直线与圆锥曲线
直线与圆锥曲线的位置关系(总结归纳)
y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a
为
4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.
直线与圆锥曲线知识点与题型归纳总结
直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。
直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点,具体如下:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决.②直线与圆锥曲线仅有一个公共点,对于圆或椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行;对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.(2)从代数角度看,可通过将表示直线的方程,代入二次曲线的方程消元后所得的一元二次方程的解的情况来判断.直线l 方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元(x 或y ), 如消去y 后得ax 2+bx +c =0.若f (x ,y )=0表示椭圆,上述方程中a ≠0,若f (x, y )=0表示双曲线或抛物线, 上述方程中a =0或a ≠0.①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行(或重合);当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合).②若a ≠0,设Δ=b 2-4ac .a .Δ>0时,直线和圆锥曲线相交于不同两点;b .Δ=0时,直线和圆锥曲线相切于一点;c .Δ<0时,直线和圆锥曲线没有公共点.直线与圆锥曲线的位置关系重点是相交:相交――→转化联立方程组有两组不等的实数解――→转化一元二次方程有两个不等实数解――→转化判别式大于零.2.弦长的求法求弦长――→转化求两点间的距离――→综合运用⎩⎪⎨⎪⎧消元,解方程组,一元二次方程根与系数的关系.(1)弦长:(直线与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)),直线斜率为k ,一般地,弦长公式|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2]. (2)若弦过焦点:可用焦半径公式来表示弦长,简化运算. 如x 2a 2+y2b 2=1(a >b >0), |AB |=2a -e(x 1+x 2) (过右焦点), |AB |=2a +e(x 1+x 2) (过左焦点).如抛物线y 2=2px (p >0), |AB |=x 1+x 2+p .3.中点弦问题设A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1上不同的两点,且x 1≠x 2,x 1+x 2≠0,M (x 0,y 0)为AB 的中点,则⎩⎨⎧x 21a 2+y 21b21,x 22a 2+y22b 21.两式相减可得y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·y 0x 0=-b 2a2.类似地,可得圆锥曲线为双曲线x 2a 2-y 2b 2=1时,有k AB ·y 0x 0=b 2a2.圆锥曲线为抛物线y 2=2px (p >0)时,有k AB =py 0.探究点1 直线与圆锥曲线的交点问题例1 已知双曲线C :2x 2-y 2=2与点P (1, 2),求过点P 的直线l 的斜率的取值范围,使l 与C 分别有一个公共点,两个公共点,没有公共点.例1 [解答] (1)当l 垂直x 轴时,此时直线与双曲线相切,有一个公共点.(2)当l 不与x 轴垂直时,设直线l 的方程为y -2=k(x -1)代入双曲线C 的方程中,整理得(2-k 2)x 2+2(k 2-2k)x -k 2+4k -6=0, (*) 当k 2=2,即k =±2时, (*)为一次方程,显然只有一解; 当k 2≠2时,Δ=4(k 2-2k)2-4(2-k 2)(-k 2+4k -6)=48-32k.令Δ=0,可解得k =32;令Δ>0,即48-32k >0,此时k <32;令Δ<0,即48-32k <0,此时k >32.∴当k =±2或k =32或k 不存在时,l 与C 只有一个公共点;当k <-2或-2<k <2或2<k <32时,l 与C 有两个公共点;当k >32时,l 与C 没有公共点.[点评] (1)为了设出直线方程,先讨论斜率是否存在.当斜率存在时,设出方程并与双曲线方程组成方程组,消去y 得到关于x 的方程.当二次项系数为零时,直线与渐近线平行与双曲线只有一个交点;当二次项系数不为零时,若Δ=0,则有一个切点;若Δ>0,则有两个交点;Δ<0,则没有交点.(2)有关直线和圆锥曲线的范围问题,常常使用Δ来体现范围.探究点2 中点弦问题例2 椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP →=PN →,AP →·MN →=0,求直线l 的方程.[解答] (1)设c =a 2-b 2,依题意得⎩⎪⎨⎪⎧b =2,e =c a =a 2-b 2a =63,即⎩⎪⎨⎪⎧b =2,6a 2=9a 2-9b 2,∴a 2=3b 2=12,即椭圆方程为x 212+y 24=1.(2)∵MP →=PN →,AP →·MN →=0,∴AP ⊥MN ,且点P 是线段MN 的中点, 由⎩⎪⎨⎪⎧y =kx -2,x 212+y 241,消去y ,得x 2+3(kx -2)2=12, 即(1+3k 2)x 2-12kx =0,(*),由k ≠0,得方程(*)中Δ=(-12k)2=144k 2>0,显然方程(*)有两个不相等的实数根.设M(x 1,y 1)、N(x 2,y 2),线段MN 的中点P(x 0,y 0),则x 1+x 2=12k 1+3k 2∴x 0=x 1+x 22=6k1+3k 2, ∴y 0=kx 0-2=6k 2-2(1+3k 2)1+3k 2=-21+3k 2即P ⎝⎛⎫6k 1+3k 2,-21+3k 2.∵k ≠0,∴直线AP 的斜率为k 1=-21+3k 2-26k1+3k2=-2-2(1+3k 2)6k.由MN →⊥AP →,得-2-2(1+3k 2)6k ·k =-1,∴2+2+6k 2=6,解得k =±33,故直线方程为y =±33x -2.探究点3 相交弦长与面积问题例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦点到相应准线的距离为22.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点到直线l 的距离为32,求△AOB 面积的最大值.例3 [解答] (1)∵e =c a =63,a 2c -c =22,解得a =3,c =2,∴b 2=3-2=1, 椭圆C 的方程为x 23+y 2=1.(2)当AB ⊥x 轴时,⎝⎛⎭⎫3223+y 2=1,得y 2=34,AB = 3. 当AB 不垂直x 轴时,设直线l 的方程为y =kx +m ,则|m|1+k2=32,得m 2=34k 2+34. 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1, |AB|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k29k 4+6k 2+1 =3+129k 2+1k2+6≤3+122×3+6=2(k ≠0),当且仅当9k 2=1k 2,即k =±33时,|AB|max =2,当k =0时,AB =3,综上所述|AB|max =2.∴当|AB|最大时,△AOB 面积最大值S =12×32×2=32.