数字基带传输系统的基本原理

合集下载

数据通信原理第6章

数据通信原理第6章


码型的频域特性 抗噪声能力 提取位定时信息 简单二元码 1B2B码 AMI码 HDB3码 2B1Q码
2. 二元码

每个码元上传送一位二进制信息
3. 三元码

4. 多元码

每个码元上传送一位多进制信息
28
2.简单二元码的功率谱

花瓣形状:主瓣,旁瓣 主瓣带宽:信号的近似带宽-----谱零点带宽

数字信息--------------->码型---------->数字信息
5
数字基带信号的码型设计原则
⑴ 码型应不含有直流,且低频成分小,尽量减少高频分量以节约 频率资源减少串音;
(2)码型中应含有定时信息,便于提取定时信息;
(3)码型变换设备要简单; (4)编码应具有一定的检错能力; (5)编码方案应对信息类型没有任何限制; (6)低误码率繁殖;
H ( ) GT ( )C( )GR ( )
假定输入基带信号的基本脉冲为单位冲击δ(t),这样发送 滤波器的输入信号可以表示为
d (t )
k
a (t kT )
k b

图 6 – 6 基带传输系统简化图
38
其中ak 是第k个码元,对于二进制数字信号,ak 的取值为0、 1(单极性信号)或-1、+1(双极性信号)。
(7) 高的编码效率;
6
7
8
1.单极性非归零(NRZ)码 单极性:1---高电平;0---0电平,码元持续期间电平不变 非归零:NRZ (nor-return to zero) 有直流且有固定0电平,多用于终端设备或近距离传输 (线路板内或线路板间);

特点:发送能量大,有利于提高收端信噪比;信道上占 用频带窄;有直流分量,导致信号失真;不能直接提取 位同步信息;判决门限不能稳定在最佳电平上,抗噪声 性能差;需一端接地。

通信原理(第六章 数字基带传输系统)图片公式

通信原理(第六章 数字基带传输系统)图片公式

七、什么是眼图?眼图模型、说明什么问题?
八、时域均衡:基本原理、解决什么问题?如何衡量均 衡效果?
一、数字基带系统和频带系统结构
一、数字基带信号(电波形)及其频谱特性(1)
二元码:幅度取值只有两种“1”、“0”或“1”、 “-1”

单极性非归零码:用高低电平分别表示“1”和“0”, 如图6-1(a) 。一般用于近距离之间的信号传输 双极性非归零码:用正负电平分别表示“1”和“0”, 如图6-1(b)。应用广泛,适应于在有线和电缆信道中 传输。 单极性归零码:有电脉冲宽度比码元宽度窄,每个脉 冲都回到零电位。如图6-1(c)。利于减小码元间波形 的干扰和同步时钟提取。但码元能量小,匹配接收时 输出信噪比低些
二、基带传输码的常用码型(4)
HDB3特点:保持AMI码的优点,三元码,无直流分量,主 要功率集中在码速率fb的1/2出附近(如图)。 位定时频率分量为零,通过极性交替规律得到检错能力。 增加了使连0串减少到 至多3个的优点,而不管 信息源的统计特性如何。
对于定时信号的恢复 是十分有利的。广泛应 用于基带传输与接口码。
Pv (w) = 2p å
¥ m =-
Cn d (w - mws )
2
Pv ( f ) = å
2
Cn d ( f - mf s )
2
故稳态波的双边功率谱密度
Pv ( f ) = å
¥ m =-
f s [ PG1 (mf s ) + (1 - P)G2 (mf s )] ? d ( f
mf s )..(6.1 - 14)
代入(6.1-26)得单极性非归零波形的双边功率谱密度
Ps (w) = Ts 2 1 Sa (p fTs ) + d ( f )..(6.1 - 30) 4 4

