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是(B)A B C D9.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是(B)A.五棱柱B.六棱柱C.七棱柱D.八棱柱10.下面图1是正方体木块,若用不同的方法,把它切去一块,可以得到如图2、图3、图4、图5不同形状的木块.图1 图2 图3 图4 图5(1)我们知道,图1的正方体木块有8个顶点,12条棱,6个面.请你观察,将图2、图3、图4、图5中木块的顶点数a、棱数b、面数c填入下表:图顶点数a 棱数b 面数c1 8 12 62 6 9 53 8 12 64 8 13 75 10 15 7(2)观察这张表,请你归纳出上述各种木块的顶点数a、棱数b、面数c之间的数量关系,这种数量关系是:a+c -b=2(用含a,b,c的一个等式表示).4.2 直线、射线、线段第1课时直线、射线、线段基础题知识点1 直线1.下列可近似看作直线的是(D)A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列图示中,直线表示方法正确的有(D)A.①②③④B.①②C.②④D.①④3.如图,下列说法错误的是(D)A.点P为直线AB外一点B.直线AB不经过点PC.直线AB与直线BA是同一条直线D.点P在直线AB上4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明经过一点可以画无数条直线;用两个钉子把细木条钉在木板上,就能固定细木条,这说明两点确定一条直线.5.如图,完成下列填空:(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线 b上,在直线 a外;(3)点A既在直线a上,又在直线b上.知识点2 射线6.(教材P126练习T1变式)如图所示,A,B,C是同一直线上的三点,下面说法正确的是(C)A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线7.如图,能用O,A,B,C中的两个字母表示的不同射线有7条.知识点3 线段8.下列表示线段的方法中,正确的是(B)A.线段AB.线段ABC.线段abD.线段Ab9.按语句“画出线段PQ的延长线”,画图正确的是(A)10.(柳州中考)如图,在直线l上有A,B,C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条11.如图,直线有多少条?把它们分别表示出来;线段有多少条?把它们分别表示出来;射线有多少条?可以表示的射线有多少条?把它们表示出来.解:直线有3条,分别为直线AB,直线AC,直线BC;线段有6条,分别为线段AB,线段AC,线段AD,线段BD,线段CD,线段BC;射线有14条,可以表示的射线有8条,分别为射线AB,射线AC,射线BA,射线BC,射线CA,射线CB,射线DB,射线DC.易错点三个点的位置不确定,考虑不周全12.平面上有三个点,可以确定直线的条数是1条或3条.中档题13.如图,对于直线AB,线段CD,射线EF,其中能相交的是(B)14.下列关于作图的语句中,一定正确的是(D)A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm15.延长线段AB到点C,下列说法中正确的是(B)A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线AB的延长线上16.如图,下列叙述不正确的是(C)A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线17.(教材P126练习T2变式)如图,已知平面上四点A,B,C,D.(1)画直线AB,射线CD;(2)画射线AD,连接BC;(3)直线AB与射线CD相交于点E;(4)连接AC,BD相交于点F.解:如图所示.18.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的数的部分是什么图形?怎样表示?解:(1)是一条射线,表示为射线OB.(2)负数和零(非正数).(3)线段,表示为线段AB.19.【易错】往返于甲、乙两地的客车,中途有三个站(如图).其中每两站的票价不同.问:(1)有多少种不同的票价?(2)要准备多少种车票?解:根据线段的定义:可知图中的线段有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共10条. (1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票. 综合题 20.如图:(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n (n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的式子表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时 比较线段的长短基础题 知识点1 用尺规作一条线段等于已知线段 1.尺规作图的工具是 (D )A.刻度尺和圆规B.三角尺和圆规C.直尺和圆规D.没有刻度的直尺和圆规 2.已知:线段a ,b.求作:线段AB ,使得AB =a +2b. 小明给出了四个步骤: ①在射线AM 上画线段AP =a ; ②则线段AB =a +2b ;③在射线PM上画PQ=b,QB=b;④画射线AM.你认为正确的顺序是(B)A.①②③④B.④①③②C.④③①②D.④②①③3.如图,已知线段a,b,作一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)解:如图,AC即为所求线段.知识点2 线段的长短比较及和差4.如图所示,比较线段a和线段b的长度,结果正确的是(B)A.a>bB.a<bC.a=bD.无法比较5.七年级(1)班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法(A)A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选6.如图,在三角形ABC中,比较线段AC和AB长短的方法可行的有(C)①凭感觉估计;②用直尺度量出AB和AC的长度;③用圆规将线段AB叠放到线段AC上,观察点B的位置;④沿点A 折叠,使AB 和AC 重合,观察点B 的位置.A.1个B.2个C.3个D.4个知识点3 线段的中点及等分点7.如图,点B 在线段AC 上,下列式子中:①AB=12AC ;②AB=BC ;③AC=2AB ;④AB+BC =AC ,其中能表示点B 是线段AC 的中点的有(C )A.1个B.2个C.3个D.4个 8.如图,点O 是线段AB 的中点,点C 在线段OB 上,AC =6,CB =3,则OC 的长等于(C )A.0.5B.1C.1.5D.29.如图,点C 在线段AB 上,点D 是线段AC 的中点,点C 是线段BD 的四等分点.若CB =2,则线段AB 的长为(C )A.6B.10C.14D.18 10.如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长; (2)若AC =30,BD =10,求AB 的长. 解:(1)因为点D 是线段BC 的中点, 所以CD =12BC.因为AB =10,AC =6, 所以BC =AB -AC =10-6=4. 所以CD =12BC =2.(2)因为点D 是线段BC 的中点, 所以BC =2BD. 因为BD =10, 所以BC =2×10=20. 因为AB =AC +BC , 所以AB =30+20=50.易错点 由于点的位置不确定而出现漏解11.已知A ,B ,C 是直线MN 上的点,若AC =8 cm ,BC =6 cm ,点D 是AC 的中点,则BD 的长等于10 cm 或2 cm. 中档题12.已知线段AB =2 cm ,延长AB 到点C ,使BC =AB ,再延长BA 到点D ,使BD =2AB ,则线段DC 的长为(C ) A.4 cm B.5 cm C.6 cm D.2 cm13.【易错】已知点A ,B ,C 在同一条直线上,点M ,N 分别是AB ,AC 的中点.如果AB =10 cm ,AC =8 cm ,那么线段MN 的长度为(D )A.6 cmB.9 cmC.3 cm 或6 cmD.1 cm 或9 cm14.如图,C ,D 是线段AB 上的点,若AB =8,CD =2,则图中以A ,C ,D ,B 为端点的所有线段的长度之和等于(D )A.24B.22C.20D.2615.如图,点C ,D ,E 都在线段AB 上,已知AD =BC ,点E 是线段AB 的中点,则CE =DE.(填“>”“<”或“=”)16.