变式题:从椭圆x 2a 2+y2b 2=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴端点B 的连线AB 平行于OM .(1)求椭圆的离心率;(2)当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203(Q是椭圆上的点),求此时椭圆的方程. [解答] (1)如图,由题意知x M =-c , 故y M =b 2a .又△F 1OM ∽△OAB ,c a =b 2a b ⇒b =c ⇒e =22. (2)设椭圆方程为x 2a 2+y2b 2=1(a>b>0),由(1)知a 2=2b 2,方程变为x 2+2y 2=2b 2.设直线PQ 方程为y -0=2(x -b),联立方程组,得5x 2-8bx +2b 2=0, x 1+x 2=8b 5,x 1x 2=2b 25.|PQ|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=26b5∵|y 2-y 1|=|2(x 2-x 1)|=2(x 1+x 2)2-4x 1x 2=43b5S △F 1PQ =12×||PQ ×||-22b 3=203⇒b 2=25,∴a 2=50,∴椭圆方程为x 250+y 225=1.探究点4 弦的定比分点问题例4 已知椭圆x 25+y 29=1,焦点F (0,2),又点A ,B 在椭圆上,而且AF →=2FB →,求直线AB 的斜率.例4 [解答] AF →=2FB →⇒A ,F ,B 三点共线. 设AB 方程为y =kx +2,与椭圆方程联立,得 (9+5k 2)x 2+20kx -25=0, x 1+x 2=-20k 9+5k 2,x 1x 2=-259+5k2.又AF →=2FB →⇒⎩⎪⎨⎪⎧x1=-2x 2,2-y 1=2y 2-4,所以-x 2=-20k 9+5k 2,-2x 22=-259+5k 2,消去x 2,解得k =±33. 探究点5 综合应用问题例5 已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C的右支于M 、N 两点,试确定λ的范围,使OM →·ON →=0,其中点O 为坐标原点. [解答] 设M(x 1,y 1),N(x 2,y 2),由已知易求B(1,0). 当MN 垂直于x 轴时,MN 的方程为x =1.设M(1,y 0),N(1,-y 0)(y 0>0),由OM →·ON →=0,得y 0=1,∴M(1,1),N(1,-1). 又M(1,1),N(1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52. ∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时,设MN 的方程为y =k(x -1).由⎩⎪⎨⎪⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0. 由题意知λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM →·ON →=0,且M 、N 在双曲线右支上, ∴⎩⎪⎨⎪⎧x 1x 2+y 1y 2=0,x 1+x 2>0,x 1x 2>0⇒⎩⎨⎧k 2=λ(1-λ)λ2+λ-1,k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λ,λ2+λ-1>0⇒5-12<λ<23.综上知5-12≤λ<23. 变式题:已知点P 1(x 0,y 0)为双曲线x 28b 2-y 2b 21(b 为正常数)上任一点,F 2为双曲线的右焦点,过P 1作右准线的垂线,垂足为A ,连结F 2A 并延长交y 轴于点P 2.(1)求线段P 1P 2的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B 、D 两点,在E 上任取一点Q (x 1,y 1)(y 1≠0),直线QB 、QD 分别交y 轴于M 、N 两点.求证:以MN 为直径的圆过两定点.[解答] (1)由已知得F 2(3b,0),A ⎝⎛⎭⎫83b ,y 0,则直线F 2A 的方程为y =-3y0b (x -3b),令x=0,得y =9y 0,即P 2(0,9y 0).于是直线QB 的方程为:y =y 1x 1+2b(x +2b),直线QD 的方程为y =y 1x 1-2b(x -2b),可得M ⎝⎛⎭⎪⎫0,2by 1x 1+2b ,N ⎝ ⎛⎭⎪⎫0,-2by 1x 1-2b . 则以MN 为直径的圆的方程为: ⎩⎪⎨⎪⎧x 2+⎝ ⎛⎭⎪⎫y -2by 1x 1+2b ⎝ ⎛⎭⎪⎫y +2by 1x 1-2b =0.令y =0得x 2=2b 2y 21x 21-2b 2,而Q(x 1,y 1)在x 22b 2-y 225b 2=1上,则x 21-2b 2=225·y 21,于是x =±5b , 即以MN 为直径的圆过两定点(-5b,0),(5b,0).规律总结本节问题的研究集中体现了解析几何的基本思想和方法,要求有较强的分析问题和解决问题的能力,有些问题涉及代数、三角、几何等多方面的知识,因此在复习中要注意各部分之间的联系和综合利用知识解决问题的能力.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,通过消元最终归结为讨论一个一元二次方程Ax 2+Bx +C =0的实数解的个数问题.应特别注意要分A =0和A ≠0的两种情况讨论,只有A ≠0时,才可用判别式来确定解的个数. 当直线平行于抛物线的对称轴时,直线与抛物线只有一个公共点.这些情况在解题中往往容易疏忽,要特别注意,对于选择、填空题,用数形结合往往快速简捷.2.斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=|x 1-x 2|·1+k 2=|y 1-y 2|·1+1k 2(k ≠0),利用这个公式求弦长时,应注意应用韦达定理.3.与焦点弦长有关的问题,要注意应用圆锥曲线的定义.4.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程时,一般可设A (x 1,y 1)、B (x 2,y 2),利用A 、B 在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m ,y 1+y 2=2n ,故可求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程.5.求圆锥曲线的方程时,通常利用待定系数法.。
4.3直线与圆锥曲线的交点
答案: 答案:D
1.弦长问题 . 利用弦长公式求弦长要注意斜率k不存在的情形, k不 利用弦长公式求弦长要注意斜率k不存在的情形,若k不 不存在的情形 存在时,可直接求交点坐标再求弦长. 存在时,可直接求交点坐标再求弦长.
2.中点弦问题 . 遇到中点弦问题常用“根与系数关系 或 点差法 点差法”求 遇到中点弦问题常用 根与系数关系”或“点差法 求 根与系数关系 解.在椭圆 直线的斜率k= 直线的斜率 中,以P(x0,y0)为中点的弦所在 为中点的弦所在 ;在双曲线 中,以 ;在抛物线
二、圆锥曲线的弦长问题 设直线l与圆锥曲线 相交于 两点, 设直线 与圆锥曲线C相交于 、B两点,A(x1,y1), 与圆锥曲线 相交于A、 两点 , B(x2,y2),则弦长 ,则弦长|AB|= = .
1.过原点的直线l与双曲线 .过原点的直线 与双曲线 线l 的斜率的取值范围是
有两个交点, 有两个交点,则直 ( )
易证. (1)联立方程消元利用 )联立方程消元利用Δ>0易证 易证 (2)结合条件分析出 ) 易求. 易求
1.已知直线y=k(x+2)(k>0)与抛物线 : .已知直线 = + 与抛物线C: 与抛物线 y2=8x相交于 、B两点,F为C的焦点.若|FA|=2 相交于A、 两点 为 的焦点 两点, 的焦点. 相交于 = |FB|,则k= , = ( )
等
∴ 答案: 答案:4a
= 4a.