基带通信系统的基本原理

基带通信系统的基本原理

基带通信系统的基本原理一、引言基带通信是一种将信息直接传输到信道中的通信方式。

它与调制解调器相对应,后者将基带信号调制到一个高频载波上进行传输。

本文将介绍基带通信系统的基本原理,包括基带信号的产生、调制和解调过程,以及常见的基带通信系统应用。

二、基带信号的产生基带信号是指直接包含原始信息的信号,例如音频信号或数字数据。

基带信号可以通过不同的方式产生,如:1. 从传感器中获取基带信号可以从传感器中直接获取,例如麦克风可以将声音转换为电信号,摄像头可以将图像转换为视频信号。

2. 数字信号处理基带信号可以通过数字信号处理技术生成。

例如,通过采样和量化将模拟信号转换为数字信号,或者通过编码将数字数据转换为数字信号。

三、基带信号的调制基带信号调制是将基带信号转换为适合传输的信号形式的过程。

常见的基带信号调制方式包括:1. 调幅(AM)调制调幅是通过改变载波的幅度来调制基带信号的一种方法。

在调幅调制中,基带信号的幅度变化会导致载波幅度的变化,从而在接收端可以恢复原始的基带信号。

2. 调频(FM)调制调频是通过改变载波的频率来调制基带信号的一种方法。

在调频调制中,基带信号的频率变化会导致载波频率的变化,从而在接收端可以恢复原始的基带信号。

3. 数字调制数字调制是将基带信号转换为数字信号的一种方法。

常见的数字调制方式包括:调幅键控(ASK)、频移键控(FSK)和相移键控(PSK)等。

四、基带信号的解调基带信号的解调是将调制后的信号恢复为原始基带信号的过程。

常见的基带信号解调方式包括:1. 直接检测直接检测是一种简单的解调方法,适用于调幅调制。

它通过提取调制信号的幅度变化来恢复原始基带信号。

2. 频率判决解调频率判决解调适用于调频调制和频移键控调制。

它通过检测载波频率的变化来恢复原始基带信号。

3. 相位判决解调相位判决解调适用于相移键控调制。

它通过检测载波相位的变化来恢复原始基带信号。

五、基带通信系统应用基带通信系统广泛应用于各个领域,包括:1. 无线通信系统基带通信系统在无线通信中起着关键作用。

通信原理第4章 数字基带传输

通信原理第4章 数字基带传输
其功率谱示意图如图(b)中实线所示。
2020/1/25
第4章 数字基带传输
16
4.3 数字基带传输系统及码间干扰
数字基带传输系统模化为
其中

d(t) bk (t kTs )
k
H( f ) HT ( f )HC ( f )HR ( f )
h(t) F 1[H ( f )] H ( f )e j2 ft df
14
4.2 数字基带信号的功率谱分析
【例4-2】试分析下图a)所示双极性全占空矩形脉冲序列 的功率谱。设“1”、“0”等概。
2020/1/25
第4章 数字基带传输
15
4.2 数字基带信号的功率谱分析
AMI码数字基带信号如下图(a)所示,“1”、“0”等 概,则其功率谱表达式为 P( f ) A2Ts Sa2 ( fTs ) sin2 ( fTs )

y(t) bk h(t kTs ) nR (t) k
研究表明,影响系统正确接收的 因素有两个: ① 码间干扰(Inter-Symbol
Interference—ISI)
② 信道中的噪声
2020/1/25
第4章 数字基带传输
17
4.3 数字基带传输系统及码间干扰
2020/1/25
第4章 数字基带传输
1
第4章 数字基带传输
将输入数字信号 变换成适合信道 传输的信号
低通型 信道
滤除噪声和 校正信道引 起的失真
输入
a
码型
发送
变换 b 滤波器
信道
c
定时脉冲
噪声 n(t)
接收 d
滤波器
取样 判决

数字基带传输系统实验报告

数字基带传输系统实验报告

数字基带传输系统实验报告数字基带传输系统实验报告引言:数字基带传输系统是现代通信领域中的重要组成部分,它在各个领域中起到了至关重要的作用。

本实验旨在通过搭建一个基带传输系统的模型,来研究数字信号的传输特性和误码率等参数。

通过实验,我们可以更好地理解数字基带传输系统的原理和应用。

一、实验目的本实验的主要目的是搭建一个数字基带传输系统的模型,并通过实验研究以下几个方面:1. 了解数字基带传输系统的基本原理和结构;2. 研究数字信号的传输特性,如传输速率、带宽等;3. 分析误码率与信噪比之间的关系;4. 探究不同调制方式对传输性能的影响。