如图,点M 是线段AB 的中点,点C 在线段AB 上,且AC =4 cm ,点N 是AC 的中点,MN =3 cm ,求线段CM 和AB 的长.解:因为点N 是AC 的中点,AC =4 cm , 所以NC =12AC =12×4=2(cm ).因为MN =3 cm ,所以CM =MN -NC =3-2=1(cm ). 所以AM =AC +CM =4+1=5(cm ). 因为点M 是AB 的中点, 所以AB =2AM =2×5=10(cm ).17.如图,已知线段AB =20 cm ,点M 是线段AB 的中点,点C 是AB 延长线上一点,AC =3BC ,点D 是线段BA 延长线上一点,AD =12AB.(1)求线段BC 的长; (2)求线段DC 的长;(3)点M 还是哪些线段的中点?解:(1)因为AC =AB +BC ,AC =3BC , 所以3BC =AB +BC ,即AB =2BC. 因为AB =20 cm , 所以BC =10 cm.(2)因为AD =12AB ,AB =20 cm ,所以AD =10 cm.所以DC =AD +AB +BC =10+20+10=40(cm ). (3)因为点M 是线段AB 的中点, 所以AM =MB =10 cm. 所以DM =20 cm ,MC =20 cm. 所以点M 还是线段DC 的中点. 综合题18.已知线段AB 上有两点P ,Q ,点P 将AB 分成两部分,AP∶PB=2∶3,点Q 将AB 也分成两部分,AQ∶QB=4∶1,且PQ =3 cm.求AP ,QB 的长. 解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.第3课时关于线段的基本事实及两点间的距离基础题知识点1 关于线段的基本事实1.(随州中考改编)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(A)A.两点之间,线段最短B.两点确定一条直线C.直线比曲线短D.经过一点有无数条直线2.【关注社会生活】下面现象,可以用两点之间线段最短来解释的是(D)A.平板弹墨线B.建筑工人砌墙C.会场把茶杯摆直D.弯河道改直3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.解:点P的位置如图所示.作法:连接AB交直线l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.知识点2 两点间的距离4.(滨州中考)若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为(B)A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-25.如图,线段AB=8 cm,延长AB到点C.若线段BC的长是AB长的一半,则A,C两点之间的距离为(D)A.4 cmB.6 cmC.8 cmD.12 cm中档题6.(新疆中考)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线(B)A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B7.已知A,B,C为直线l上的三点,线段AB=9 cm,BC=1 cm,那么A,C两点间的距离是(D)A.8 cmB.9 cmC.10 cmD.8 cm或10 cm8.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.解:连接AC,BD的交点即为P点的位置,如图.综合题9.(教材P130习题T11变式)如图所示,有一个圆柱形纸筒,一只虫子在点B处,一只蜘蛛在点A处,蜘蛛沿着纸筒表面准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?解:如图所示,蜘蛛沿线段AB爬行,能最快地捉住虫子.小专题(十二)线段的计算类型1 中点问题(整体思想)【例】 如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则线段MN 的长为152cm ;(2)若AC =a cm ,CB =b cm ,则线段MN 的长为a +b2cm ;(3)若AB =m cm ,求线段MN 的长度;(4)若点C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长度吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M ,N 分别是AC ,BC 的中点, 所以MC =12AC ,CN =12BC.又因为MN =MC +CN ,所以MN =12(AC +BC )=12AB =m2 cm.(4)猜想:MN =12AB =n2cm.结论:若点C 为线段AB 上一点,且点M ,N 分别是AC ,BC 的中点,则MN =12AB.【变式1】 若MN =k cm ,求线段AB 的长. 解:因为点M 是AC 的中点, 所以CM =12AC.因为点N 是BC 的中点, 所以CN =12BC.所以MN =CM +CN =12(AC +BC )=12AB.所以AB =2MN =2k cm.【变式2】 若将例题中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上”,其他条件不变,(3)中结论还成立吗?请画出图形,写出你的结论,并说明理由. 解:MN =m2cm 成立.当点C 在线段AB 的延长线上时,如图.因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC.又因为MN =MC -CN ,所以MN =12(AC -BC )=12AB =m2 cm.如图,只要点C 在线段AB 所在直线上,点M ,N 分别是AC ,BC 的中点,那么MN =12AB.图1 图2 图31.如图,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.若AB =8 cm ,AC =3.2 cm ,则线段MN 的长为2.4cm.2.如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点.(1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含a ,b 的式子表示出MN 的长. 解:(1)因为AB =24,CD =10, 所以AC +DB =14.因为M ,N 分别为AC ,BD 的中点, 所以CM =12AC ,DN =12BD.所以MC +DN =12(AC +DB )=7.所以MN =MC +DN +CD =17. (2)因为AB =a ,CD =b , 所以AC +DB =a -b.所以MC +DN =12(AC +DB )=12(a -b ).所以MN =MC +DN +CD =12(a -b )+b =12(a +b ).类型2 直接计算3.如图,已知线段AB ,按下列要求完成画图和计算:(1)延长线段AB 到点C ,使BC =2AB ,取线段AC 的中点D ; (2)在(1)的条件下,如果AB =4,求线段BD 的长度. 解:(1)如图.(2)因为BC =2AB ,且AB =4, 所以BC =8.所以AC =AB +BC =8+4=12. 因为D 为AC 中点, 所以AD =12AC =6.所以BD =AD -AB =6-4=2.类型3 方程思想4.如图,已知B ,C 两点把线段AD 分成2∶5∶3三部分,点M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 则AD =AB +BC +CD =10x cm. 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm.所以BM =AM -AB =5x -2x =3x cm. 因为BM =6 cm , 所以3x =6.解得x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).5.如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ). 因为EF =10 cm , 所以2.5x =10.解得x =4. 所以AB =12 cm ,CD =16 cm.类型4 分类讨论思想6.已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长度. 解:当点C 在线段AB 上时,如图1,图1CD =12AC =12(AB -BC )=12×(60-20)=12×40=20(cm ); 当点C 在线段AB 的延长线上时,如图2,图2CD =12AC =12(AB +BC )=12×(60+20)=12×80=40(cm ). 所以CD 的长度为20 cm 或40 cm.7.