计量经济学第五章异方差讲解
庞浩 计量经济学5第五章 异方差性
![庞浩 计量经济学5第五章 异方差性](https://img.taocdn.com/s3/m/a52e93bcf524ccbff1218454.png)
同方差
递增型异方差
递减型异方差
复杂型异方差
18
2.借助X-e2散点图进行判断 观察散点的纵坐标是否随解释变量Xi的变化而 变化。
~2 e2e i ei e2 ~2
X 同方差 递增异方差
X
e2
~2 e i
~2 e 2 e i
X 递减异方差 复杂型异方差
X
19
二、戈德菲尔德—夸特 (Goldfeld-Quanadt)检验
3
说明1
矩阵表示: Y X u 随机扰动项向量 其方差—协 u1 u 方差矩阵不 2 u 再是: un n1 而是:
2 2 Var Cov ( ui ) 2 nn
ei X i v i
ei
1 vi Xi
ei X i v i 1 ei vi Xi
③利用上述回归的R2、t统计量、F统计量等判断,R2 好、t统计量和F统计量显著,即可判定存在异方差。 28
说明: 1.也可以用 e i 与可能产生异方差的多个解释变 量进行回归模拟; 2.戈里瑟检验的优点在于不仅检验了异方差是否 存在,同时也给出了异方差存在时的具体表现 形式,为克服异方差提供了方便。 3.试验模型选得不好,也可能导致检验不出是否 存在异方差性。
12 2 2 Var Cov ( ui ) 2 n nn
4
说明2
随机扰动项 ui具有异方差性,可理解释为被解释变量 的条件分散程度随解释变量的变化而变化,如下图所 示:var( ui ) i2 2 f ( X i)(i 1,2,, n)
10
第二节 异方差性的后果
计量经济学课件第五章 异方差性
![计量经济学课件第五章 异方差性](https://img.taocdn.com/s3/m/92c9830b76eeaeaad0f33009.png)
计量经济学课件第五章异方差性第五章异方差性1 / 80计量经济学课件第五章 异方差性 2 / 80引子:更为接近真实的结论是什么?根据四川省2000年21个地市州医疗机构数及人口数资料,分析医疗机构及人口数量的关系,建立卫生医疗机构数及人口数的回归模型。
对模型估计的结果如下:ˆ Yi -563.0548 5.3735 X i(291.5778) (0.644284) t (-1.931062) (8.340265) R2 0.785456 R 2 0.774146 F 69.56003式中 Y 表示卫生医疗机构数(个), X 表示人口数量(万人)。
计量经济学课件第五章 异方差性3 / 80模型显示的结果和问题 ●人口数量对应参数的标准误差较小;● t 统计量远大于临界值,可决系数和修正的可决系数结果较好,F 检验结果明显显著;表明该模型的估计效果不错,可以认为人口数量每增加1万人,平均说来医疗机构将增加5.3735人。
然而,这里得出的结论可能是不可靠的,平均说来每增加1万人口可能并不需要增加这样多的医疗机构,所得结论并不符合真实情况。
有什么充分的理由说明这一回归结果不可靠呢?更为接近真实的结论又是什么呢?计量经济学课件第五章 异方差性4 / 80第五章 异 方 差 性 本章讨论四个问题:●异方差的实质和产生的原因●异方差产生的后果●异方差的检测方法●异方差的补救计量经济学课件第五章 异方差性5 / 80第一节 异方差性的概念 本节基本内容:●异方差性的实质●异方差产生的原因计量经济学课件第五章 异方差性6 / 80一、异方差性的实质 同方差的含义同方差性:对所有的 i (i1,2,..., n)有: Var(ui ) = 2 (5.1) 因为方差是度量被解释变量 Y 的观测值围绕回归线 E(Yi ) 1 2 X 2i 3 X 3i ... k X ki (5.2) 的分散程度,因此同方差性指的是所有观测值的分散程度相同。
第五章异方差ppt课件
![第五章异方差ppt课件](https://img.taocdn.com/s3/m/6acaec33770bf78a642954b2.png)
f
ˆ 2
2
w i (Yˆ ( ˆ1 ˆ2 X i ))( X i ) 0
ˆ2
wi xi* yi*
w
i
x
* i
2
ˆ1 Y * ˆ 2 X *
其中, X * w i X i , Y * w iYi
wi
wi
xi*
Xi
X
* i
,
yi*
Yi
Yi*
Econometrics 2005
将是不可靠的。
Econometrics 2005
13
5.3 异方差的检验
方法有 (1)图示法( X _ e2); (2)解析法:
戈德菲尔德-匡特检验 怀特检验 ARCH检验
Econometrics 2005
14
5.3.1 图示法及其类型
1. 异方差指u的方差随着x的变化而变化。 2. 故可以根据x-e2的散点图,对异方差是否
