初三数学三角函数知识点

合集下载

九年级数学三角函数全章知识点整理

九年级数学三角函数全章知识点整理

初中三角函数整理复习一.三角函数定义。

siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠二、特殊角的三角函数: sia 30°、cos45° 、 tan60° 归纳结果练习: 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)04530cos sia +ta60°-tan30°三.解直角三角形主要依据(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠例题评析:例1、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c , 且b=2 ,a=6,解这个三角形.例2、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20B ∠=350,解这个三角形(精确到0.1). 斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin例 3、在Rt △ABC 中,a=104.0,b=20.49,解这个三角形.例4、在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。

四.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角. 例1如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米)解:在Rt △ABC 中sinB=AB AC∴AB=B AC sin =2843.01200=4221(米)答:飞机A 到控制点B 的距离约为4221米.巩固练习:1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为600,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1`m)2.如图6-17,某海岛上的观察所A发现海上某船只B并测得其俯角α=80°14′.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)3 如图6-19,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.例2.如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东340方向上的B处。

三角函数知识点归纳总结

三角函数知识点归纳总结

三角函数知识点归纳总结三角函数是数学中研究角度与三角形边长之间关系的函数。

它们在解决几何问题、物理问题以及工程学中有着广泛的应用。

以下是三角函数的一些基本知识点归纳总结:1. 定义:- 正弦函数(sin):在直角三角形中,正弦是锐角的对边与斜边的比值。

- 余弦函数(cos):余弦是锐角的邻边与斜边的比值。

- 正切函数(tan):正切是锐角的对边与邻边的比值。

- 余切函数(cot):余切是锐角的邻边与对边的比值。

- 正割函数(sec):正割是斜边与邻边的比值。

- 余割函数(csc):余割是斜边与对边的比值。

2. 三角函数的值:- 特殊角(如0°, 30°, 45°, 60°, 90°)的三角函数值是基础,需要熟记。

- 正弦和余弦函数的值域是[-1, 1]。

- 正切和余切函数的值域是所有实数,但正切在90°(π/2弧度)处无定义,余切在0°和180°(0和π弧度)处无定义。

3. 单位圆:- 单位圆是一个半径为1的圆,三角函数可以在这个圆上定义。

- 角度可以用弧度制或角度制表示。

π弧度等于180°。

4. 三角恒等式:- 基本恒等式:sin²θ + cos²θ = 1。

