初中数学三角函数综合练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数综合练习题

一.选择题(共10小题)

1.如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是( )

A.2ﻩB.ﻩC.ﻩD.

2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=()

A.ﻩ

B.ﻩ

C.D.

3.如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是()

A.msin35°ﻩB.mcos35°C.D.

4.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA の值为( )

A.B. C.ﻩD.

5.如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)の长是( )

A.5sin36°米ﻩB.5cos36°米ﻩC.5tan36°米ﻩD.10tan36°米

6.一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要()

A.米2B.米2C.(4+)米2ﻩD.(4+4tanθ)米2

7.如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为()

A.160m

B.120m C.300m D.160m

8.如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于()

A.8()mB.8()m C.16()mﻩD.16()m

9.某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )

A.8.1米B.17.2米ﻩC.19.7米D.25.5米

10.如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是()

A.B.ﻩC. D.

二.解答题(共13小题)

11.计算:(﹣)0+()﹣1﹣|tan45°﹣|

12.计算:.

13.计算:sin45°+cos230°﹣+2sin60°.14.计算:cos245°﹣+cot230°.

15.计算:sin45°+sin60°﹣2tan45°.

16.计算:cos245°+tan60°•cos30°﹣3cot260°.

17.如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).

(1)求办公楼ABの高度;

(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.

(参考数据:sin22°≈,cos22°,tan22)

18.某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)

19.如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;

(2)求山峰の高度CF.(1.414,CF结果精确到米)

20.如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P 处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B 在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)

21.如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).

22.如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)

23.某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73 ).

2016年12月23日三角函数综合练习题初中数学组卷

参考答案与试题解析

一.选择题(共10小题)

1.(2016•安顺)如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是( )

A.2 B.ﻩC.ﻩD.

【分析】根据勾股定理,可得AC、ABの长,根据正切函数の定义,可得答案.

【解答】解:如图:,

由勾股定理,得

AC=,AB=2,BC=,

∴△ABC为直角三角形,

∴tan∠B==,

故选:D.

【点评】本题考查了锐角三角函数の定义,先求出AC、ABの长,再求正切函数.

2.(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=()

相关文档
最新文档