课间休息时小明拿两根木棒玩,小明说:“较短木棒AB 长40 cm ,较长木棒CD 长60 cm ,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E 和点F ,则点E 和点F 间的距离是多少?你说对了我就给你玩.”聪明的你请帮小华求出此时两根木棒的中点E 和F 间的距离是多少?解:如图1,当AB 在CD 的左侧且点B 和点C 重合时,图1因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =BE +CF =20+30=50(cm ). 如图2,当AB 在CD 上且点B 和点C 重合时,图2因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =CF -BE =30-20=10(cm ).所以此时两根木棒的中点E 和F 间的距离是50 cm 或10 cm.类型5 动态问题8.如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空:BP =5-t ,AQ =10-2t ; (2)当t =2时,求PQ 的值;(3)【分类讨论思想】当PQ =12AB 时,求t 的值.解:(2)当t =2时,AP <5,点P 在线段AB 上;OQ <10,点Q 在线段OA 上,如图所示:此时PQ =OP -OQ =(OA +AP )-OQ =(10+t )-2t =10-t =8.(3)PQ =|OP -OQ|=|(OA +AP )-OQ|=|(10+t )-2t|=|10-t|. 因为PQ =12AB ,所以|10-t|=2.5. 解得t =7.5或t =12.5.4.3 角 4.3.1 角基础题知识点1 角的定义及表示方法 1.下列说法中,正确的是(C ) A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形 2.图中角的表示方法正确的有(B )A.1个B.2个C.3个D.4个 3.如图所示,下列表示角的方法错误的是(D )A.∠1与∠AOB 表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB ,∠AOC,∠BOCD.∠AOC 也可用∠O 来表示4.如图,∠1,∠2表示的角用大写字母分别表示为∠ABC,∠BCN;∠A 也可表示为∠BAC,还可以表示为∠MAN .5.如图所示,能用一个字母表示的角有2个,以A 为顶点的角有3个,图中所有的角有7个(小于平角).知识点2 角的度量6.(厦门中考)1°等于(C )A.10′B.12′C.60′D.100′ 7.下列各角中,是钝角的是(B )A.14周角B.23平角C.平角D.14平角8.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A ) A.∠1=∠3 B.∠1=∠2 C.∠1<∠2 D.∠2=∠3 9.计算:(1)12′=0.2°或720″; (2)360″=0.1°或6′; (3)57.18°=57°10′48″. 知识点3 钟面角10.某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的小于平角的角等于90°.易错点1 角的概念辨析有误 11.下列说法正确的是(C ) A.平角就是一条直线 B.小于平角的是钝角C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数为0° 易错点2 角度换算时出错12.(1)把124.24°化为度、分、秒的形式为124°14′24″; (2)若把36°36′36″化成以度为单位,则结果为36.61°. 中档题13.下列各式中,角度互化正确的是(D ) A.63.5°=63°50′ B.23°12′36″=23.48° C.18°18′18″=18.33° D.22.25°=22°15′14.【易错】一个20°的角放在10倍的放大镜下看是(A ) A.20° B.2° C.200° D.无法判断 15.如图,点O 在直线AB 上,则在此图中小于平角的角有(B )A.4个B.5个C.6个D.7个16.如图,有下列说法:①∠ECG和∠C是同一个角;②∠OGF和∠OGB是同一个角;③∠DOF和∠EOG是同一个角;④∠ABC和∠ACB是同一个角.其中正确的有(B)A.1个B.2个C.3个D.4个17.(通辽中考)4点10分,时针与分针所夹的小于平角的角为(B)A.55°B.65°C.70°D.以上结论都不对18.如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).解:(1)∠B,∠C.(2)∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.19.爸爸问小明:“一个方桌有四个角,如果锯掉一个角,还剩几个角?”小明回答:“还剩3个角.”并画出了如下图形.小明回答正确吗?若不正确,请说明理由,并画出图形.解:不正确,理由:除小明这种画法外还有如下两种画法,所以还剩3个或4个或5个角.画图如下:【变式】 n 边形剪去一个角,还剩(n -1)或n 或(n +1)个角. 综合题20.【类比探究】有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点.如图所示,如果过角的顶点:(1)在角的内部作1条射线,那么图中一共有3个角; (2)在角的内部作2条射线,那么图中一共有6个角; (3)在角的内部作3条射线,那么图中一共有10个角;(4)在角的内部作n 条射线,那么图中一共有(n +2)(n +1)2个角.【变式】 以直线l 外一点P 为端点,向直线l 上的n (n>1)个点作射线,则以点P 为顶点,以这些射线为边的角(小于180°)的个数为n (n -1)2.(用含有n 的式子表示)。
最新人教版七年级数学上册:立体图形与平面图形课时练习及答案解析.docx
新人教版数学七年级上册4.1.1立体图形与平面图形课时练习一、选择题(共15小题)1.如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④答案:B知识点:简单几何体的三视图解析:解答:运用已学过的简单几何体三视图,分别列出上述四个几何体的三视图。
①长方体:它的主视图、左视图、俯视图均为长方形,主视图是由其长和高组成的长方形,左视图是由其宽和高组成的长方形,俯视图是由其长和宽组成的长方形。
在没有告知长宽高具体数据的情况下,我们一般地认为长宽高是互不相等的。
②圆柱:它的主视图和左视图都是长方形,长方形的长都等于圆柱底面的直径,宽等于圆柱的高。
其俯视图是圆。
③圆锥:它的主视图和左视图都是三角形,三角形的底等于圆锥底面的直径,两腰都是顶点到底面圆边的距离。
其俯视图是圆。
④球:它的三视图都是圆,并且圆的直径相等。
分析:本题容易混淆的是①图和③图,有的学生会默认①图的主视图和俯视图相同,对于③图,有时会记错它的左视图。
本题考查简单几何体的三视图。
2.将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是()答案:C知识点:图形的旋转;主视图解析:解答:图形绕直线旋转一周,得到一个立体图形。
这个立体图形的横切面(俯视图)是圆,圆的半径等于旋转面上的点到直线的距离。
而该立体图形的主视图,则是平面图形以旋转直线为对称轴作出来的轴对称图形。
比如,圆柱是由长方形绕其一边旋转得到的,它的底面半径是该长方形另一边的长,绕其旋转的一边就是它的高。
圆锥是由一个直角三角形绕其一条直角边旋转一周得到的图形,这条直角边就是圆锥的高,另一条直角边就是圆锥的底面半径。
题目中的立体图形是一个等腰梯形,其上底长小于下底长。
由此,可以选出正确答案。
分析:在大脑中构建旋转立体图形,或者将已知立体图形的主视图画出来,按照选项中的直线位置作对称轴,得到的图形就是正确选项。
2023-2024学年部编版初中数学七年级上册课时练《4.1.1 立体图形和平面图形》03(含答案)