5.若直线mx+ny=4和圆 :x2+y2=4没有公共点,则过 .若直线 + = 和圆 和圆O: 没有公共点, 没有公共点 点(m,n)的直线与椭圆 , 的直线与椭圆 ________. . 解析:由已知可得 点在椭圆内, 解析:由已知可得m2+n2<4,又(m,n)点在椭圆内,故必 , , 点在椭圆内 个交点. 有2个交点. 个交点 答案: 答案:2 的交点个数为
直线与圆锥曲线
0
1 k 2 0
0
0
1 k 0
2 k 2 , 且k 1
双曲线与直线的位置关系: 此类题一般用代数方法解题,在联立方程组得到一元二次方程 Ax2+Bx+C=0 后,要注意一元二次方程的二次项系数为 0 的情形. 对于方程 Ax2+Bx+C=0. ①当二次项系数 A=0,即直线与渐近线平行,此时直线与双曲线有且仅有一个公 共点. ②当 A≠0,△=0 时,直线与双曲线也有且仅有一个公共点,但此时直线 l 与双曲 线相切. 问题拓展: 直线仅与双曲线的右(左)支相交,有两个交点,问题可转化为 Ax2+Bx+C=0 的根
2.设抛物线 y2=8x 的准线与 x 轴交于点 Q,若过点 Q 的直线 l 与抛物线有公共点,则直线 l 的斜率的取值 范围是
1 1 A.-2,2
( B.[-2,2] D.[-4,4]
)
C.[-1,1]
解析 ∵y2=8x,∴Q(-2,0) (Q 为准线与 x 轴的交点), 设过 Q 点的直线 l 方程为 y=k(x+2), ∵l 与抛物线有公共点,
② ③
又 y1+y2=k(x1+x2)+2 2 而A 2 ,0),B(0,1),AB ( 2,1) ( 所以OP OQ与 AB共线等价于 x1+x2=- 2(y1+y2),
2 将②③代入上式,解得 k= . 2 2 2 由(1)知 k<- 或 k> ,故没有符合题意的常数 k. 2 2
满足 x∈(0,+∞),问题转化为方程有两不相等的正(负)根. 如果题型为填空题、 选择题,可直接使用几何方法解决.
知能迁移 1
Байду номын сангаас
直线和圆锥曲线的位置关系
直线和圆锥曲线的位置关系知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离.判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系.一般利用二次方程判别式来判断有无解,有几个解.1.直线0=++C By Ax 椭圆)0(12222>>=+b a by a x 的位置关系: 将直线的方程与椭圆的方程联立成方程组,消元转化为关于x 或y 一元二次方程,其判别式为∆.(1)⇔>∆0直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点);(2)⇔=∆0直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点);(3)⇔<∆0直线和椭圆相离⇔直线和椭圆无公共点.2.直线0=++C By Ax 和双曲线)0,0(12222>>=-b a by a x 的位置关系: 将直线的方程与双曲线的方程联立成方程组,消元转化为关于x 或y 的方程.(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和双曲线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和双曲线相切,有一个切点;(3)若0<∆,则直线和双曲线相离,无公共点.注意:(1)⇒>∆0直线与双曲线相交,但直线与双曲线相交不一定有0>∆,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0>∆是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,⇔=∆0直线与双曲线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线)0,0(12222>>=-b a by a x 外一点),(00y x P 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3.直线0=++C By Ax 和抛物线)0(22>=p px y 的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x 或y 方程.(一)若方程为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和抛物线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和抛物线相切,有一个切点;(3)若0<∆,则直线和抛物线相离,无公共点.注意:(1)⇒>∆0直线与抛物线相交,但直线与抛物线相交不一定有0>∆,当直线与抛物线的对称轴重合或平行时,直线与抛物线相交且只有一个交点,故0>∆也仅是直线与抛物线相交的充分条件,但不是必要条件.(2)当直线与抛物线的对称轴不重合或平行时,⇔=∆0直线与抛物线相切;(3)如说直线和抛物线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(4)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.知识点二:圆锥曲线的弦1.直线被圆锥曲线截得的线段称为圆锥曲线的弦.当直线的斜率k 存在时,直线b kx y +=与圆锥曲线相交于),(),,(2211y x B y x A ,两点,把直线方程代入曲线方程中,消元后所得一元二次方程为02=++c bx ax .则弦长公式:2121x x k AB -+=其中aa c ab x x x x x x ∆=--=-+=-4)(4)(22122121 当k 存在且不为零时, 弦长公式还可以写成:21211y y k AB -+=. 注意:当直线的斜率不存在时,不能用弦长公式解决问题,21y y AB -=.2.焦点弦:若弦过圆锥曲线的焦点叫焦点弦;抛物线)0(22>=p px y 的焦点弦公式α221sin 2p p x x AB =++=,其中α为过焦点的直线的倾斜角.3.通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径.椭圆和双曲线的通径为ab AB 22=,抛物线的通径p AB 2=. 知识点三:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆12222=+b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k -=;②在双曲线12222=-b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k =; ③在抛物线)0(22>=p px y 中,以),(00y x P 为中点的弦所在直线的斜率0y p k =. 注意:因为0>∆是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0>∆!知识点四:求曲线的方程1. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标),(y x 所满足的方程0),(=y x f 表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.2. 坐标法求曲线方程的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何因素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.通过坐标法,把点和坐标、曲线和方程联系起来,实现了形和数的统一.用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”. 3.求轨迹方程的常用方法:直接法、定义法、代入法、参数法等.规律方法指导1.直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.3.当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.4.解决直线与圆锥曲线的位置关系问题时,对消元后的一元二次方程,必须讨论二次项的系数和判别式,有时借助于图形的几何性质更为方便.。
直线与圆锥曲线
直线与圆锥曲线一、基本知识:1.直线与圆锥曲线的位置关系:相交、相切、相离。
从代数的角度看是直线方程和圆锥曲线的方程组成的方程组,无解时必相离;有两组解必相交;一组解时,若化为x 或y 的方程二次项系数非零,判别式⊿=0时必相切,若二次项系数为零,有一组解仍是相交。
2. 弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。
焦点弦:若弦过圆锥曲线的焦点叫焦点弦;通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径。