二、实验原理数字基带传输系统由发送端、信道和接收端组成。

发送端将模拟信号转换为数字信号,并通过信道传输到接收端,接收端将数字信号转换为模拟信号。

在传输过程中,信号会受到噪声的干扰,从而引起误码率的增加。

三、实验步骤1. 搭建数字基带传输系统的模型,包括发送端、信道和接收端;2. 设计不同的调制方式,如ASK、FSK和PSK,并设置不同的传输速率和带宽;3. 测试不同调制方式下的误码率,并记录实验数据;4. 分析误码率与信噪比之间的关系,探究不同调制方式对传输性能的影响。

四、实验结果与分析通过实验,我们得到了一系列的数据,并进行了分析。

我们发现,随着信噪比的增加,误码率逐渐减小,传输性能逐渐提高。

同时,不同调制方式对传输性能也有一定的影响。

例如,ASK调制方式在低信噪比下误码率较高,而PSK调制方式在高信噪比下误码率较低。

五、实验总结通过本次实验,我们对数字基带传输系统有了更深入的了解。

我们了解了数字基带传输系统的基本原理和结构,研究了数字信号的传输特性和误码率与信噪比之间的关系。

同时,我们也探究了不同调制方式对传输性能的影响。

通过实验,我们对数字基带传输系统的应用和优化提供了一定的参考。

六、实验存在的问题与改进方向在本次实验中,我们发现了一些问题,如实验数据的采集和分析方法可以进一步改进,实验中的噪声模型也可以更加精确。

通信原理第5章数字基带传输系统

通信原理第5章数字基带传输系统
s(t)的短截。即
N
sT (t) sn (t)
n N
为了使频谱分析的物理概念清楚,推导过程简 化,将sT(t)分解成稳态波vT(t)和交变波uT(t)。
24
稳态波:是随机序列s(t)的统计平均分量,
取决于每个码元内出现g1(t)、 g2(t)的概率加 权平均,且每个码元统计平均波形相同,因
此可表示成:
13
2. 双极性不归零码波形(BNRZ)
脉冲的正、负电平分别对应于二进制代码1、0。
特点:当0、 1符号等概出现时无直流分量(幅度相 等、极性相反的双极性波形) 。 接收端判决电平为 0,不受信道特性变化的影响,抗干扰能力较强。双 极性波形有利于在信道中传输。
E
10
-E
14
3. 单极性归零波形(RZ)
f
s
Pg1(t) (1 P)g2 (t) e jms d
f s PG1(m s ) (1 P)G2 (ms )
28
式中
G1(ms ) g1(t)e jmstdt
G2 (ms ) g2 (t)e jmstdt
29
把得到的Cm代回v(t)表达式得
v(t) f s PG1(m s ) (1 P)G2 (m s )e jmst
代码
10
0
Ts
12
此波型不宜传输。因为:
1)有直流分量,一般信道难于传输零频附近的 频率分量。 2)收端判决门限电平与信号功率有关,受信道特 性变化影响,不方便。 3)不能直接用来提取位同步信号,因NRZ连0序 列中不含有位同步信号频率成分。 4)要求传输线路有直流传输能力,即有一根需要 接地。
此波形只适用于计算机内部或极近传输。
信道匹配, 便于传输,减小码间串扰,利于同步提取