- 双角公式:如sin(2θ) = 2sinθcosθ,cos(2θ) = cos²θ -sin²θ。

- 和差公式:如sin(α ± β) = sinαcosβ ± cosαsinβ,cos(α ± β) = cosαcosβ ∓ sinαsinβ。

5. 三角函数的图像:- 正弦函数和余弦函数是周期函数,周期为2π。

- 正切函数和余切函数也是周期函数,但它们在某些点有垂直渐近线。

6. 反三角函数:- 反三角函数是三角函数的逆运算,如arcsin、arccos、arctan 等。

- 反三角函数的值域通常被限制在特定的区间内,以保证其为单值函数。

初中三角函数公式及其定理

初中三角函数公式及其定理

初中三角函数公式及其定理三角函数是数学中的一个分支,它研究的是一个角与其对边、邻边及斜边之间的关系。

在初中数学中,学生往往会接触到一些基本的三角函数公式及定理。

下面将介绍一些常用的三角函数公式及定理。

一、基本三角函数公式及定义1. 正弦函数(sin):在直角三角形中,一个锐角的对边与斜边的比值叫做这个锐角的正弦。

在三角形ABC中,锐角A的正弦定义为sinA = BC/AC。

2. 余弦函数(cos):在直角三角形中,一个锐角的邻边与斜边的比值叫做这个锐角的余弦。

在三角形ABC中,锐角A的余弦定义为cosA = AB/AC。

3. 正切函数(tan):在直角三角形中,一个锐角的对边与邻边的比值叫做这个锐角的正切。

在三角形ABC中,锐角A的正切定义为tanA = BC/AB。

4.相关公式:(1)余角公式:sin(90°-A) = cosA,cos(90°-A) = sinA,tan(90°-A) = 1/tanA。

(2)同角互余:sinA = 1/cscA,cosA = 1/secA,tanA = 1/cotA。

(3)倒数关系:cscA = 1/sinA,secA = 1/cosA,cotA = 1/tanA。

二、三角函数的基本性质1. 周期性:正弦函数和余弦函数的周期都是2π,即sin(x+2π) = sinx,cos(x+2π) = cosx。

2. 对称性:正弦函数是奇函数,即sin(-x) = -sinx;余弦函数是偶函数,即cos(-x) = cosx。

3. 正交性:正弦函数和余弦函数在一个周期内的积分为0,即∫[0, 2π] sinx cosx dx = 0。

4.正负关系:在第一象限和第二象限,正弦函数的值大于0,余弦函数的值大于等于0;在第三象限和第四象限,正弦函数的值小于0,余弦函数的值小于等于0。

三、三角函数的诱导公式1.加法公式:(1)sin(A±B) = sinA cosB ± cosA sinB(2)cos(A±B) = cosA cosB ∓ sinA sinB(3)tan(A±B) = (tanA ± tanB) / (1 ∓ tanA tanB)2.减法公式:(1)sin(A-B) = sinA cosB - cosA sinB(2)cos(A-B) = cosA cosB + sinA sinB(3)tan(A-B) = (tanA - tanB) / (1 + tanA tanB)3.二倍角公式:(1)sin2A = 2sinA cosA(2)cos2A = cos²A - sin²A = 1 - 2sin²A = 2cos²A - 1(3)tan2A = 2tanA / (1 - tan²A)4.三倍角公式:(1)sin3A = 3sinA - 4sin³A(2)cos3A = 4cos³A - 3cosA5.半角公式:(1)sin(A/2) = ±√[(1-cosA)/2](2)cos(A/2) = ±√[(1+cosA)/2](3)tan(A/2) = ±√[(1-cosA)/(1+cosA)]四、三角函数的定理1. 正弦定理:在任意三角形ABC中,有a/sinA = b/sinB = c/sinC,其中a、b、c分别为边BC、AC、AB的长度,A、B、C分别为角A、B、C的度数。