3.①当直线的斜率存在时,弦长公式: 2121x x k l -+==[]2122124)()1(x x x x k -+⋅+或当k 存在且不为零时 21211y y kl -+=,(其中(11,y x ),(22,y x )是交点坐标)。
②抛物线px y 22=的焦点弦长公式|AB|=α221sin 2p p x x =++,其中α为过焦点的直线的倾斜角。
4.重点难点:直线与圆锥曲线相交、相切条件下某些关系的确立及其一些字母范围的确定。
5.思维方式: 方程思想、数形结合的思想、设而不求与整体代入的技巧。
6.特别注意:直线与圆锥曲线当只有一个交点时要除去两种情况,直线才是曲线的切线。
一是直线与抛物线的对称轴平行;二是直线与双曲线的渐近线平行。
二、例题:【典例精析】热点一 直线与圆锥曲线的交点问题例1. 直线1+-=k kx y 与椭圆14922=+y x 有_ _个公共点 A. 0个 B. 一个 C. 二个 D. 不确定变式迁移1 不论k 为何值,如果直线 y=kx+b 与椭圆14922=+y x 总有公共点,求b 的取值范围?热点二 中点弦问题例2 在椭圆x 2+4y 2=16中,求通过点M(2,1)且被这点平分的弦所在直线的方程和弦长. 变式迁移 2 (2010山东)已知抛物线 y 2 =2px ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,求该抛物线的准线方程。
直线与圆锥曲线的位置关系
规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,):(1)1l y k x =+⇒-过定点(,0):2(1)1l y k x -=+⇒-过定点(,2)证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。
练习:1、过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有( )条。
A .4B .3C .2D .1分析:作出抛物线232--=x x y ,判断点P(3,2)相对抛物线的位置。
解:抛物线232--=x x y 如图,点P (3,2)在抛物线的内部,根据过抛物线内一点和抛物线的对称轴平行或重合的直线和抛物线只有一个交点,可知过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有一条。
故选择D规律提示:含焦点的区域为圆锥曲线的内部。
(这里可以用公司的设备画图)一、过一定点P 和抛物线只有一个公共点的直线的条数情况:(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。
二、过定点P 和双曲线只有一个公共点的直线的条数情况:(1)若定点P 在双曲线内,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。
直线和圆锥曲线解析
直线和圆锥曲线一、知识导学1.点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系已知(a>b>0)的焦点为F1、F2, (a>0,b>0)的焦点为F1、F2,(p>0)的焦点为F,一定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:上述结论可以利用定比分点公式,建立两点间的关系进行证明.2.直线∶Ax+B+C=0与圆锥曲线C∶f(x,y)=0的位置关系:直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:设直线:Ax+By+C=0,圆锥曲线C:f(x,y)=0,由消去y(或消去x)得:ax2+bx+c=0,△=b2-4ac,(若a≠0时),△>0相交△<0相离△= 0相切注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.二、疑难知识导析椭圆、双曲线、抛物线同属于圆锥曲线,它们的定义、标准方程及其推导过程以及简单的几何性质都存在着相似之处,也有着一定的区别,因此,要准确地理解和掌握三种曲线的特点以及它们之间的区别与联系1.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率2.共渐近线的双曲线系如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成3.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-14.抛物线的几何性质(1)范围因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.(2)对称性以-y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.(3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点.(4)离心率抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.19抛物线的焦半径公式:抛物线,抛物线,抛物线,抛物线,。
直线与圆锥曲线题型总结
直线与圆锥曲线题型总结1. 直线和圆锥曲线的基本知识首先,我们需要理解直线和圆锥曲线的基本知识。
* 直线:直线是由无限多个点组成的,其特点是任意两点可以确定一条直线。
* 圆锥曲线:圆锥曲线是由一个平面和一个圆锥共同产生的曲线。
常见的圆锥曲线有直线、抛物线、椭圆和双曲线。
2. 直线和圆锥曲线的交点问题直线和圆锥曲线的交点问题是常见的题型。
我们可以通过以下步骤来解决这类问题:* 确定直线和圆锥曲线的方程* 将直线和圆锥曲线的方程联立* 求解方程组,得到交点的坐标3. 直线和圆锥曲线的性质问题除了求解交点外,直线和圆锥曲线的性质问题也是需要掌握的。
常见的性质问题包括:* 判断直线和圆锥曲线是否相交* 判断直线是否切线或法线* 判断直线和圆锥曲线的交点个数4. 示例题目分析下面是几个直线和圆锥曲线题目的示例分析:示例题目1已知直线方程为 y = mx + b,圆锥曲线方程为 x^2 + y^2 = r^2,求直线和圆锥曲线的交点。
解析:将直线方程代入圆锥曲线方程,得到一个二次方程。
通过求解该二次方程,可以得到直线和圆锥曲线的交点坐标。
示例题目2已知直线方程为 y = kx + c,圆锥曲线方程为 (x - a)^2 + (y -b)^2 = r^2,判断直线和圆锥曲线的交点情况。
解析:将直线方程代入圆锥曲线方程,得到一个关于 x 的二次方程。
通过判别二次方程的根的情况,可以判断直线和圆锥曲线的交点情况。
5. 总结直线和圆锥曲线题型是数学中的重要内容,需要掌握其基本知识和解题方法。
通过理解直线和圆锥曲线的基本性质,我们可以解决交点问题和性质问题。
练更多的示例题目,将有助于提高解题能力和理解能力。
以上是直线与圆锥曲线题型总结的内容。
参考资料:。
4直线与圆锥曲线的位置关系
题型2 题型2:弦长公式的应用 =4, 例2、已知△ABC的顶点A,B在椭圆上x2+3y2=4, 已知△ABC的顶点A 的顶点 在椭圆上x 在直线l:y=x+2 :y=x+2上 AB∥ 。 C在直线 :y=x+2上,且AB∥l。 (1) AB边通过坐标原点 边通过坐标原点O AB的长及 ABC的 的长及△ 当AB边通过坐标原点O时,求AB的长及△ ABC的 面积; 面积; = |AB| 2 2 S=2 (2)当∠ABC=900,且斜边AC的长最大时,求 且斜边AC的长最大时, AC的长最大时 AB所在直线方程 (09北京高考 所在直线方程。 北京高考) AB所在直线方程。(09北京高考) y C y=xy=x-1 B AA
注:1)对称问题 (1)点关于直线的对称 (1)点关于直线的对称 (2)直线关于直线的对称 (2)直线关于直线的对称 (3)曲线关于直线的对称 (3)曲线关于直线的对称 利用两个条件: 利用两个条件: 垂直、 垂直、两对称点的中点在对称轴上
o x A M B y l
小结:直线与圆锥曲线位置关系问题有: 小结:直线与圆锥曲线位置关系问题有: 1)交点问题 2)弦长问题 3)对称问题 4)范围问题 5)弦中点问题
y x|x| =1 D ) ( 练习】直线y=x+3 y=x+3与曲线 【练习】直线y=x+3与曲线 − 9 4
3)代数方法求解后,最好用几何方法验证。 代数方法求解后,最好用几何方法验证。 2 B.只有一个交点 B.只有一个交点 D.有三个交点 D.有三个交点
A.没有交点 A.没有交点 C.有两个交点 C.有两个交点
y M
2
2
A B x
O
题型4 题型4:范围问题 (1)利用几何曲线的范围找不等式 (1)利用几何曲线的范围找不等式 (2)利用直线与圆锥曲线相交的 利用直线与圆锥曲线相交的△ (2)利用直线与圆锥曲线相交的△≥0 (3)把所求参数作为函数, (3)把所求参数作为函数,另一变量作为参 把所求参数作为函数 数,利用函数的值域求解 练习:已知中心在原点的椭圆经过( 练习:已知中心在原点的椭圆经过(2,1)点, 则该椭圆的半长轴长的取值范围是 .