现代通信技术-数字基带传输系统简介

现代通信技术-数字基带传输系统简介

Title
Add your text
经过载波调制后,频谱搬移到了高频载波的数字
信号,称为数字频带信号。
03.数字基带传输系统
在某些有线信道中,特别是传输距离不太远的情况下, 数字基带信号可以直接传输,称之为数字基带传输。
基带传输系统主要由信道信号形成器、信道、接收滤滤 器和抽样判决器组成。为了保证系统可靠有序地工作,还 应有同步系统。
03.数字基带传输系统
基带脉冲 输入 信道信号 形成器 信道 接收 滤波器 同步 提取 抽样 判决器 基带脉冲 输出
噪声
近程数据 通信系统中ቤተ መጻሕፍቲ ባይዱ泛 采用 基带传输中 包含带通传输的许 多基本问题
研究数字基 带传输系统 的原因
基带传输方 式也有迅速发展的 趋势
任何一个线性调制 的带通传输系统,均可等 效为一个基带传输系统来 研究
《现代通信技术》课程
数字基带 传输系统简介
目录
01
02
数字基带信号 数字频带信号 数字基带传输系统
03
01.数字基带信号
数字基带信号
——未经调制的数字信号,它所占据的频谱是从零频或 很低频率开始的。
02.数字频带信号
大多数信道,如各种无线信道和光信道,数字基带信号必 须经过载波调制,把频谱搬移到高载处才能在信道中传输。
通信技术专业教学资源库 南京信息职业技术学院
谢谢
主讲: 孙玥

数字基带系统调制解调原理

数字基带系统调制解调原理

数字基带系统调制解调原理
数字基带系统调制解调的原理可以概括为以下几个步骤:
1. 调制过程:在发送端,数字基带信号通过调制过程被加载到载波信号上。

这个过程是将信息信号转变为适合传输的形式,通常是通过改变载波信号的幅度、频率或相位来实现的。

具体来说,数字基带信号控制载波信号的某个或多个参量,使信息被加载到载波上形成已调信号。

2. 传输过程:已调信号通过信道进行传输。

在这个过程中,信号可能会受到各种噪声和干扰的影响。

3. 解调过程:在接收端,已调信号经过解调后,将其还原为原始的数字基带信号。

解调是调制的逆过程,通过具体的方法从已调信号的参量变化中恢复出原始的基带信号。

解调后的信号还需要经过进一步的处理,比如去加重、均衡等,以还原出原始的信息。

在数字通信中,调制和解调是关键步骤,它们使得数字信号能够有效地在信道中传输。

通过调制和解调,数字信号能够适应信道的传输特性,并在接收端被还原为原始的数字信息。

以上内容仅供参考,如需获取更多信息,建议查阅通信原理相关书籍或咨询通信工程专家。

通信原理——数字基带传输系统3

通信原理——数字基带传输系统3
-T O (a )

s s
系统带宽:
1 B 2Ts
华北水利水电学院信息工程系 王玲
无码间串扰的基带传输特性
冲激响应波形:
h(t)
-4T s
-3Ts -2Ts
-Ts
0
Ts
2Ts 3Ts
4T s
华北水利水电学院信息工程系 王玲
无码间串扰的基带传输特性
因而,通过分析,可以得到以下结论: (1)对于理想低通系统,若Tb=mTs,m∈N,则可实 现无码间干扰传输,则传码率RB=1/Tb=1/(mTs) ; (2)理想低通系统最大频带利用率为:
基带传输系统的抗噪声性能
二进制双极性基带系统 接收滤波器的输出是一混合波形,即 x(t)=s(t)+nR(t) s(t):数字基带信号; nR(t) :接收滤波器输出端噪声。 为了得到第k个码元,选取抽样时刻t=kTs,则抽样值:
1 ’ 时 A nR ( kTs ) 发 送 ‘ x( kTs ) 0’ 时 A nR ( kTs ) 发 送 ‘
s
0 (b)
1s 2T 4W1
t
华北水利水电学院信息工程系 王玲
无码间串扰的基带传输特性
滚降系统无码间串扰的传码率=与之等效的理想低 通系统的无码间串扰的传码率;理想低通系统的截止 频率为滚降系统传输函数衰减到其最大值一半时对应 的频率点。
码元传输速率:RBMAX=1/Ts 频带利用率:ηmax=RBmax/B=2/(1+α) 当 α = 0 ,为理想低通特性,此时频带利用率最大, 2Bd/Hz; 当 α = 1 ,称为升余弦特性,此时频带利用率最小, 1Bd/Hz。
t0 + 2Ts
t
无码间串扰的基带传输特性