三角函数九年级知识点

三角函数九年级知识点

三角函数九年级知识点九年级的数学课程中,学生们开始接触到三角函数的知识。

三角函数是数学中非常重要的一个分支,它与几何学和三角学密切相关。

在这篇文章中,我们将探讨九年级学生需要掌握的三角函数知识点,并解释它们的应用。

一、正弦函数和余弦函数正弦函数和余弦函数是最基本的三角函数之一。

正弦函数可以用来求一个角的正弦值,它定义为一个直角三角形的对边与斜边的比值。

余弦函数则是求一个角的余弦值,定义为一个直角三角形的邻边与斜边的比值。

九年级的学生需要掌握如何使用正弦函数和余弦函数求解角度或边长的问题。

例如,当我们知道一个直角三角形的斜边和一个角的正弦值,可以使用正弦函数来求解这个角的大小。

类似地,当我们知道一个直角三角形的斜边和一个角的余弦值,可以使用余弦函数来求解这个角的大小。

这些问题在实际生活中的应用非常广泛,比如测量山的高度或建筑物的高度。

二、正切函数正切函数是另一个重要的三角函数。

正切函数可以用来求一个角的正切值,定义为一个直角三角形的对边与邻边的比值。

与正弦函数和余弦函数不同,正切函数的定义域是不包括90度的。

正切函数常常用于解决与斜面有关的问题。

例如,当我们知道一个斜面的高度和角度,可以使用正切函数来计算斜面的长度。

此外,正切函数还可以应用于物理学中的力的分解问题。

三、三角函数的性质除了了解三角函数的定义和应用,九年级的学生还需要掌握一些与三角函数相关的重要性质。

首先,正弦函数和余弦函数是周期性函数,其周期为360度或2π弧度。

这意味着在这个范围内,它们的值会重复出现。

其次,正弦函数和余弦函数的取值范围是[-1,1],而正切函数的取值范围是全体实数。

此外,九年级的学生还需要了解如何在坐标平面上绘制三角函数的图像。

绘制这些图像可以帮助学生更好地理解三角函数的性质和行为。

四、应用举例三角函数在实际生活中有许多应用。

以下是一些例子:1. 测量高度:使用三角函数可以测量一座建筑物、山峰或任何其他物体的高度。

初中三角函数知识点总结

初中三角函数知识点总结

锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数A90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 A90B 90∠-︒=∠︒=∠+∠得由B A的定义。

(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即h i l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向),南偏西60°(西南方向), 北偏西60°(西北方向)。

初中三角函数总结

初中三角函数总结

初中三角函数总结三角函数是数学中的重要部分,也是初中数学课程的重点内容之一。

它涉及到三角形的各种关系和性质,具有广泛的应用领域。

以下是对初中三角函数的总结:一、正弦函数(sin函数)在直角三角形中,正弦函数的定义是:对于一个锐角θ,正弦函数定义为三角形斜边与斜边对应的角的比值,即sinθ = 对边/斜边。

正弦函数的值域是[-1,1],它的图像是一条连续的曲线。

在一个周期内,正弦函数是一个周期性的函数,也就是说,它在一个周期内重复出现。

正弦函数的图像在原点处取得最小值0,在π/2和3π/2处取得最大值1和-1。

二、余弦函数(cos函数)在直角三角形中,余弦函数的定义是:对于一个锐角θ,余弦函数定义为三角形邻边与斜边的比值,即cosθ = 邻边/斜边。

余弦函数的值域也是[-1,1],它的图像与正弦函数的图像相似。

在一个周期内,余弦函数重复出现,它在原点处取得最大值1,在π/2和3π/2处取得最小值-1。

三、正切函数(tan函数)在直角三角形中,正切函数的定义是:对于一个锐角θ,正切函数定义为三角形对边与邻边的比值,即tanθ = 对边/邻边。

正切函数的值域是整个实数集合,它的图像在每个周期内重复出现。

正切函数在原点处为零,在π/4和5π/4等处无穷大,在3π/4和7π/4等处为负无穷大。

四、余切函数(cot函数)在直角三角形中,余切函数的定义是:对于一个锐角θ,余切函数定义为三角形邻边与对边的比值,即cotθ = 邻边/对边。

余切函数的值域也是整个实数集合,它的图像与正切函数的图像相似。

余切函数在π/2的整数倍的位置上取值为零,其它位置则为无穷。

五、正弦函数和余弦函数的关系正弦和余弦函数是三角函数家族中最基本的两个函数,它们之间有着重要的关系。

根据勾股定理,我们知道在直角三角形中,斜边的平方等于邻边的平方与对边的平方的和,即c^2 = a^2 + b^2。

因此,我们有sin^2θ + cos^2θ = 1。

初中数学三角函数知识点汇总

初中数学三角函数知识点汇总

初中数学三角函数知识点汇总锐角三角函数的概念说两句4、各锐角三角函数之间的关系(1)互余关系sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系(3)倒数关系tanAtan(90°—A)=1(4)弦切关系tanA=5、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)三角函数和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]三角函数积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]三角函数万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]三角函数半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三角函数三倍角公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三角函数倍角公式sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]三角函数两角和与差公式cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三角函数重要知识点总结1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。

三角函数拓展知识点总结

三角函数拓展知识点总结

三角函数拓展知识点总结一、三角函数的定义与性质1. 三角函数的定义在直角三角形中,我们可以定义三角函数为一个角的对边、邻边和斜边之比。

具体来说,正弦函数(sine)、余弦函数(cosine)、正切函数(tangent)等,它们的定义分别如下: - 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边2. 三角函数的性质* 周期性:对于任意角θ,三角函数都是周期函数,具有周期2π。