直线与圆锥曲线联立的七大公式(最好用的版本)
直线与圆锥曲线(椭圆与双曲线)联立的七大公式我们知道解析几何是高中数学的压轴板块之一,一方面解题思维要求比较高,一方面计算量非常大,尤其是解答题,通常需要将直线与圆锥曲线进行联立求解出韦达定理,然后再利用韦达定理进行运算,甚至最后还可能需要结合不等式或者函数求一个最值,计算量非常大,还很容易算错,所以由此衍生出了直线与椭圆联立的“口算”公式(又称硬解定理),这有也很多种版本,个人觉得以下这个版本更好记,也更通用。
设椭圆方程为22221x y a b+=,直线利用一般方程0Ax By C ++=,联立可得: 1、韦达定理公式(四个)首先将圆锥曲线化成22x y αβγ+=,列出系数矩阵A B Cαβγ(注意椭圆系数在上方) 则12221222x x X rX x x X --∆⎧+=⎪⎪⎨⎪=⎪⎩,12221222BC y y X X y y X α--⎧+=⎪⎪⎨⎪=⎪⎩两侧 其中∆可以看成一个等腰三角形三个顶点在系数矩阵里面代表的数的乘积,即22AC β-∆=-2X 中的X 代表四个数交叉相乘,下标2代表下面的数据要平方,即222X B A αβ=+, 2rX -的r 是指right ,即系数矩阵里面的右侧四个数,“-”代表交叉相乘相减,其余的和2X 一样,即222rX C B βγ-=-BC α可以用一个钝角的等腰三角形来代替,方便对比记忆,mathtype 编辑不出来,所以就直接写的BC α2X -两侧中的两侧指的是利用系数矩阵两侧的四个数来进行2X -的运算,即222=X C A αγ--两侧四个韦达定理在大题的联立过程中用的还是比较多的,比如向量的数量积,数乘,直径圆,斜率积,斜率和等问题都可以转化成韦达定理进行求解。
备注:(1)此公式对于椭圆的横竖版,双曲线的横竖版都可以直接使用,注意将圆锥曲线方程化成22x y αβγ+=这样的形式;(2)写出韦达定理后,可以利用1212b x x a c x x a ⎧+=-⎪⎪⎨⎪+=⎪⎩来反写消元后的二次方程2、弦长公式系数矩阵为:22a b A B C记忆口诀:小方积,大方和;成对去见(减)单身狗;见了单身去下方补充:竖版椭圆以及双曲线弦长公式将椭圆方程或者双曲线方程化为221x y αβ+=的形式,则22,a b αβ==,注意双曲线时α或者β为负,故弦长公式的分母需要加绝对值,比如对于竖版椭圆22134x y +=,在计算弦长时,223,4a b ==,对于双曲线22134x y -=,在计算弦长时,223,4a b ==- 3、∆公式(弦长公式的局部)椭圆:2222200a A b B C ∆>⇔+->双曲线:2222200a A b B C ∆>⇔+-<双曲线∆公式的2b 处理方式同弦长一般情况下,如果题目中直线过椭圆内定点,则0∆>恒成立,其它情况均需要验证0∆>4、中点公式直线与椭圆相交于两点A B 、,则AB 的中点M 坐标1212,22x x y y ++⎛⎫⎪⎝⎭,可以通过韦达定理来计算。
直线与圆锥曲线的位置关系知识梳理
直线与圆锥曲线的位置关系知识梳理1.直线与圆锥曲线的位置关系的判定(1)代数法:把圆锥曲线方程C 1与直线方程l 联立消去y ,整理得到关于x 的方程ax 2+bx +c =0.(2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定直线与圆锥曲线的位置关系.2.圆锥曲线的弦长/设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 2-y 1|=1+1k 2(y 1+y 2)2-4y 1y 2, |x 2-x 1|=||a ∆,|y 2-y 1|=||a ∆ 3.中点弦问题:中点弦问题常用“根与系数的关系”或“点差法”求解.(1)点差法设而不求,借用中点公式即可求得斜率.(2)在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0; (在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0; 在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0.题型一 直线与圆锥曲线的位置关系的判断及应用例1 若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( )条变式训练 若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是________.。
题型二 中点弦问题例2 过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________.变式训练 已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A 、B 两点,且AB 的中点为N (-12,-15),则E 的方程为____________.题型三 弦长问题例3 已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A 、B 两点,则弦AB 的长为________. ]课堂练习1.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.2.已知F 1、F 2为椭圆x 225+y 2169=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A |+|F 2B |=30,则|AB |=________. `3. 已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为________.4.(四川文)过双曲线x 2-y 23=1的右焦点与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于________.5.(课标全国I )已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.!1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为________.2.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为________.3.已知直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A ,B 两点,且点A ,B 到y 轴的距离分别为m ,n ,则m +n +2的最小值为________.,4.椭圆的焦点为F 1,F 2,过F 1的最短弦PQ 的长为10,△PF 2Q 的周长为36,则此椭圆的离心率为________.5.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,这样的直线有________.6.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是________.7.已知斜率为-12的直线l 交椭圆C :x 2a 2+y 2b 2=1(a >b >0)于A ,B 两点,若点P (2,1)是AB 的中点,则C 的离心率等于________. 、8.直线l :y =x +3与曲线y 29-x ·|x |4=1交点的个数为________.9.动直线l 的倾斜角为60°,若直线l 与抛物线x 2=2py (p >0)交于A 、B 两点,且A 、B 两点的横坐标之和为3,则抛物线的方程为________.10.已知对k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m =1恒有公共点,则实数m 的取值范围是________.11.已知抛物线C 的顶点在坐标原点,焦点为F (0,-1),直线l 与抛物线C 相交于A 、B 两点,若AB 的中点为(2,-2),则直线l 的方程为________.¥12.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的短半轴长b =1,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4 2.(1)求椭圆M 的方程;(2)设直线l :x =my +t 与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的右顶点C ,求t 的值.。
高中解析几何-直线与圆锥曲线的关系
答案:x2 y2 1。
25 75
练习一:已知椭圆C:x2 y2 1 的右焦点为F,直线l:x=2,点A∈l,线段AF交椭圆C 2
于点B,若FA 3FB ,求 AF 。
答案:AF 2 。
练习二:已知动点P(x,y)在椭圆 x2 y2 1上,若A点坐标为(3,0),AM=1,
25 16
注意:1、因为圆锥曲线与直线存在两个交点,所以联立曲线和直线方程得到一元二次方 程时,△>0;
2、若中点在x轴(非原点),根据椭圆对称性可知直线斜率不存在。
例八:已知点P(4,2)是直线l被椭圆 x2 y2 1 所截得的线段的中点,求直线l的方程
36 9
答案:直线l的方程为x+2y-8=0.