七年级数学上册第四章几何图形初步《4.1.1立体图形与平面图形》课时练1.如图所示的平面图形中,不可能围成圆锥的是()2.把图中的三棱柱展开,所得到的展开图是()第2题图3.一个几何体的表面展开图如图所示,则这个几何体是()第3题图A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.下列图形中,不可以作为一个正方体的展开图的是()5.如图四个图形是由立体图形展开得到的,相应的立体图形顺次是()第5题图A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥6.一个几何体的展开图如图所示,这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥第6题图7.如图是一个长方体形状包装盒的表面展开图,折叠制作完成后得到长方体的容积是(包装材料厚度不计)()A.40×40×70B.70×70×80C.80×80×40D.40×70×80第7题图8.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦第8题图9.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)()A.1或2或3B.3或4或5C.4或5或6D.1或2或6 第9题图10.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.11.如图是正方体的展开图,则原正方体相对两个面上的数字积的最小值是____________.第11题图12.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等,求x的值.第12题图13.将一张长与宽的比为2∶1的长方形纸片按图1、图2所示的方式对折,然后沿图3中的虚线裁剪,得到图4,最后将图4的纸片再展开铺平,则所得到的图案是()第13题图14.如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图形可以是()第14题图15.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,共有____________种添加方法.第15题图16.如图所示,在正方体各面上写上数1,2,3,而在展开图中也分别写上了两个或一个指定的数.请你在展开图的其他各面上写上适当的数,使得相对的面上两数的和等于7.第16题图17.如图所示,有分别写着a,b,c,d,e,f的六个小正方形.(1)这6个小正方形能否围成一个小正方体?(2)若把写有a的正方形分别移到c,d,e上面,其余不变,能否围成正方体?(3)如果把写有a的正方形分别移到b,c,d下面,其余不变,能否围成一个正方体?第17题图18.如图所示,有一放在桌面上的正方体的盒子ABCD-A1B1C1D1,在盒子外的顶点A处有一只蚂蚁,而在对角的顶点C1处有一滴蜜糖,蚂蚁应沿着什么路径爬,才能最快吃到蜜糖.请画出蚂蚁爬行的路线,共有几条路线并简要说明理由.第18题图参考答案1—5.DBACA6—9.CDDD10.四棱锥圆柱三棱柱11.-812.x=113—14.AC15.416.由正方体图形知1,2,3共用一个顶点,可在展开图中确定出这三个数,再找它们的相对面.如图(图2答案不唯一).第16题图17.(1)能(2)能(3)不能18.如图,共有6条路线.理由略第18题图。
七年级数学上册4_1几何图形4_1_1立体图形与平面图形2
4.1.1立体图形与平面图形(2)——从不同方向看班级:___________ 姓名:___________ 得分:___________一、选择题(每题6分,共30分)1.以下几何体中,从正面看是一个长方形的是( )A. B. C. D.2.小明从正面观看图1所示的两个物体,看到的是图2中的( )3.如图是由一些相同的小正方体组成的立体图形别离从正面、左面、上面看到的形状图.那么组成那个立体图形的小正方体有( )A.4个B.5个C.6个D. 7个第3题图4.如图,是一个带有方形空洞和圆形空洞的儿童玩具,若是用以下几何体作为塞子,那么既能够堵住方形空洞,又能够堵住圆形空洞的几何体是( )A. B. C. D.第4题图第5题图5.将四个棱长为1的正方体如图摆放,那么那个几何体的表面积是( )A.3B.9C.12D.18二、填空题(每题6分,共30分)6.已知一个几何体由一些大小相同的小正方体组成,它的主视图和俯视图如下图,那么组成该几何体所需小正方体的个数最多为个.从正面看从上面看从正面看从上面看第6题图第7题图7.用一些大小相同的小正方体搭成一个几何体,使得从正面和上面看到的那个几何体的形状如下图,那么,组成那个几何体的小正方体的块数至少为个.8.如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他一样的小正方体在隔壁再搭一个几何体,使王亮所搭几何体恰好能够和张明所搭几何体拼成一个无裂缝的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为 .第8题图第9题图9.如图,从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,取得一个如所示的零件,那么那个零件的表面积为10.如图,下列几何体是由棱长为1的小立方体按必然规律在地面上摆成的,假设将露出的表面都涂上颜色(底面不涂色),那么第n个几何体中只有两个面涂色的小立方体共有___________个.第10题图三、解答题(共40分)11.用五个小正方体搭成如图的几何体,请画出它的从三个角度看到的平面图.12.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面能够看到的图形.参考答案1.B2.C3.B4.B5.D.【解析】观看几何体,取得那个几何体向前、向后、向上、向下、向左、向右别离有3个正方形,那么它的表面积=6×3×1=18.应选:D.6.5【解析】由题中所给出的主视图知物体共两列,且左侧一列高一层,右边一列最高两层;由俯视图可知左侧一行,右边两行,于是,可确信左侧只有一个小正方体,而右边可能是一行单层一行两层,出可能两行都是两层.因此图中的小正方体最少4块,最多5块.7.8【解析】从俯视图中能够看出最底层小正方体的个数及形状,从主视图能够看出每一层小正方体的层数和个数,从而算出总的个数.解:∵俯视图有5个正方形,∴最底层有5个正方体,由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;∴该组合几何体最少有5+2+1=8个正方体,最多有5+4+2=11个正方体,故答案为:8.8.19,52.【解析】第一确信张明所搭几何体所需的正方体的个数,然后确信两人共搭建几何体所需小立方体的数量,求差即可.解:∵王亮所搭几何体恰好能够和张明所搭几何体拼成一个无裂缝的大长方体,∴该长方体需要小立方体4×32=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+10)=52,故答案为19,52.9.24.【解析】挖去一个棱长为1的小正方体,取得的图形与原图形表面积相等,那么表面积是2×2×6=24.10.(8n﹣4)【解析】几何体中只有两个面涂色的小立方体的个数为各面的棱角处,下表面除外.解:观看图形可知:图①中,两面涂色的小立方体共有4个;图②中,两面涂色的小立方体共有12个;图③中,两面涂色的小立方体共有20个.4,12,20都是4的倍数,可别离写成4×1,4×3,4×5的形式,因此,第n个图中两面涂色的小立方体共有4(2n﹣1)=8n﹣4(个).故答案为:(8n﹣4).11.【解析】由已知条件可知,正面有3列,每列小正方数形数量别离为2,1,1;左面有3列,每列小正方形数量别离为1,2,1;上面有3列,每列小正方数形数量别离为3,1,1;据此可画出图形.图略12略。
数学人教版七年级上册 4.1.1 立体图形与平面图形 课时练习(word、含答案)
4.1.1 立体图形与平面图形学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.一个几何体的表面展开图如图所示,则这个几何体是( )A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱2.我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图是“牟合方盖”的一种模型,从正面看,所看到的图形是( )A. B.C. D.3.下列物体中,与球的形状类似的是( )A. 电视机B. 铅笔C. 西瓜D. 烟囱4.如图是由三个相同正方体组成的甲、乙两个几何体,它们的三视图中不一致的是( )A. 主视图B. 左视图C. 俯视图D. 都不一致5.下列平面图形不能够围成正方体的是( )A. B.C. D.6.如图所示,从左面看该几何体,看到的图形是( )A.B.C.D.7.如图是某种几何体的表面展开图,这个几何体是( )A. 圆锥B. 球C. 圆柱D. 棱柱8.从下列物体抽象出来的几何体可以看成圆柱的是( )A. 足球B. 易拉罐C. 吊锤D. 茶杯9.如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是( )A. ①②③B. ②③④C. ①③④D. ①②④10.下图中是三棱锥的立体图形的是( )A. B. C. D.二、填空题(本大题共2小题,共6.0分)11.如下图是由若干个大小相同的小正方体堆砌而成的立体图形,那么从正面、左面、上面三个不同方向看该立体图形得到的平面图形中,面积最小的是从__________面看得到的平面图形.12.小华在一个正方体的六个面上分别写上“x,y,z,1,−1,2”的字样,表面展开图如图所示,若在该正方体中,相对面上的数字相等,则x y=.三、解答题(本大题共4小题,共32.0分。