* 奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数则是奇函数。

* 定义域和值域:正弦函数和余弦函数的定义域是实数集,值域是[-1, 1];而正切函数的定义域是全体实数,值域是实数集。

二、三角函数的图像与性质1. 正弦函数的图像与性质正弦函数的图像是一条连续的波浪线,它在每个周期内有一个最大值1和一个最小值-1,而且它的图像是周期性的。

正弦函数的性质还包括:- 对称性:正弦函数关于原点对称。

- 单调性:一个周期内,正弦函数在(0, π)上是增函数,在(π, 2π)上是减函数。

- 零点:正弦函数有无穷多个零点,即sin(kπ)=0,其中k为整数。

2. 余弦函数的图像与性质余弦函数的图像是一条连续的波浪线,它在每个周期内有一个最大值1和一个最小值-1,而且它的图像也是周期性的。

余弦函数的性质还包括:- 对称性:余弦函数关于y轴对称。

- 单调性:一个周期内,余弦函数在(0, π)上是减函数,在(π, 2π)上是增函数。

- 零点:余弦函数的零点为cos((2k+1)π/2)=0,其中k为整数。

3. 正切函数的图像与性质正切函数的图像是一条连续的周期性函数,其图像在每个周期中有许多奇点,其性质包括: - 奇点:正切函数在每个周期内有许多奇点,即在θ=(2k+1)π/2处,tanθ的值无定义。

- 增减性:正切函数在每个周期内有无穷多个极大值和极小值,并且在每个周期内均为增函数或减函数。

中考复习资料数学三角函数

中考复习资料数学三角函数

中考复习资料数学三角函数中考复习资料:数学三角函数数学是中考中最重要的科目之一,而三角函数是数学中的一个重要概念。

掌握好三角函数的相关知识,对于解题和理解几何形状有着重要的帮助。

本文将为大家介绍一些中考复习资料,帮助大家更好地掌握三角函数。

1. 三角函数的定义三角函数是描述角度与边长之间关系的函数。

常见的三角函数有正弦函数、余弦函数和正切函数。

其中,正弦函数(sin)定义为对边与斜边之比,余弦函数(cos)定义为邻边与斜边之比,正切函数(tan)定义为对边与邻边之比。

2. 三角函数的性质三角函数有许多重要的性质,掌握这些性质可以帮助我们更好地理解和运用三角函数。

(1)周期性:正弦函数和余弦函数的周期均为2π,正切函数的周期为π。

(2)奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数则既不是奇函数也不是偶函数。

(3)范围:正弦函数和余弦函数的值域在[-1, 1]之间,而正切函数的值域为整个实数集。

(4)互补关系:正弦函数和余弦函数的互补关系是sin(x) = cos(π/2 - x),即一个角的正弦值等于其余弦补角的值。

3. 三角函数的应用三角函数在几何形状的计算和问题解决中有着广泛的应用。

以下是一些常见的应用场景:(1)角度计算:通过已知的边长关系,可以利用三角函数来计算角度的大小。

例如,已知一个直角三角形的两条边长,可以通过正弦函数或余弦函数来计算出角度的大小。

(2)高度计算:在一些实际问题中,我们需要计算无法直接测量的高度。

通过利用三角函数,我们可以通过已知的边长和角度来计算出所需的高度。

(3)航海导航:在航海中,船只需要根据已知的航向和速度来计算出预计到达目的地的时间和位置。

三角函数可以帮助船只计算出所需的航向和速度。

(4)建筑设计:在建筑设计中,三角函数可以帮助我们计算出建筑物的高度、角度和距离等参数,以便进行合理的设计和施工。

4. 解题技巧在中考中,三角函数常常出现在各种数学题目中。

初中三角函数知识点总结(中考复习)