例九:已知中心在原点,一个焦点为F(0,50 )的椭圆被直线l:y=3x-2截得的弦的中 点横坐标为1 ,求此椭圆的方程.
用第二种设法。
例三:已知斜率为2的直线经过椭圆 x2 y2 1 的右焦点F1,与椭圆相交于A,B两点,
54
求弦AB的长.
答案:AB 5 5 3。
x2 y2 例四:椭圆 a2 b2 1(a b 0)的离心率为
3 ,且椭圆与直线x+2y+8=0相交于P,
2
Q,且|PQ|= 10 ,求椭圆的方程。
圆锥曲线系列:直线与圆锥曲线的关系
1.直线与圆锥曲线的位置关系
(1)从几何角度看,可以分为三类:无公共点,仅有一个公共点及有两个公共点。
(2)从代数角度看,我们可以将表示直线的方程代入椭圆的方程,经过消元后得到一元二 次方程,再判断解的情况来确定公共点的个数。
由直线和圆锥曲线联立后消元,消去y后得 ax2 bx c 0。 当a不等于0时,设 b2 4ac 。 ①Δ>0时,直线和圆锥曲线相交于不同两点,直线和圆锥曲线相交; ②Δ=0时,直线和圆锥曲线相切于一点,直线和圆锥曲线相切; ③Δ<0时,直线和圆锥曲线没有公共点,直线和圆锥曲线相离。 当a等于0时,ax2 bx c 0为一元一次方程,直线和圆锥曲线相切于一点,直线和圆锥曲 线相交。曲线是双曲线时,直线斜率等于渐近线斜率;曲线是抛物线时,直线斜率为0。
直线与圆锥曲线的位置关系
基本计算
1. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2 ,y2)则弦长公式为:
| AB | 1 k x1 x2
2
1 k ( x1 x2 ) 4 x1 x2
2 2
2.在与弦中点、弦的斜率有关的题型中,用韦达 定理是常见思路。
例1 已知抛物线的方程为 y 4 x ,直线 l 过定点P(-2,1),斜率为 k ,k 为值时,直线 l 与抛物线 y 2 4 x :只有一个公共点;有两个公 共点;没有公共点?
b|b 公共点,则b的取值范围为
2 若直线y=x+b与曲线
x 1y
2
恰好有一个
2或 - 1 b 1
3 在y轴上的截距为1的直线与焦点在x轴上的椭圆
x2 y2 1恒有公共,则m的取值范围是 [1,5)∪(5,+∞) 变2.是否存在实数m,使在y轴上的截距为1的直
基本方法
1 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的情 况的讨论来研究,即方程消元后得到一个一元二次 方程,利用判别式 来讨论。 2 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解决。 3 特殊情形: (1)在双曲线中,当直线平行于其渐近线时,直 线与双曲线有且仅有一个公共点。 (2)在抛物线中,平行于其对称轴的的直线和抛 物线有且仅有一个公共点。
2 x2 y2 y 2 1 2x 1 )恒有公共 线与椭圆 (或 5 m m
点。若存在,则求出m;若不存在,请说明理由。
y2 x2 变3.不论k为何值,直线y=kx+b 与椭圆 1 9 4 总有公共点,则b的取值范围为 -3≤b≤3
直线与圆锥曲线问题五步得分法(含硬解公式)
直线与圆锥曲线问题五步得分法(含硬解公式)
直线与圆锥曲线相交问题分值高,难度大,一般是拉开档次的压轴题,对于这类问题,我们通常可以采取以下六个步骤来解决。
第一步:设直线方程,通常已知斜率,设斜截式,已知点,设点斜式,但是要注意斜率不存在的情况。
解:设直线方程为y=kx+m,与椭圆方程联立得:
第二步:带入圆锥曲线方程,消去一个未知数,得到一个一元二次方程。
将直线带入椭圆方程,并整理得:
第三步:判断跟的判别式大于0。
(若已知交点,可省略此步)
第四步:设交点坐标,得到方程的根。
设A(x1,y1),B(x2,y2)是直线与椭圆的交点,则x1,x2是方程的两个根
第五步:利用韦达定理得到两根之和,两根之积。
由韦达定理得:,
弦长(若不需要可省略)
第六步:利用分析法,由结论逆推,用两根的和与积表示,解决问题。
在以上步骤中,前五步对于任意直线与圆锥曲线(双曲线把b2换成-b2,即得:)相交,不管最后要解
决的问题是什么,都可以这样解答得到6—7分,是固定的套路,可称之为五步得分法,第六步需要用到分析法解决问题,确实比较繁琐。
接下来,我们用这个思路,来解答一个具体的题目,大家体会一下解答过程。
通过以上解题过程,大家可以发现,前五步确实简单,而且根本不要考虑这道题到底是在考查什么,就可以依葫芦画瓢来完成,可以轻松得到6分左右。
但是第六步确实繁琐,实际上这是这类问题的特点。
但是,如果我们提前仔细审题,考虑用哪个未知量求解比较简单,就可以得到如下解法。
同学们可以做几道题试一试,或许第六步不容易写出,但前五步是很轻松的,尤其是在考试中,更能显示出“五步得分法”的优越性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆锥曲线1.从几何的角度看,可以分:直线与圆锥曲线有两个不同公共点,仅有一个公共点,无公共点; ⑴有两个公共点,就是相交,直线被圆锥曲线截得的线段称为曲线的弦; ⑵仅有一个公共点,对于圆和椭圆来说,表示直线与其相切; 对于双曲线来说,表示直线与其相切或与渐近线平行; 对于抛物线来说,表示直线与其相切或平行于对称轴; ⑶无公共点,就是相离;2.从代数的角度看,将表示直线的方程0Ax By C ++=代入到圆锥曲线的方程()0f x y =,中,消去一个变元y (或x )后,得到方程20ax bx c ++=;⑴若0a =,当圆锥曲线是双曲线时,说明直线与其渐近线平行; 当圆锥曲线是抛物线时,说明直线与其对称轴平行; ⑵若0a ≠,记24b ac ∆=-,则 0∆>,说明直线与圆锥曲线相交; 0∆=,说明直线与圆锥曲线相切; 0∆<,说明直线与圆锥曲线相离;知识梳理第10讲直线与圆锥曲线3.斜率为k 的直线与圆锥曲线()0f x y =,相交,将两者方程联立,消去y ,得到方程20ax bx c ++=,则弦长公12x x -=;4.当过定点00()P x y ,的直线斜率可能不存在时,为避免分类讨论,可以设斜率的倒数为m ,把直线方程写成x my n =+;这种形式的方程能够表示斜率不存在的情形,但不能够表示斜率为0的情形. 此时同样代入圆锥曲线方程,消去x ,得到20ay by c ++=.5.