通信原理樊昌信版第6章数字基带传输系统3

通信原理樊昌信版第6章数字基带传输系统3
12
6.5.2 二进制单极性基带系统
f0 ( x )
f1( x )
-A 0 A
f0 ( x )
x
f1 ( x )
13
1、最佳判决门限
2 A P(0) n vd ln 2 A P(1)
(6.5-12)
A 当P(1)=P(0)=1/2时 v 2 2、误码率(设V*d=A/2)
d
眼图可以用来指示接收滤波器的调整,以减 小码间串扰,改善系统性能。
23
眼图的模型
最佳抽样时刻:“眼睛”张开最大的时刻; 判决门限电平:眼图中央的横轴位置对应于判 决门限电平; 对定时误差的灵敏度:眼图斜边的斜率决定了 系统对抽样定时误差的灵敏程度,斜率越大, 对定时误差越灵敏,即要求定时准确;
6.7.1部分响应系统
• 研究问题:基带传输中的有效性问题 • 研究目的:如何设计频带利用率高又可实 现的基带传输系统 • 研究方法:放宽对无码间串扰的要求以提 高有效性
30
问题的提出 由奈奎斯特第一准则知,基带系统的总特性 设计成理想低通特性, 能达到理论上的极限传 输速率,达到最高的频带利用率(2B/Hz)。理 想低通传输特性实现困难,且h(t)的尾巴振荡 幅度大、收敛慢,而对定时要求十分严格。 余弦滚降特性所需的频带加宽了,降低了系 统的频带利用率。 问题:能否找到频带利用率为2B/Hz,满足 “尾巴”衰减大、收敛快,又可实际实现的传 输特性?
34
•讨论g(t)的波形特点
4 cos t / TS g t 2 2 1 4t / TS Ts kTs g (0) 4 , g 1, g 0, k 3 , 5 , 2 2
除了在相邻的取样时刻 t=Ts/2 处 g(t)=1 外, 其余的取样时刻上,g(t) 具有等间隔零点。 g(t)波形的拖尾幅度与t 2成反比,说明g(t)波 形拖尾的衰减速度加快了。

通信原理 第六章 数字基带传输系统

通信原理 第六章 数字基带传输系统

来源: 来源: 计算机输出的二进制数据 模拟信号→ A/D →PCM码组 上述信号所占据的频谱是从直流或低频开始的,故称数 数 字基带信号。 字基带信号
2008.8 copyright 信息科学与技术学院通信原理教研组 3
基本概念
2、数字信号的传输
1)基带传输 基带传输——数字基带信号不加调制在某些 基带传输 具有低通特性的有线信道中传输,特别是传输距离 不太远的情况下; 2)频带传输 频带传输——数字基带信号对载波进行调制 频带传输 后再进入带通型信道中传输。
2008.8 copyright 信息科学与技术学院通信原理教研组 19
传输码结构设计的要求
码型变换或成形是数字信息转换为数字信号的过程, 码型变换或成形是数字信息转换为数字信号的过程,不 数字信息转换为数字信号的过程 同的码型将有不同的频谱结构,对信道有着不同的要求。 同的码型将有不同的频谱结构,对信道有着不同的要求。
1 2 3 4 5
引言 数字基带信号码波形 基带传输的常用码型 基带脉冲传输和码间干扰 无码间干扰的基带传输特性
2008.8
copyright 信息科学与技术学院通信原理教研组
18
6.3基带传输的常用码型 3
在实际的基带传输系统中, 在实际的基带传输系统中,并不是所有类 型的基带电波形都能在信道中传输。 型的基带电波形都能在信道中传输。 对传输用的基带信号有两个方面的要求: 对传输用的基带信号有两个方面的要求: ( 1 ) 对代码的要求 , 原始消息代码必须编 对代码的要求, 成适合于传输用的码型; 传输码型的选择) 成适合于传输用的码型;(传输码型的选择) 对所选码型的电波形要求, (2) 对所选码型的电波形要求,电波形应 适合于基带系统的传输。(基带脉冲的选择) 。(基带脉冲的选择 适合于基带系统的传输。(基带脉冲的选择)