七年级数学上册4.1几何图形4.1.1立体图形与平面图形课时练
几何图形1.如图所示,水平放置的下列几何体,从正面看到的视图不是..长方形的是()2.下列几何体中,直棱柱的个数是()A.5 B.4 C.3 D.23.直四棱柱、长方体和正方体之间的包含关系是()A B C D4.若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是()A B C D6.举出两个俯视图为圆的实物例子: 、.7.写出下列立体图形的名称(从左到右依次写出):.8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm.9.分别画出图中的物体的三个视图:10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.参考答案1.答案: B 解析:B答案中圆锥的主视图是三角形.2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B.5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A.6.圆柱,球,圆锥.7.从左到右依次为:圆柱、长方体、四棱锥、圆锥.8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24.9.三个视图如下:10.解:(1)结和图形我们可以得出:图①有4个顶点、6条边、这些边围成3个区域;图②有7个顶点、9条边、这些边围成3个区域;图③有8个顶点、12条边、这些边围成5个区域;图④有10个顶点、15条边、这些边围成6区域.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )A.3块B.4块C.6块D.9块2.如图,O 是直线AB 上一点,OE 平分∠AOB ,∠COD=90°.则图中互余的角、互补的角各有( )对.A.3,3B.4,7C.4,4D.4,53.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是( ) A .直角B .锐角C .钝角D .以上三种都有可能4.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了( ) A .10场B .11场C .12场D .13场5.某制衣厂计划若干天完成一批服装的订货任务,如果每天生产服装20套,那么就比订货任务少生产100套,如果每天生产服装23套,那么就可超过顶货任务20套,设这批服装的订货任务是x 套,根据题意,可列方程() A.201002320x x -=+ B.201002320x x +=-C.100202023x x -+= D.100202023x x +-= 6.把方程12x x --=225x +-去分母,正确的是( )A.10x -5(x -1)=2-2(x +2)B.10x -5(x -1)=20-2(x +2)C.10x -5(x -1)=20-(x +2)D.10x -(x -1)=2-2(x +2)7.下列各组中的两项,不是同类项的是( ) A.﹣x 2y 与2yx 2 B.2πR 与π2R C.﹣m 2n 与212mn D.23与328.下面合并同类项正确的是( ) A.23325x x x +=B.2221a b a b -=C.0ab ab --=D.220xy xy -+=9.多项式2x 3-8x 2+x-1与多项式3x 3+2mx 2-5x+3的和不含二次项,则m 为( ) A .2 B .-2C .4D .-410.13的相反数是( ) A.﹣13B.3C.﹣3D.1311.下列说法正确的是( )①两个正数中倒数大的反而小,②两个负数中倒数大的反而小,③两个有理数中倒数大的反而小,④两个符号相同的有理数中倒数大的反而小. A.①②④B.①C.①②③D.①④12.﹣7的相反数是( ) A.﹣17B.﹣7C.17D.7二、填空题13.如图,已知O 为直线AB 上一点,OC 平分AOD ∠,3BOD DOE ∠=∠,COE α∠=,则∠BOE 的度数为_________.(用含α的代数式表示)14.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+3y 的值为____.15.若式子3a ﹣7与5﹣a 的值互为相反数,则a 的值为_____.16.小明沿街道匀速行走,他注意到每隔6分钟从背后驶过一辆1路公交车,每隔4分钟迎面驶来一辆1路公交车.假设每辆1路公交车行驶速度相同,而且1路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是________ 分钟.17.若﹣4x a y+x 2y b =﹣3x 2y ,则a+b =_____. 18.若单项式2156n ax y +与465m ax y 的差仍是单项式,则2m n -=_________. 19.海中一潜艇所在高度为-30米,此时观察到海底一动物位于潜艇的正下方30米处,则海底动物的高度为________.20.某种零件,标明要求是φ:20±0.02mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件______(填“合格”或“不合格”).三、解答题21.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t= (直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;(3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.22.已知线段AB=10cm,在直线..AB..上有一点C,且BC=4cm,点D是线段AC的中点,试求线段AD的长.23.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:"优勒加!优勒加!(意为发现了)".夫人这回可真着急了,嘴里嘟囔着"真疯了,真疯了",便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为____________;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?24.某管道由甲、乙两工程队单独施工分别需30天、20天.(1)如果两队从两端同时相向施工,需要多少天铺好?(2)又知甲队单独施工每天需付200元的施工费,乙队单独施工每天需付280元的施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工,请你按照少花钱多办事的原则,设计一个方案,并说明理由.25.去括号,并合并相同的项:x﹣2(x+1)+3x26.如图,从数轴上的原点开始,先向左移动2cm到达A点,再向左移动4cm到达B点,然后向右移动10cm到达C点.(1)用1个单位长度表示1cm,请你在题中所给的数轴上表示出A、B、C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm;(3)若点B以每秒3cm的速度向左移动,同时A、C点以每秒lcm、5cm的速度向右移动,设移动时间为t(t>0)秒,试探究CA﹣AB的值是否会随着t的变化而改变?请说明理由.27.计算:-22÷(-14)×(34-58)-19×(-3)3;28.计算题:(1)23+17+(-7)+(-16);(2)(-514)+(-3.5);(3)(+23)+(-34);(4)23+(-15)+(-1)+13.【参考答案】*** 一、选择题1.B2.B3.A4.D5.C6.B7.C8.D9.C10.A11.A12.D二、填空题13. SKIPIF 1 < 0解析:3604α︒-14.15.116.817.318.-419.-60米20.不合格三、解答题21.(1)5;(2)5秒时OC平分∠MON,理由详见解析;(3)详见解析.22.3cm或7cm23.探究一:2:3;探究二:A型号钢球3个,B型号钢球7个.24.(1)需要12天完工;(2)由乙队单独施工花钱少,理由见解析.25.2x﹣226.(1)如图所示:见解析;(2)CA=6cm;(3)CA﹣AB的值不会随着t的变化而变化,理由见解析. 27.528.(1)17(2)-8.75(3)-112(4)-152019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C 岛看A ,B 两岛的视角∠ACB 等于( )A.90°B.80°C.70°D.60°2.如图,点A 位于点O 的方向上.( )A .南偏东35°B .