在计算圆锥曲线内接三角形面积时,我们常常用到下面这些计算公式:111sin sin 222ABC S dl d l ll αθ''===△由三角形的面积容易推出圆锥曲线内接四边形的计算公式:1sin 2ABCD S AC BD α=⋅(其中α为对角线夹角)特别地,对角线互相垂直的四边形的面积为ABCD S =12AC⋅<教师备案>直线与圆锥曲线的位置关系:⑴讨论直线与圆锥曲线的位置关系一般是将直线方程与圆锥曲线方程联立成方程组,消元(x 或y ),若消去y 得到20ax bx c ++=,讨论根的个数得到相应的位置关系,这里要注意的是: ①二次项系数a 可能有0a =或0a ≠两种情况,(例外情形:当圆锥曲线为双曲线且直线平行于渐近线时,或者当圆锥曲线为抛物线且直线平行于对称轴时,二次项系数为0)只有当0a ≠,才能用∆判断根的个数;②直线与圆锥曲线相切时只有一个公共点,但有一个公共点不一定相切.经典精讲⑵在讨论直线与双曲线的交点时,要注意数形结合的方法,结合图象作出判断有时更方便快捷,要注意双曲线的渐近线的斜率,以及直线与渐近线的斜率比较.⑶当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理”设而不求计算弦长;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.尖子班学案1【铺1】 ⑴若直线1y kx =+与椭圆2215x y m+=恒有公共点,则实数m 的取值范围为________.⑵过定点(01),且与双曲线224x y -=的两支各有一个公共点的直线l 的斜率的取值范围________.【解析】 ⑴1m ≥且5m ≠ ⑵()1,1-考点:直线与圆锥曲线的位置关系【例1】 ⑴过定点(01)-,且与抛物线24y x =有且只有一个公共点的直线有_____条;.⑵过点()4,4P 且与双曲线221169x y -=只有一个交点的直线有______条.⑶已知两定点(10)M -,,(10)N ,,若直线上存在点P ,使得||||4PM PN +=,则该直线为“A 型直线”.给出下列直线,其中是“A 型直线”的是. ①1y x =+②2y =③3y x =-+④23y x =-+⑷(海淀一模文8)若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是()A .22(1)1x y -+=B .2212x y +=C .2y x =D .221x y -=【解析】 ⑴3;⑵4 ⑶①④ ⑷B<教师备案>直线与圆锥曲线问题的基本方法:直线与圆锥曲线的问题尤其是相交问题,最基本的方法分为两种:⑴代入法;即联立直线与圆锥曲线的方程,把直线的方程代入后者消去一个变元(通常是y ),得到关于x 的二次方程,二次方程的根即代表交点的横坐标,然后用韦达定理与坐标运算去求解交点的相关问题; 代入法的优点:适用性强,基本上对于任何问题都能适用;代入法的缺点:通常计算量较大,当方程含参时,坐标运算比较复杂; 在与弦长有关的问题中,通常采用代入法. ⑵点差法:以直线与椭圆相交为例,设出交点的坐标()A A x y ,,()B B x y ,,由于这两者都满足椭圆方程,相减就得:22222222A B A B x x y y a a b b ⎛⎫-=-- ⎪⎝⎭,再利用平方差公式就得:22A B A BA B A By y x x b x x a y y -+=--+ 若设AB 的中点为M ,就得到了斜率与AB 中点坐标的一个简单关系式:22M Mx b k a y =-;这种方法称为点差法.点差法的优点:计算量非常小;点差法的缺点:适用范围非常狭窄,通常只能用来解决中点弦问题,或者斜率与坐标和密切相关的问题;而且点差法的变换过程不是等价的,需要考虑是否有0∆>;在与中点弦有关而且不太需要交点坐标运算的问题中,可以考虑使用点差法.考点:代入法与点差法【例2】 ⑴已知椭圆22143x y +=的右焦点为F ,过F 且倾斜角为45︒的直线与椭圆相交于A B ,两点,则弦长AB =________.⑵直线l 与椭圆22184x y +=交于两点A B ,,AB 的中点坐标为(11)-,,则直线l 的方程是.⑶ABC △的三个顶点都在抛物线24y x =上,A 点与原点重合,且三角形重心恰为抛物线的焦点,则三角形的周长是.⑷经过抛物线2y x =上一点(42)A -,引两条直线1l 和2l ,与抛物线分别交于M 、N 两点,若1l 与2l 的斜率互为相反数,则直线MN 的斜率为.【解析】 ⑴247; ⑵230x y --=⑷14【例3】 (石景山一模文19)已知椭圆22221x y a b+=(0a b >>)右顶点到右焦点的距离为1-,短轴长为 ⑴求椭圆的方程;⑵过左焦点F 的直线与椭圆分别交于A 、B 两点,若线段AB,求直线AB 的方程. 【解析】⑴椭圆方程为22132x y +=.⑵直线AB0y -+=0y +=.目标班学案1【拓2】 (东城二模文19)已知椭圆()222210x y a b a b+=>>的左焦点1(1,0)F -,长轴长与短轴长的比是2⑴求椭圆的方程;⑵过1F 作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m n ⊥,求证:11AB CD+为定值. 【解析】⑴椭圆方程为22143x y +=.⑵由⑴知()11,0F -,当直线m 与x 轴重合时,此时3,4AB CD ==,11AB CD +1173412=+=. 当直线m 不与x 轴重合时,设直线m 的方程为:1x my =-. 由221143x my x y =-⎧⎪⎨+=⎪⎩得:()2234690m y my +--=.由直线过椭圆内定点1F 知一定有0∆>.则有()2212134m AB m +==+.在上式中用1m -代换m ,同理可知()2212143m CD m +=+. 所以11AB CD +()()22223434712121121m m m m ++=+=++. 综上,11AB CD +为定值712.【例4】 ⑴连接抛物线24x y =的焦点F 与点(1,0)M 所得的线段与抛物线交于点A ,设点O 为坐标原点,则OAM △的面积为( )A .1-B .32C .1D .32⑵过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则OAB△的面积为___________.