《数字信号基带传输》课件

《数字信号基带传输》课件

采样
将连续时间信号转换为离散时间序列。
编码
将量化信号编码为数字产生
基带信号可通过数学函数、数字信号处理等方法生 成。
描述
基带信号可以使用时域波形、频谱图、功率谱密度 等方式进行描述。
传输中的基带噪声和失真
1 噪声
传输过程中的噪声会引起信号的质量下降和误码率的增加。
《数字信号基带传输》 PPT课件
数字信号基带传输是将数字信号直接传输至接收端的一种通信方式。本课程 将探讨其原理、应用场景、噪声和失真、调制技术等内容。
什么是数字信号基带传输?
数字信号基带传输是将数字信号的原始形式直接传输至接收端,不进行模拟 信号的调制过程,具有高带宽利用率和抗干扰能力强的特点。
调相(PM)
将数字信息调制至载波的相位。
链路预算和误码率分析
链路预算
计算信号在传输中所能承受的衰减、噪声等因素。
误码率分析
评估信号在传输中的错误概率,确定合适的编码和 调制方案。
2 失真
信号在传输过程中可能遭受幅度、相位、频率等方面的失真。
信道编码技术
前向纠错编码
通过添加冗余来提高抗噪声和纠错能力,如海明码、RS码。
调制编码
将数字信息直接映射到模拟载波上,如PSK、QAM。
调制技术和调制方法
调幅(AM)
将数字信息调制至载波的振幅。
调频(FM)
将数字信息调制至载波的频率。
数字信号基带传输的应用场景
LAN网络
基带传输常用于局域网 (LAN)中,例如以太网。
数字音视频
基带传输可用于将数字音视 频信号传输至显示屏、音响 设备等。
计算机数据传输
基带传输可用于计算机之间 的数据传输,如USB、HDMI 接口。

第五章 数字基带传输系统

第五章  数字基带传输系统

1、AMI码 2、HDB3码 3、曼彻斯特编码(双相码) 4、密勒码 5、CMI码
通信原理
双极性信号交替反转码(AMI)
(1) 零电平代表二进制0,交替出现的正负电压 表示1。 (2) 信号交替反转码用交替变换的正、负电平 表示比特1的方法使其所含的直流分量为零
通信原理
– (3)AMI实现了两个元间隔虚线)
二是可对连续的比特1可进行同步。
– (4)但对一连串的比特0并无同步确保机制。
– (5)为解决比特0的同步,两种AMI的变型B8ZS和
HDB3被研究出来,前者在北美使用,后者用于 日本和欧洲。
B8ZS、HDB3都是在AMI的基础上变化的
通信原理
高密度双极性3零码(HDB3)
虽然名称是3零编码,实际是当连续出现 4个比特0时,就在AMI编码中引入变动。
通信原理
通信原理
CMI(Coded Mark Inversion)码
编码规则是:消息码“1”交替用正和负电压 表示,或者说交替用“11”和“00”表示;信 息码“0”用“01”表示

通信原理
通信原理
4、常用数字基带信号的功率谱密度
通信原理
采用升余弦脉冲代替矩形脉冲---基带成型
基带成型后不归零码的功率谱密度,带外能量很少,不易失真
通信原理
字符编码


由于计算机只能识别、存储、和处理二进制的 信息,而字符信息又是最重要的数据信息。这 样为了使计算机能处理字符,规定了字符和二 进制数之间的对应关系,称字符编码。它涉及 到信息的表示,交换,处理,传输和存储以国 家或国际标准的形式来实施。 字符编码:将字符用二进制数来表示的编码。


码型:表示二进制数中0和1的信号形式被称为 码形。 在数字通信中,用直流信号表示二进制数中的 0 和1 。 数字数据基带信号常用码型有二电平码,差分 码,交替反转码(AMI),曼彻斯特码,差分 曼彻斯特码,密勒码,多电平码,和二进制编 码等。