北偏西65°C .南偏东65°D .南偏西65°3.如图,点C 是AB 的中点,点D 是BC 的中点,现给出下列等式:①CD=AC-DB ,②CD=14AB ,③CD=AD-BC ,④BD=2AD-AB .其中正确的等式编号是( )A.①②③④B.①②③C.②③④D.②③4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x=2×16(34﹣x)B .3×16x=2×10(34﹣x)C .2×16x=3×10(34﹣x)D .2×10x=3×16(34﹣x) 5.方程3x -1=14x 去分母后,正确的是( ) A.4x ﹣1=3x ﹣3 B.4x ﹣1=3x+3C.4x ﹣12=3x ﹣3D.4x ﹣12=3x+36.若关于x 的方程(m ﹣2)x |m ﹣1|+5m+1=0是一元一次方程,则m 的值是( )A.0B.1C.2D.2或07.图中为王强同学的答卷,他的得分应是( )A .20分B .40分C .60分D .80分8.单项式4223ab c -的系数与次数分别是( )A .2,5-B .2,5C .2,63-D .2,73-9.将正整数按如图所示的规律排列下去,若有序数对(,)表示第n 排,从左到右第个数,如(4,2)表示9,则表示114的有序数对是( )A .(15,9)B .(9,15)C .(15,7)D .(7,15)10.下列运算中,正确的是( ) A.3÷6×12=3÷3=1 B.﹣|﹣5|=5 C.﹣2(x ﹣3y )=6y ﹣2x D.(﹣2)3=﹣611.绝对值最小的数是( ) A.0.000001B.0C.-0.000001D.-10000012.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A.0a b +=B.0a b -=C.a b <D.0ab >二、填空题13.如图,以图中的A 、B 、C 、D 为端点的线段共有___条.14.已知线段AB=6cm ,C 是线段AB 的中点,E 是直线AB 上的一点,且CE=13AB ,则线段AE=______cm . 15.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.16.定义新运算“※”:a ※b=2a+b 则下列结论:①(-2)※5=1;②若x ※(x-6)=0,则x 2=;③存在有理数y ,使y ※(y+1)=y ※(y-1)成立;④若m ※n=5,m ※(-n )=3,则m 2=,n 1.=其中正确的是 _______________(把所有正确结论的序号都选上). 17.﹣3xy ﹣x 3+xy 3是_____次多项式.18.某水果店进了一批葡萄,按50%利润定价.当售出这批葡萄重量的70%以后,决定降价售出,剩下的葡萄按定价的8折出售,在此过程中有5%的葡萄因各种原因损失.这批葡萄全部售完后的利润率是______.19.比较大小:13-_____﹣2520.计算:(-2)2÷12×(-2)-12=__________. 三、解答题21.如图,已知∠AOB 为直角,∠AOC 为锐角,且OM 平分∠BOC ,ON 平分∠AOC . (1)如果∠AOC=50°,求∠MON 的度数.(2)如果∠AOC 为任意一个锐角,你能求出∠MON 的度数吗?若能,请求出来,若不能,说明为什么? 22.我们知道:“任何无限循环小数都可以写成分数的形式”.下面给你介绍利用一元一次方程的有关知识来解答这个问题.问题:利用一元一次方程将0.2∙化成分数. 解:设•0.2x =,方程两边同时乘以10得:•100.210x ⨯=,由•0.20.222---=、,得:••100.2 2.222---20.2⨯==+, 所以210x x +=,解得:29x =,即•20.29=.解答下列问题:(1)填空:将0.3∙写成分数形式为 ;(2)方法归纳:由示例可知:如果循环节为1位时,设方程后两边同时乘以10.那么如果循环节为2位时,设方程后两边同时应乘以 ;(3)请你仿照上述方法把••0.45化成分数,要求写出解答过程.23.某班学生分两组参加某项活动,甲组有26人,乙组有32人,后来由于活动需要,从甲组抽调了部分学生去乙组,结果乙组的人数是甲组人数的2倍还多1人.从甲组抽调了多少学生去乙组? 24.以直线AB 上点O 为端点作射线OC ,使∠BOC=60°,将直角△DOE 的直角顶点放在点O 处. (1)如图1,若直角△DOE 的边OD 放在射线OB 上,则∠COE= ;(2)如图2,将直角△DOE 绕点O 按逆时针方向转动,使得OE 平分∠AOC ,说明OD 所在射线是∠BOC 的平分线;(3)如图3,将直角△DOE 绕点O 按逆时针方向转动,使得∠COD=15∠AOE .求∠BOD 的度数.25.()1计算:()2215(2)6--⨯-+ ()2化简:()223x 7x 4x 32x ⎡⎤----⎣⎦ 26.计算:(1)﹣20+14﹣18﹣13(2)3×(﹣56)÷(﹣34) 27.如图,已知A ,B 两点在数轴上,点A 表示的数为-10,OB=3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发)(1)数轴上点B 对应的数是______.(2)经过几秒,点M 、点N 分别到原点O 的距离相等?28.已知x =﹣2是方程a (x+3)=12a+x 的解,求32a ﹣(52a ﹣1)+3(4﹣a )的值.【参考答案】***一、选择题1.A2.B3.B4.B5.C6.A7.A8.D9.A10.C11.B12.A二、填空题13.614.1或515.1016.①②④17.四18.35%19.>20. SKIPIF 1 < 0 解析:1162- 三、解答题21.(1)45°;(2)45°22.(1)13(2)100(3)51123.7个人24.(1)30;(2)答案见解析;(3)65°或52.5°.25.(1)-15(2)25x 3x 3--26.(1)-37(2)10327.(1)30;(2)经过2秒或10秒,点M 、点N 分别到原点O 的距离相等 28.。
2023-2024学年部编版初中数学七年级上册课时练《4.1.1 立体图形和平面图形》01(含答案)
人教版七年级数学上册第四章几何图形初步《4.1.1立体图形与平面图形》课时练一、选择题1.下列说法错误的是()A.若棱柱的底面边长相等,则它的各个侧面的面积相等B.正九棱柱有9条侧棱,9个侧面,侧面为长方形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形2.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.有两个面平行,其余各面都是四边形的几何体叫棱柱C.将直角三角形绕它的一边所在的直线旋转一周,形成的几何体一定是圆锥D.棱台的侧棱所在的直线交于一点3.下列命题正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可以都是棱柱4.对于棱锥,下列叙述正确的是()A.四棱锥共有四条棱B.五棱锥共有五个面C.六棱锥的顶点有六个D.任何棱锥都只有一个底面5.下列五种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;其中属于立体图形的是()A.①②③B.③④⑤C.③⑤D.④⑤6.如图(1)(2)是放置一个水管三叉接头,若从正面看这个接头时,看到图形如图(2),则从上面看这个接头时,看到的图形是()A.B.C.D.7.太阳、西瓜、易拉罐、篮球、书本中,形状类似圆柱的有()A.1个B.2个C.3个D.4个8.如图是正方体的平面展开图,在顶点处标有自然数1~11,折叠围绕成正方体后,与数字6重合的数字是()A.7,8B.7,9C.7,2D.7,49.很多立体图形都是由平面图形围成的,下面立体图形不都是由平面图形围成的是()A.长方体B.三棱锥C.圆锥D.六棱柱10.一个棱长为10分米的正方体,体积是()立方分米.A.109B.106C.103D.1027二、填空题11.如图,下图中是圆柱体的有________,是棱柱体的有_________.(只填图的标号)12.由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图,则搭成这个几何体的小正方体的个数最多为___,最少为_____.13.如图,5个棱长为1 cm的正方体摆在桌子上,则露在外面的部分(不包括底面)的面积为______cm2.14.从正面和从左面看一个长方体得到的形状图如图所示(单位:cm),则其从上面看到的形状图的面积是______.15.如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值为.三、解答题16.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)17.