初中三角函数知识点总结(中考复习)
C 、非正数 D 、不能确定
(2)比较函数值大小 例 1.如图是一次函数 y1=kx+b 和反比例函数 y2=
x 的取值范围
m 的图象,观察图象写出 y1>y2 时, x
例 2.如图,一次函数y =x-1 与反比例函数y = 2),则使y >y 的x的取值范围是( A. x>2 B. x>2 或-1<x<0 )
为 S1、S 2、S3、S 4、S5, 则 S 5 的值为 例 6.如图,A、B 是函数 y 轴,△ABC 的面积记为 S ,则( A. S 2 B. S 4 .
2 的图象上关于原点对称的任意两点,BC∥ x 轴,AC∥ y x
) C. 2 S 4 D. S 4
(2)矩形面积: S 矩形OBAC
1 2
45°
2 2 2 2
60°
3 2
1 2
90° 1 0 不存在 0
sin
cos
tan cot
3 2 3 3
1 1
3
3 3
3
6、正弦、余弦的增减性: 当 0°≤ ≤90°时,sin 随 的增大而增大,cos 随 的增大而减小。 7、正切、余切的增减性: 当 0°< <90°时,tan 随 的增大而增大,cot 随 的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
3 m 2
例 2.当 m 取什么值时,函数 y (m 2) x
是反比例函数?
例 3.若函数 y (2m 1) x
m2 2
是反比例函数,且它的图像在第二、四象限,则 m 的值是___________
例 4.已知函数 y=y1+y2,y1 与 x 成正比例,y2 与 x 成反比例,且当 x=1 时,y=4;当 x=2 时,y=5 (1)求 y 与 x 的函数关系式 (2)当 x=-2 时,求函数 y 的值

(完整版)初中三角函数公式表

(完整版)初中三角函数公式表

(完整版)初中三角函数公式表一、三角函数的基本定义在初中数学中,三角函数主要涉及正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

这些函数与直角三角形的三边长度有着密切的关系。

1. 正弦函数(sin):正弦函数表示直角三角形中,对应于一个锐角的斜边与斜边与邻边之比。

公式为:sin(θ) = 对边 / 斜边。

2. 余弦函数(cos):余弦函数表示直角三角形中,对应于一个锐角的邻边与斜边之比。

公式为:cos(θ) = 邻边 / 斜边。

3. 正切函数(tan):正切函数表示直角三角形中,对应于一个锐角的斜边与邻边之比。

公式为:tan(θ) = 对边 / 邻边。

二、三角函数的相互关系1. 正弦函数和余弦函数的关系:sin(θ) = cos(90° θ),cos(θ) = sin(90° θ)。

2. 正切函数和余弦函数的关系:tan(θ) = sin(θ) / cos(θ)。

3. 正切函数和正弦函数的关系:tan(θ) = sin(θ) / cos(θ)。

三、三角函数的特殊值1. 0°:sin(0°) = 0,cos(0°) = 1,tan(0°) = 0。

2. 30°:sin(30°) = 1/2,cos(30°) = √3/2,tan(30°) =1/√3。

3. 45°:sin(45°) = √2/2,cos(45°) = √2/2,tan(45°)= 1。

4. 60°:sin(60°) = √3/2,cos(60°) = 1/2,tan(60°) = √3。

5. 90°:sin(90°) = 1,cos(90°) = 0,tan(90°) 无定义。

四、三角函数的周期性三角函数具有周期性,即函数值在一定的周期内会重复出现。

初三数学三角函数知识点

初三数学三角函数知识点

初三数学三角函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初三数学三角函数知识点初三数学三角函数知识点考点关于知识点,初三数学三角函数知识点分别是什么的呢?小伙伴们可有了解过?不妨一起来关注下吧!以下是本店铺为大家带来的初三数学三角函数知识点考点,欢迎参阅呀!初三数学三角函数知识点考点锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