数字基带传输系统

数字基带传输系统
人工智能在数字基带传输系统中的应用
人工智能技术将在数字基带传输系统中得到广泛应用,以提高系统的 智能化水平和自适应性。
06
数字基带传输系统的应用 实例
有线电视网络
数字电视信号传输
数字基带传输系统用于将数字电视信号从信号源传输到接收设备, 确保图像和声音的质量和稳定性。
交互式服务
数字基带传输系统支持多种交互式服务,如互联网接入、语音通话 和视频会议等,提供更丰富的媒体内容。
无线宽带接入
数字基带传输系统支持无线宽带接入 服务,如WiFi和WiMAX,提供高速 数据传输和互联网接入。
工业自动化控制系统
1 2 3
传感器数据传输
数字基带传输系统用于将传感器数据从工业现场 传输到控制中心,实现实时监测和控制。
远程控制
数字基带传输系统支持远程控制功能,允许操作 员通过计算机或移动设备对工业设备进行远程操 作。
数字基带传输系统
目 录
• 数字基带传输系统概述 • 数字基带传输系统的组成 • 数字基带传输系统的性能指标 • 数字基带传输系统的关键技术 • 数字基带传输系统的优势与挑战 • 数字基带传输系统的应用实例
01
数字基带传输系统概述
定义与特点
定义
数字基带传输系统是指利用电缆、光 纤等传输介质直接传输基带信号的系 统。
噪声和失真影响
在长距离传输中,噪声和失真会对数字信号造成影响,导致误码率的 增加。
同步问题
在多路复用系统中,需要保证各个通道之间的同步,以确保数据的正 确传输。
网络安全问题
随着数字基带传输系统的广泛应用,网络安全问题也日益突出,需要 采取有效的安全措施来保护数据的安全。
未来发展方向
更高速度和更远距离的传输

通信原理_第13讲_数字基带传输系统(3)_电07

通信原理_第13讲_数字基带传输系统(3)_电07

5Ts
2
2
ω
Ts
(a)波形
(b)频谱
2019/12/2
第Ⅰ类部分响应信号
23
7
6.7 部分响应和时域均衡
一、部分响应系统
(1) 第Ⅰ类部分响应波形
合成波形的表达式为:
sin (t Ts ) sin (t Ts )
g(t)
Ts
2
(t Ts )

Ts
2
(t Ts )
n
e xp

(
x A)2
2
2 n
dx

1 2

1 2
e
rf
Vd
2
A
n

2019/12/2
10
7
6.5 基带传输系统的抗噪声性能
一、二进制双极性基带系统
(3) 基带传输系统总误码率
最佳门限电平:
Vd


2 n
2A
ln
P(0) P(1)
若P(1) = P(0) = 1/2,则有:Vd*=0 这时,基带传输系统总误码率为:
Pe

1 2
P(0 / 1)
P(1 /
0)
1 2
1
erf
A
2 n


1 2
erfc
A
2
n

2019/12/2
11
7
6.5 基带传输系统的抗噪声性能
一、二进制双极性基带系统
(3) 基带传输系统总误码率 由上式可见,在发送概率相等,且在最佳门限电平下, 双极性基带系统的总误码率仅依赖于信号峰值A与噪声均