如图所示的五棱柱的底面边长都是5cm ,侧棱长12cm ,它有多少个面?它的所有侧面的面积之和是多少?18.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B 、面C 相对的面分别是 和 ;(2)若A =a 3+ a 2b +3,B =﹣ a 2b +a 3,C =a 3﹣1,D =﹣ (a 2b +15),且相对两个512151面所表示的代数式的和都相等,求E、F代表的代数式.19.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.20.如图是一个正方体的平面展开图,标注了字母M的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值;(2)求正方体的上面和底面的数字和.21.如图,是一个直四棱柱及其主视图和俯视图(等腰梯形).(1)根据图中所给数据,可求出俯视图(等腰梯形)的高为________;(2)在虚线框内画出左视图,并标出各边的长.22.明明家打算在一块长为16m,宽为4m的矩形土地上搭建一个截面为半圆形的全封闭蔬菜棚,并全部盖上塑料薄膜(如图所示),则所需薄膜的面积至少为多少平方米?(结果可含π,不考虑埋入土中部分的面积)23.如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为40cm 的正方形,求这个长方体的体积.参考答案1.D 2.D 3.D 4.D 5.B 6.A 7.A 8.C 9.C 10.C11.③、④②、⑤、⑥12.9,713.1614.12cm215.7.16.略17.这个五棱柱共7个面,侧面的面积之和是300cm 2.18.(1)面F ,面E ;(2)F = a 2b ,E =1 19.(1)这个几何体是圆柱;(2)表面积为1000π. 20.(1)1.5;(2)-5.21.(1)4;(2)略22.36π(m 2).23.这个长方体的体积是 4000cm³ 21。
七年级(上)数学 第四章 几何图形初步 立体图形与平面图形 (含答案)
第四章几何图形初步体图形与平面图形(2)注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(共4小题;共20分)1. 如图是由5个大小相同的小正方体组成的几何体,则从正面看该几何体得到的图形是( )A. B.C. D.2. 如图是由3个大小相同的小正方体组成的几何体,则从上面看该几何体得到的图形是( )A. B.C. D.3. 如图,从上面看这个几何体得到的图形是( )A. B.C. D.4. 下列几何体是由4个完全相同的小正方体搭成的,其中从正面看和从左面看得到的图形相同的是( )A. B.C. D.二、填空题(共5小题;共25分)5. 从、、三个不同方向看立体图形,往往会得到不同形状的平面图形.6. 常见的立体图形从不同方向看得到的平面图形:(1)正方体从正面、左面、上面看都是,长方体从正面、左面、上面看都是;(2)圆柱从正面、左面看都是,从上面看是.7. 如图,甲、乙、丙、丁四人分别坐在一张方桌四个不同的方向上,则看到桌面上的图案呈“A”形的是.8. 如图是从三个不同方向看一个物体所得到的平面图形,那么这个物体是.9. 如图是一个水管接头的示意图,请写出右边的三幅图分别是从哪个方向看到的:①;②;③.三、解答题(共5小题;共65分)10. 分别画出从正面、左面和上面观察如图所示的立体图形后得到的平面图形.11. 如图,请将观察方向和相应得到的平面图形用线连接起来.12. 将5个完全相同的小正方体摆放成如图所示的立体图形,画出从正面、左面、上面三个方向看得到的平面图形.13. 如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6,根据图中从各个方向看到的数字,解答下面的问题:(1)“?”处的数字是什么?(2)每两个相对面上的数字分别是什么?14. 如图是由若干个同样大小的小正方体摆成的立体图形从上往下看所得到的图形,正方形上标注的数字表示该位置上小正方体的个数,请画出这个立体图形从正面看所得到的图形.答案第一部分1. A2. C3. D4. C第二部分5. 正面,左面,上面6. 正方形,长方形,长方形,圆7. 乙8. 长方体9. 左面,上面,正面第三部分10. 如图.11. 略.12. 如图.13. (1)6.(2)1和6,2和5,3和4.14. 如图.。
七年级数学上册 第四章 几何初步 课时练 4.1.1 第1课时 认识立体图形与平面图形
第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形和几何图形1、如图,左面是一些具体的物体,右面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).2、将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是( ).3、下列结论中正确的是( ).①圆柱由3个面围成,这3个面都是平面;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;③球仅由1个面围成,这个面是平面;④正方体由6个面围成,这6个面都是平面.A.①②B.②③C.②④D.①④4、下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是( ).A.③⑤⑥ B.①②③C.③⑥ D.④⑤5、将如图所示的几何体进行分类,并说明理由.6、如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?多少个顶点?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?参考答案1、答案:如图所示:2、解析:答案:D3、解析:4、解析:三角形、长方形、正方形、圆是平面图形;正方体、圆锥、圆柱是立体图形.答案:A5、分析:几何体的分类不是唯一的.我们应先观察各个几何体,努力发现其共同点,然后可根据其共同点来进行适当的分类.解:若按柱体、锥体、球体来分类:(2)(3)(5)(6)是柱体,(4)是锥体,(1)是球体;若按几何体的面是否含有曲面来分类,则(1)(4)(6)是旋转体,(2)(3)(5)是多面体.6、解:(1)这个八棱柱一共有10个面,上下两个底面是八边形,八个侧面都是长方形;上下两个底面的形状、面积完全相同,八个侧面形状、面积完全相同.(2)这个八棱柱一共有24条棱,16个顶点.(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是长方形,长为5×8=40(厘米),宽为6厘米,所以面积是40×6=240(平方厘米).通过练习可以检测同学们对知识的理解、掌握情况,提高应试能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册4.1.1立体图形与平面图形课时练习一、选择题(共15小题)1.如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④答案:B知识点:简单几何体的三视图解析:解答:运用已学过的简单儿何体三视图,分别列出上述四个儿何体的三视图。
①长方体:它的主视图、左视图、俯视图均为长方形,主视图是rti其长和高组成的长方形,左视图是由其宽和高组成的长方形,俯视图是由其长和宽组成的长方形。
在没有告知长宽高具体数据的情况下,我们一般地认为长宽高是互不相等的。
②圆柱:它的主视图和左视图都是长方形,长方形的长都等于圆柱底面的直径,宽等于圆柱的高。
其俯视图是圆。
③圆锥:它的主视图和左视图都是三角形,三角形的底等于圆锥底面的直径,两腰都是顶点到底而圆边的距离。
其俯视图是圆。
④球:它的三视图都是圆,并且圆的直径相等。
分析:本题容易混淆的是①图和③图,有的学生会默认①图的主视图和俯视图相同,对于③ 图,有时会记错它的左视图。
本题考查简单几何体的三视图。
答案:c知识点:图形的旋转;主视图解析:解答:图形绕直线旋转一周,得到一个立体图形。
这个立体图形的横切面(俯视图)是圆,圆的半径等于旋转面上的点到直线的距离。
而该立体图形的主视图,则是平面图形以旋转直线为对称轴作出来的轴对称图形。
比如,圆柱是由长方形绕其一边旋转得到的,它的底面半径是该长方形另一边的长,绕其旋转的一边就是它的高。
圆锥是由一个直角三角形绕其一条直角边旋转一周得到的图形,这条直角边就是圆锥的高,另一条直角边就是圆锥的底面半径。
题目屮的立体图形是一个等腰梯形,其上底长小于下底长。
由此,可以选出正确答案。
分析:在大脑中构建旋转立体图形,或者将己知立体图形的主视图画出来,按照选项中的直线位置作対称轴,得到的图形就是正确选项。
所以,解答这类题的方法有两种,一种是正面推导,一种是逆向推导。
本题考查图形的旋转和立体图形的主视图。