九年级数学三角函数定义及三角函数公式大全

九年级数学三角函数定义及三角函数公式大全

一、三角函数的定义:在平面直角坐标系中,以坐标轴正方向为单位长,在单位圆上取点P(x,y),点P与x轴之间的夹角为θ。

根据点P在单位圆上的位置,定义以下三个比率:1. 正弦函数(sine):sinθ = y2. 余弦函数(cosine):cosθ = x3. 正切函数(tangent):tanθ = y/x二、常用的三角函数公式:1.正弦函数的基本性质:(1)sin(-θ) = -sinθ(2)sin(π/2 - θ) = cosθ(3)sin(π - θ) = sinθ(4)sin(2π - θ) = -sinθ(5)sin(θ + 2kπ) = sinθ(k为整数)(6)sin2θ = 2sinθcosθ2.余弦函数的基本性质:(1)cos(-θ) = cosθ(2)cos(π/2 - θ) = sinθ(3)cos(π - θ) = -cosθ(4)cos(2π - θ) = cosθ(5)cos(θ + 2kπ) = cosθ(k为整数)(6)cos2θ = cos²θ - sin²θ3.正切函数的基本性质:(1)tan(-θ) = -tanθ(2)tan(π/2 - θ) = 1/tanθ(3)tan(θ + π) = tanθ(4)tan(θ + πk) = tanθ(k为整数)(5)tan2θ = 2tanθ/(1-tan²θ)4.三角函数间的关系:(1)tanθ = sinθ/cosθ(2)sin²θ + cos²θ = 1(3)1 + tan²θ = sec²θ(4)1 + cot²θ = csc²θ(5)cos(2θ) = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ5.三角函数的诱导公式:sin(x+y) = sinx*cosy + cosx*sinycos(x+y) = cosx*cosy - sinx*sinytan(x+y) = (tanx + tany)/(1 - tanxtany)sin(x-y) = sinx*cosy - cosx*sinycos(x-y) = cosx*cosy + sinx*sinytan(x-y) = (tanx - tany)/(1 + tanxtany)其中,x和y表示任意实数。

九年级数学三角函数定义及三角函数公式大全

九年级数学三角函数定义及三角函数公式大全

三角函数是数学中的一门重要学科,是研究角和三角形之间关系的一门学科。

三角函数包括正弦函数、余弦函数和正切函数等。

1. 正弦函数(sin):正弦函数是一个周期函数,其定义域是实数集,值域是[-1,1]之间的实数。

在直角三角形中,正弦函数表示的是角的对边与斜边之间的比值。

2. 余弦函数(cos):余弦函数也是一个周期函数,其定义域是实数集,值域也是[-1,1]之间的实数。

在直角三角形中,余弦函数表示的是角的邻边与斜边之间的比值。

3. 正切函数(tan):正切函数也是一个周期函数,在定义域上存在无穷多个间断点。

其值域为整个实数集。

在直角三角形中,正切函数表示的是角的对边与邻边之间的比值。

除了这三个基本的三角函数,还有以下几个常用的三角函数公式:1.两角和公式:sin(A + B) = sin(A)cos(B) + cos(A)sin(B)cos(A + B) = cos(A)cos(B) - sin(A)sin(B)tan(A + B) = (tan(A) + tan(B))/(1 - tan(A)tan(B))2.两角差公式:sin(A - B) = sin(A)cos(B) - cos(A)sin(B)cos(A - B) = cos(A)cos(B) + sin(A)sin(B)tan(A - B) = (tan(A) - tan(B))/(1 + tan(A)tan(B))3.和角公式:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) tan(2A) = (2tan(A))/(1 - tan^2(A))4.半角公式:sin(A/2) = √[(1 - cos(A))/2]cos(A/2) = √[(1 + cos(A))/2]tan(A/2) = sin(A)/(1 + cos(A))5.二倍角公式:sin^2(A) = (1 - cos(2A))/2cos^2(A) = (1 + cos(2A))/2tan^2(A) = (1 - cos(2A))/(1 + cos(2A))这些公式在解决三角函数相关问题时非常有用,可以帮助我们简化计算,推导其他三角函数之间的关系,以及解决各种三角形的问题。