⑶已知抛物线24y x =,点()4,0M 关于y 轴的对称点为N ,直线l 过点M 交抛物线于A 、B 两点.则ANB △面积的最小值为________.【解析】 ⑴ B⑵53; ⑶32【例5】 (丰台二模文20)已知椭圆22221(0)x y a b a b+=>>经过点()01,,过右焦点F 且不与x 轴重合的动直线l交椭圆于A 、C 两点,当动直线l 的斜率为2时,坐标原点O 到l . ⑴求椭圆的方程;⑵过F 的另一直线交椭圆于B 、D 两点,且AC BD ⊥,当四边形ABCD 的面积169S =时,求直线l 的方程.【解析】 ⑴椭圆的方程为2212x y +=.⑵直线l 的方程为10x y --=或10x y +-=.尖子班学案2【铺1】 若已知点(C ,平行于CO 的直线l 和椭圆221124x y +=交于M 、N 两个不同点,当CMN △面积取最大值时,求直线l 的方程.【解析】 直线l 的方程为0x y +±=.【例6】 (西城二模文19)已知椭圆2222:1(0)x y C a b a b +=>>31,22⎛⎫ ⎪⎝⎭.⑴求椭圆C 的方程;⑵过点(0,2)P 的直线交椭圆C 于A ,B 两点,求AOB △(O 为原点)面积的最大值.【解析】⑴椭圆C 的方程是2213x y +=.⑵AOB △. 【点评】本题求面积也可以用传统面积公式点O 到直线AB的距离d =,弦长12AB x x -,【备选】(朝阳一模文19)已知椭圆()2222:10x y M a b a b+=>>的左右焦点分别为()12,0F -,()22,0F .在椭圆M 中有一内接三角形ABC ,其顶点C 的坐标)1,AB . ⑴求椭圆M 的方程;⑵当ABC △的面积最大时,求直线AB 的方程.【解析】 ⑴椭圆M 的方程为22162x y +=.⑵直线AB 的方程为y =过定点312P ⎛⎫- ⎪⎝⎭,的直线l 与抛物线24y x =相交所得的弦长为4,求直线l 的方程.【解析】 错解:设直线的斜率为k ,直线的方程可以写成3(1)2y k x +=-,与抛物线方程联立消去y ,得: 22223(234)02k x k k x k ⎛⎫-++++= ⎪⎝⎭222223(234)416241602k k k k k k ⎛⎫∆=++-+=++> ⎪⎝⎭恒成立; 然后得弦长4s ==化简得323321022k k k +++=,即2(1)(32)0k k k +++=,1k =-;所以直线方程为3(1)2y x +=--,即102x y ++=.【点评】 上面的误解中,设直线斜率时没有讨论斜率是否存在;若斜率不存在,则直线方程为1x =,与抛物线的两个交点为(12)±,,弦长正好也为4,所以满足题意的直线有两条:1x =或者102x y ++=.在设直线方程时,如果是用点斜式或者斜截式,一定要讨论斜率是否存在.(北京文19)已知椭圆2222:1(0)x y G a b a b+=>>()0,斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为(32)P -,.⑴求椭圆G 的方程; ⑵求PAB △的面积.【解析】 ⑴椭圆G 的方程为221124x y +=.⑵PAB △的面积92S =.【演练1】若直线4mx ny +=和圆O :224x y +=仅有一个交点,则过点()m n ,的直线与椭圆22194x y +=的交点个数为________.【解析】 1或2【演练2】已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA与FB 的比值等于.【解析】3+【演练3】已知F 是抛物线24C y x =:的焦点,A ,B 是C 上的两个点,线段AB 的中点为()22M ,,则ABF△的面积等于.【解析】 2实战演练真题再现【演练4】已知双曲线E 的中心为原点,(30)F ,是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(1215)N --,,则E 的方程为()A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=【解析】B【演练5】(西城一模文19)已知抛物线24y x =的焦点为F ,直线l 过点(40)M ,.⑴若点F 到直线ll 的斜率;⑵设A B ,为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.【解析】 ⑴l的斜率为2±. ⑵设线段AB 中点的坐标为00()N x y ,;因为AB 不垂直于x 轴,则MN 的斜率为004y x -,直线AB 的斜率为04x y -; 但另一方面,22044244A B A B AB A B A BA B y y y y k y y x x y y y --====-+-; ∴00042x y y -=,∴02x =;即AB 中点的横坐标恒为定值2. 【演练6】已知椭圆2222:1(0)x y C a b a b+=>>,1F 、2F 为左右焦点,点A 是椭圆上位于第一象限的点,且满足2AF x ⊥轴,直线AO 交椭圆于点B ,若2ABF △的面积为【解析】 椭圆方程为221168x y +=.(上海交大自主招生考试)已知线段AB 长度为3,两端均在抛物线2x y =上,试求AB 的中点M 到y 轴的距离最短时M 点的坐标.【解析】 如图所示,抛物线的焦点为104F ⎛⎫⎪⎝⎭,,准线方程为14x =-;过A M B ,,分别作准线的垂线,垂足为P R Q ,,;大千世界则()111424M x MR AP BQ =-=+-()1124AF FB =+- 115244AB -=≥等号成立当且仅当A F B ,,共线,即AB 过焦点F .设此时AB 的方程为14x my -=,与抛物线方程联立得214y my =+,∴A B y y -∴231A B AB y m =-=+,m =;∴()21152422424A B A B M M y y y y mm x y m ⎛⎛⎫++⎛⎫=+=+=± ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,,,,∴M 点的坐标为54⎛± ⎝⎭,.。