数字基带传输系统的基本原理

数字基带传输系统的基本原理

数字基带传输系统的基本原理数字基带传输系统是一种用于将数字信号传输的通信系统。

其基本原理是将数字信号转换成模拟信号进行传输,然后再将模拟信号转换回数字信号进行接收和处理。

下面将详细介绍数字基带传输系统的基本原理。

1. 数字信号转换成模拟信号在数字基带传输系统中,首先需要将数字信号转换成模拟信号。

这一过程称为调制。

常见的调制方式有脉冲编码调制(PCM)和正交振幅调制(QAM)等。

在PCM中,将数字信号进行采样和量化,得到一系列的数字样本。

然后,通过调制器将这些样本转换成模拟信号。

调制器可以采用脉冲位置调制(PPM)、脉冲振幅调制(PAM)或脉冲宽度调制(PWM)等方式。

在QAM中,将数字信号分为实部和虚部两个部分。

然后,通过正交调制器将实部和虚部转换成模拟信号。

正交调制器可以采用二进制相移键控(BPSK)、四进制相移键控(QPSK)或八进制相移键控(8PSK)等方式。

2. 模拟信号传输在数字基带传输系统中,模拟信号通过传输介质进行传输。

传输介质可以是导线、光纤或无线信道等。

不同的传输介质对信号的传输距离、带宽和噪声等有不同的影响。

在传输过程中,模拟信号可能会受到干扰和衰减。

干扰包括信号间的相互干扰和外部信号的干扰,如串扰、电磁干扰等。

衰减则是信号在传输过程中逐渐减弱的现象。

为了克服干扰和衰减,数字基带传输系统通常会采用调制解调器、增益控制器和等化器等设备。

调制解调器可以将模拟信号转换成数字信号和数字信号转换成模拟信号。

增益控制器可以调整信号的幅度,以适应不同的传输距离和传输介质。

等化器可以校正信号的失真,提高信号的质量。

3. 模拟信号转换成数字信号在数字基带传输系统中,接收端需要将模拟信号转换成数字信号进行处理。

这一过程称为解调。

解调的方式与调制的方式相对应。

在PCM中,使用解调器将模拟信号转换成一系列的数字样本。

解调器可以采用脉冲位置解调(PPM)、脉冲振幅解调(PAM)或脉冲宽度解调(PWM)等方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字基带传输系统的基本原理
数字基带传输系统是一种将数字信号传输到远距离的通信系统。

它的基本原理是将数字信号通过编码和调制技术转换为模拟信号,然后通过传输介质将模拟信号传输到接收端,再经过解调和解码技术将模拟信号还原为数字信号。

数字基带传输系统的基本组成部分包括发送端和接收端。

发送端主要由编码器、调制器和发送器组成,接收端主要由接收器、解调器和解码器组成。

在发送端,首先需要将数字信号进行编码。

编码的作用是将数字信号转换为模拟信号,使其能够通过传输介质传输。

常用的编码技术有非归零编码(NRZ)、归零编码(RZ)和曼彻斯特编码等。

编码后的信号经过调制器进行调制,将其转换为适合传输介质的模拟信号。

调制常用的技术有频移键控(FSK)、相移键控(PSK)和振幅键控(ASK)等。

调制后的模拟信号通过发送器发送到传输介质中。

在接收端,接收器将传输介质中的信号接收下来,并将其进行解调。

解调的作用是将模拟信号转换为数字信号,使其能够被解码器识别和还原。

常用的解调技术有相干解调和非相干解调等。

解调后的信号经过解码器进行解码,将其转换为原始的数字信号。

数字基带传输系统的传输介质有多种选择,常见的有双绞线、同轴
电缆和光纤等。

不同的传输介质具有不同的传输特性和传输距离,可以根据具体需求选择适合的传输介质。

数字基带传输系统的优点是传输速率高、抗干扰能力强、传输质量稳定。

数字信号可以进行编码和调制处理,使其能够适应不同的传输介质和环境条件。

同时,数字信号的传输质量可以通过纠错码等技术进行提高,增强了系统的可靠性和稳定性。

然而,数字基带传输系统也存在一些问题和挑战。

首先,数字信号的传输距离受到传输介质的限制,传输距离较远时需要采用中继或光纤等传输增强技术。

其次,数字信号的传输过程容易受到干扰和衰减,需要采取抗干扰和信号补偿等技术进行处理。

此外,数字基带传输系统的设计和调试需要一定的专业知识和技术支持,对于一般用户来说可能较为复杂。

数字基带传输系统是一种将数字信号传输到远距离的通信系统,通过编码和调制技术将数字信号转换为模拟信号,再经过传输介质传输到接收端,通过解调和解码技术将模拟信号还原为原始的数字信号。

它具有传输速率高、抗干扰能力强、传输质量稳定等优点,但也存在传输距离限制和干扰等挑战。

相关文档
最新文档