初中数学三角函数知识点_三角函数公式大全

初中数学三角函数知识点_三角函数公式大全

初中数学三角函数知识点_三角函数公式大全三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

初中数学的三角函数知识点有哪些?下面是小编收集整理的一些初中数学三角函数知识点_三角函数公式大全,欢迎大家前来阅读。

三角函数知识点:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c余弦(cos):邻边比斜边,即cosA=b/c正切(tan):对边比邻边,即tanA=a/b余切(cot):邻边比对边,即cotA=b/a正割(sec):斜边比邻边,即secA=c/b余割(csc):斜边比对边,即cscA=c/a特殊三角函数值sin30=1/2 sin45=2/2sin60=3/2 cos30=3/2cos45=2/2 cos60=1/2tan30=3/3 tan45=1tan60=3 cot30=3cot45=1 cot60=3/3函数关系互余:sin(90-)=cos, cos(90-)=sin,tan(90-)=cot, cot(90-)=tan.积的关系:sin=tancoscos=cotsintan=sinseccot=coscscsec=tancsccsc=seccot倒数关系:tancot=1sincsc=1cossec=1性质当角为锐角时候,三角函数值都为正数,并且大于0,小于1,并且sin值和tan值岁角度增大而增大三角函数公式大全三角函数和差化积公式sin+sin=2sin[(+)/2]cos[(-)/2]sin-sin=2cos[(+)/2]sin[(-)/2]cos+cos=2cos[(+)/2]cos[(-)/2]cos-cos=-2sin[(+)/2]sin[(-)/2]三角函数积化和差公式sincos=(1/2)[sin(+)+sin(-)]cossin=(1/2)[sin(+)-sin(-)]coscos=(1/2)[cos(+)+cos(-)]三角函数万能公式sin=2tan(/2)/[1+tan^2(/2)]cos=[1-tan^2(/2)]/[1+tan^2(/2)]tan=2tan(/2)/[1-tan^2(/2)]三角函数半角公式sin^2(/2)=(1-cos)/2cos^2(/2)=(1+cos)/2tan^2(/2)=(1-cos)/(1+cos)tan(/2)=sin/(1+cos)=(1-cos)/sin三角函数三倍角公式sin3=3sin-4sin^3()cos3=4cos^3()-3cos三角函数倍角公式sin(2)=2sincoscos(2)=cos^2()-sin^2()=2cos^2()-1=1-2sin^2() tan(2)=2tan/[1-tan^2()]三角函数两角和与差公式cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantantan(-)=(tan-tan)/(1+tantan)。

初中三角函数初学入门知识点

初中三角函数初学入门知识点

初中三角函数初学入门知识点三角函数知识点1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。

2、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

6、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

三角函数常用公式1、初中三角函数两角和与差的三角函数:cos(αβ)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβsinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(αβ)=(tanαtanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1tanα·tanβ)2、初中三角函数倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]3、初中三角函数三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα4、初中三角函数半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1cosα)/2tan^2(α/2)=(1-cosα)/(1cosα)tan(α/2)=sinα/(1cosα)=(1-cosα)/sinα5、初中三角函数万能公式:sinα=2tan(α/2)/[1tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]6、初中三角函数积化和差公式:sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]co sα·cosβ=(1/2)[cos(αβ)cos(α-β)] sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)] 7、初中三角函数和差化积公式:sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2] sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2] cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(αβ)/2]sin[(α-β)/2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C、300< <900
<300
) D、 3 5
D、00<
3、若 3 tan( 10 0 ) 1,则锐角 的度数是( )
A、200
B、300
C、400
D、
500

4、在 Rt△ABC 中,∠C=900,下列式子不一定成立的是( )
A、cosA=cosB
B、cosA=sinB
C、cotA=tanB
D、 sin C cos A B
四、探索题:
1、△ABC 中,∠ACB=900,CD 是 AB 边上的高,则 CD 等于( CB
A、cotA
B、tanA
C、cosA
) D、
sinA 2、在 Rt△ABC 中,∠C=900,∠A、∠B 的对边分别是 a 、b ,且满足
a2 ab b2 0 ,则 tanA 等于( )
A、1
B、 1 5 2
三角函数