3.如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的冷|着|应“着”相对的面上的汉字是()静沉A.冷B.静C.应D.考考答案:B知识点:儿何体的展开图解析:解答:正方体的展开图有11种,本题中的展开图是中间四个连着的正方形,两边各一个。
这种展开图的特点是:两边各一个图形是想对的面,也就是“冷”和“考”是相对的面。
而剩下的四个面是剩下的两个相对的面。
因为正方体两个相对的面不可能相邻,并且展开图中它们中I'可有一个正方形相隔。
所以,“着”的相对的面就是“静”。
分析:解答本题的关键是学握正方体的儿种展开图,并且理解正方体相对面在展开图屮不可能项链,就容易解答了。
本题考查儿何体的展开图。
4.下图是一个由6个相同的小立方体组成的儿何体,从上而看得到的平面图形是()答案:D知识点:简单组合体的三视图解析:解答:简单组合体的三视图与简单几何体的三视图有着相似之处。
在看图时,要注意组合体的层次分布。
上图中,该简单组合体是由6个正方体组成,其中,有四个正方体分别两两重叠,所以,在俯视图中,应该只能呈现四个面。
同时,从上往下看,该组合体分为三排,中间一排是两个,其上下各有两个分布在两端。
上面的分布在右上端,下面的分布在左下端。
分析:在简单几何体的三视图的基础上,分清组合体的组合层次,去掉重复部分,就可以正确解答。
本题考查简单组合体的三视图。
5. 右图是由几个相同的小正方体搭成的一个几何体,从左边看得到的平面图形是答案:B知识点:简单组合体的三视图解析:解答:认真观察组合体,就可以看出,从右边看,该组合体有4个正方形,并且4个正方形 分为两层,底层有三个,上层的一个居屮。
同吋,如果不习惯看右视图,则可以画出该图的 左视图,因为左视图和右视图正好相反。
分析:在简单几何体的三视图的基础上,分清组合体的组合层次,去掉重复部分,就可以正 确解答。
木题考查简单组合体的三视图。
6. 图中儿何体的左视图是( )答案:C知识点:简单组合体的三视图解析:解答:认真观察组合体,就可以看出,从左边看,该组合体分为两个部分,共4个正方形。
其中,左边为1个,右边为3个,左边的1个与右边最下面的1个排成一排。
分析:在简单几何体的三视图的基础上,分清组合体的组合层次,去掉重复部分,就可以正 确解答。
本题考查简单组合体的三视图。
(A) (B) (C)(D)疋面7.如图,从正上方看下列各几何体,得到图形(1)的几何体是()答案:c知识点:简单组合体的三视图解析:图形(1)由两个部分组成,一个长方形和一个圆,圆处于长方形的正中间,并且长 方形的上下两边分别于圆相连。
在选项中,选项A 的俯视图是一个长方形中间有一个椭圆, 选项B 的俯视图是一个长方形中间有一个圆,但是圆不与长方形相连,选项C 的俯视图是-个长方形中间有一个圆,并且圆与长方形相连,选项D 的俯视图是一个长方形中间有一 个长方形。
分析:认真分析己知俯视图中图形的关系,代入选项中进行甄别。
本题考查简单组合体的三 视图。
8. 一个无盖的正方体盒子的平面展开图可以是下列图形中的( ).知识点:儿何体的展开图 解析: 解答:正方体的平面展开图有11种,分别为“一四一”、“二三一”、“二二二”、“三 三”型组合,由此可以排除②。
由于题中的正方体无盖,则由上面的组型中任意去掉一个即 可,①是由“一四一”去掉一个得到的“一三一”,③是由“二三一”或“三三”去掉一个 得到的“二三组合”。
或者,以①中最中间的正方形为中心,四周的四个分别围起来,也可 以得到;以③中上一行的第一个正方形为中心,其余四个分贝围起来,也能得到。
分析:掌握正方体展开图的儿种类型,同时,可以自己多动手剪拼,就容易解答。
木题考查 几何体的展开图。
9.下列说法错误的是( )A. 长方体和正方体都是四棱柱B. 棱柱的侧面都是四边形C. 柱体的上下底面形状相同D. 圆柱只有底面为圆的两个面答案:D 知识点:柱体;立体图形的展开图 解析:解答:柱体是由一个多面体有两个面互相平行且大小相同,余下的每个相邻两个面的交线互 相平行组成的图形。
依据柱体的概念,就可以得知A 、B 、C 的说法是正确的。
圆柱由三个 部分组成,上下解答: B.图①、图③ C.图②、图③ D.只有图①(1) ③两个底面是圆,中间的展开图是长方形。
分析:理解柱体的概念,同时掌握几种常见柱体的展开图,是解答本题的关键。
本题考查柱体和立体图形的展开图。
10.几何体的展开图种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;其中属于立体图形的是()A.①②③;B.③④⑤;C.③⑤;D.④⑤答案:B知识点:认识立体图形解析:解答:立体图形至少由两个面组成,由此可知,①②都是属于平面图形,不是立体图形。
正方体有六个面,圆柱有三个面,圆锥有两个面。
分析:理解柱体的概念,同时常握几种常见柱体,是解答本题的关键。
本题考查立体图形的认识。
II.几何体的展开图图形经过折叠不能围成棱柱()A BCD答案:D知识点:几何体的展开图解析:解答:柱体的展开图川,底面周反等于柱面展开图与底面相邻的边的反。
由此可以看图,选项D的底面周长不等于柱面展开图与底面相邻的边的长。
分析:理解柱体展开图中底面周长与底边长的关系,是解答本题的关键。
本题考查几何体的展开图。
答案:D知识点:几何体的展开图 解析:解答:正方体的平面展开图有11种,分别为“一四一”、“二三一”、“二二二”、“三 三”型组合,没有图(3)所示的“一一四”组合。
经过折龛,图(1)、(2)、(4)都能 折叠成一个正方体。
分析:掌握正方体展开图的儿种类型,同时,可以自己多动手剪拼,就容易解答。
本题考查 几何体的展开图。
13.下列选项的图形中,是三棱柱的侧面展开图的为()答案:D知识点:几何体的展开图解析: 解答:三棱柱由三个部分组成,上下两个相同的底而,并且都是等边三角形。
柱体展开部分 是一个长方形。
选项A 只是三棱柱的柱体部分展开图,选项B 是三棱锥的不含底面的展开 图,选项C 的上下两面长不相等,不属于三棱柱。
分析:掌握正柱体的概念及柱体的展开图,是解答本题的关键。
本题考查儿何体的展开图。
14.下面图形经过折叠可以围成一个棱柱的是()(1) A. (1) (2) (3)B.(2) (3 (4) C. (1) (3) (4) D.(1) (2) (4)(3) (4)知识点:儿何体的展开图 解析:解答:棱柱的展开图由三个部分组成,其中两底面分布在柱体展开图的两端,并且相等。
由 此,可以轻易选出正确答案。
分析:掌握正柱体的概念及柱体的展开图,是解答本题的关键。
本题考查几何体的展开图。
二、填空题(共5小题)1. 一个边长为4cm 的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正 方形,则此正方形边长为 ______________ cm.答案:1知识点:认识立体图形解析:解答:该四棱柱的底面是一个正方形,同时该正方形的周长必须等于折叠的正方形的边长, 由此可以得出答案。
分析:理解柱体展开图中底面周长与底边长的关系,是解答本题的关键。
本题考查立体图形 的认识。
2. ______________________________________ 儿何图形根据是否在同一平面内分为 _____________________________________________________ 图形和 ___________ 图形。
答案:平面图形 立体图形知识点:认识平面图形;认识立体图形解析:解答:平面图形和立体图形的区别在于该儿何图形是否在同一平面。
分析:本题属于概念理解题,知道平面图形和立体图形的区别,就能轻易解答。
本题考查平 血图形和立体图形的概念区别。
3. _______________________________ 我们所学的常见的立体图形有 ___ 体, 体, ____________________________________________ 体.答案:柱体球体锥体知识点:认识立体图形解析:解答:立体图形分为柱体、球体和锥体。
柱体包括棱柱和圆柱、球体包含球、锥体包含棱锥 和圆锥。
分析:本题属于概念理解题,掌握立体图形的分类是解题的关键。
本题考查立体图形的认识。
答案:4.柱体包括圆柱和________ ,锥体包括棱锥和___________ .答案:圆锥圆锥知识点:认识立体图形解析:解答:立体图形分为柱体、球体和锥体。
柱体包括棱柱和圆柱、球体包含球、锥体包含棱锥和圆锥。
分析:本题属于概念理解题,掌握立体图形的分类是解题的关键。
本题考查立体图形的认识。
5.(1)侧面可以展开成一长方形的几何体有________________________ ;(2)_______________________________ 圆锥的侧面展开后是一个;(3)_______________________________ 各个面都是长方形的几何体是:答案:(1)圆柱和棱柱(2)扇形(3)长方体知识点:几何体的展开图解析:解答:柱体的侧面展开图是长方形,柱体包括圆柱和棱柱。