30°
45°
60°
sin cos tan
0
1
2
3
2
2
2
1
3
2
1
2
2
2
0
3
1
3
3
90° 1 0 -
cot
-
3
1
3
0
3
6、正弦、余弦的增减性: 当 0°≤ ≤90°时,sin 随 的增大而增大,cos 随 的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的 边和角。
2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
仰角 水平线 俯角
视线
h i h:l
α
l
(2)坡面的铅直高度 h 和水平宽度 l 的比叫做坡度(坡比)。用字母 i 表示,即 i h 。坡度一 l
般写成1: m 的形式,如 i 1:5 等。把坡面与水平面的夹角记作 (叫做坡角),那么
A 邻边 b C
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
tan A cotB cot A tanB
由A B 90 得B 90 A
tan A cot(90 A)
cot A tan(90 A)
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
C、 100 米 cos

D、100cos
A、7 2
二、计算与解答题:
B、5 6
C、3 2
D、 3 2 2
1、△ABC 中,∠A、∠B 均为锐角,且 tan B 3 (2sin A 3)2 0 ,
试确定△ABC 的形状。
2、已知 a sin 600 , b cos450 ,求 a 2b b 的值。 ab ba
C、 1 5 2
D、 1 5 2
A、3< h <5 >15
B、5< h <10
C、10< h <15
D、h
专项训练:
一、选择题:
1、在 Rt△ABC 中,∠C=900,若 tan A 3 ,则 sinA=( 4
A、 4 3
B、 3 4
C、 5 3
2、已知 cos <0.5,那么锐角 的取值范围是( )
A、600< <900 B、00< <600
i h tan 。 l 【例 1】在 Rt△ABC 中,∠C=900,AC=12,BC=15。(1)求 AB 的长;
(2)求 sinA、cosA 的值;
(3)求 sin 2 A cos2 A 的值; (4)比较 sinA、cosB 的大小。
变式:(1)在 Rt△ABC 中,∠C=900,a 5 ,b 2,则 sinA=
2
2
5、在 Rt△ABC 中,∠C=900, tan A 1 ,AC=6,则 BC 的长为( ) 3
A、6
B、5
C、4
D、2
6、某人沿倾斜角为 的斜坡前进 100 米,则他上升的最大高度为( )
A、 100 米 sin

B、100sin 米
7、计算 cos 60 0 3 cot 30 0 的值是( 3
tan A cotB cot A tanB tan A 1 (倒数)
cot A
tan A cot A 1
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 B
sin A cosB 由A B 90 sin A cos(90 A)
斜边

c a边
cos A sin B 得B 90 A cos A sin(90 A)
三角函数知识点及同步练习
1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边 c 的平方。 a2 b2 c2
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
定义
表达式
取值范围
关系
正 弦
sin
A
A的对边 斜边
sin A a c
0 sin A 1

(2)在 Rt△ABC 中,∠A=900,如果 BC=10,sinB=0.6,那么 AC=

【例 2】计算: sin 600 cot300 sin 2 450
【例 3】已知,在 Rt△ABC 中,∠C=900,tan B 5 ,那么 cosA( ) 2
A、 5 2
B、 5 3
C、 2 5 5
(∠A 为锐角)
余 弦
cos
A
A的邻边 斜边
cos A b c
0 cosA 1
(∠A 为锐角)
正 切
tan
A
A的对边 A的邻边
tan A a b
tan A 0
(∠A 为锐角)
余 切
cot
A
A的邻边 A的对边
cot A b a
cot A 0
(∠A 为锐角)
sin A cosB cos A sin B sin 2 A cos2 A 1
D、 2 3
变式:已知 为锐角,且 cos 4 ,则 sin cot =

5
探索与创新:
【 问 题 】 已 知 30 0 90 0 , 化 简
(cos cos)2 cos 3 1 cos 。 2
变式:若太阳光线与地面成 角,300< <450,一棵树的影子长为 10 米,
则树高 h 的范围是( )(取 3 1.7 )
相关文档
最新文档