Y的预测值的精度降低;
2
(2)由于 i 难以确定, Y的方差也就难以确定, Y
的预测区间的确定也出 现困难;
2
(3)在 = ei2 /( n k )是 2的无偏的证明中用到了
2
同方差的假定,由于异 方差性,使得 = ei2 /( n k )
是有偏的。在此区间估 计基础上区间估计和假 设检验
基本思路:
(以二元回归为例Y:t 1 2 X2t 3X3t ut)
如果有异方差,则i2与解释变量有关系。:如
i2=0
1X2i
3 X3i
2
X
2 2i
4 X32i
5 X2i
X3i+vi
但是i2一般未知,用模型回剩归余ei2作为i2的渐进
计量经济学第五章异方差性
![计量经济学第五章异方差性](https://img.taocdn.com/s3/m/ed55db1303020740be1e650e52ea551810a6c9db.png)
计量经济学第五章异⽅差性第五章异⽅差性本章教学要求:根据类型,异⽅差性是违背古典假定情况下线性回归模型建⽴的另⼀问题。
通过本章的学习应达到,掌握异⽅差的基本概念包括经济学解释,异⽅差的出现对模型的不良影响,诊断异⽅差的⽅法和修正异⽅差的若⼲⽅法。
经过学习能够处理模型中出现的异⽅差问题。
第⼀节异⽅差性的概念⼀、⼆个例⼦例1,研究我国制造业利润函数,选取销售收⼊作为解释变量,数据为1998年的⾷品年制造业、饮料制造业等28个截⾯数据(即n=28)。
数据如下表,其中y表⽰制造业利润函数,x表⽰销售收⼊(单位为亿元)。
Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较⼩,有的点分散幅度较⼤。
因此,这种分散幅度的⼤⼩不⼀致,可以认为是由于销售收⼊的影响,使得制造业利润偏离均值的程度发⽣变化,⽽偏离均值的程度⼤⼩的不同,就是所谓的随机误差的⽅差存在变异,即异⽅差。
如果⾮线性,则属于哪类⾮线性,从图形所反映的特征看,并不明显。
下⾯给出制造业利润对销售收⼊的回归估计。
模型的书写格式为212.03350.1044(0.6165)(12.3666)0.8547,..56.9046,152.9322213.4639,146.4905Y Y X R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在异⽅差性。
例2,改⾰开放以来,各地区的医疗机构都有了较快发展,不仅政府建⽴了⼀批医疗机构,还建⽴了不少民营医疗机构。
各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,⽽医疗服务需求与⼈⼝数量有关。
为了给制定医疗机构的规划提供依据,分析⽐较医疗机构与⼈⼝数量的关系,建⽴卫⽣医疗机构数与⼈⼝数的回归模型。
根据四川省2000年21个地市州医疗机构数与⼈⼝数资料对模型估计的结果如下:i iX Y 3735.50548.563?+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表⽰卫⽣医疗机构数(个),X 表⽰⼈⼝数量(万⼈)。
计量经济学 第五章 异方差性
![计量经济学 第五章 异方差性](https://img.taocdn.com/s3/m/776fe75bc77da26924c5b088.png)
的分散程度,因此同方差性指的是所有观测值的
分散程度相同。
6
异方差性的含义
设模型为
Y i 1 2 X 2 i 3 X 3 i . . . k X k i u i i 1 , 2 , . . . , n
如果对于模型中随机误差项 u i 有:
V a r(u i)i2 , i 1 ,2 ,3 ,...,n (5.3)
的替代变量,对所选函数形式回归。用回归所得
到的 β 、 t 、F 等信息判断,若参数 显β 著不为零,
即认为存在异方差性。
38
第四节 异方差性的补救措施
主要方法:
●模型变换法 ● 加权最小二乘法 ● 模型的对数变换
39
一、模型变换法
以一元线性回归模型为例:
Yi 12Xiui
经检验
u
存在异方差,且
26
(二)检验的特点
要求变量的取值为大样本 不仅能够检验异方差的存在性,同时在多变量的 情况下,还能判断出是哪一个变量引起的异方差。
27
(三)检验的基本步骤:
以一个二元线性回归模型为例,设模型为: Y t= β 1+ β2X 2t+ β3X 3t+ ut
并且,设异方差与 X 2t , X 3t 的一般关系为 σ t 2 = α 1 + α 2 X 2 t+ α 3 X 3 t+ α 4 X 2 2 t+ α 5 X 3 2 t+ α 6 X 2 tX 3 t+ v t
Yi 1 2X2i ui*
X 3i
(u 5i* .5)
当被略去的 X 3 i 与 X 2 i 有呈同方向或反方向变 化的趋势时,随 X 2 i 的有规律变化会体现在(5.5)
计量经济学-5异方差
![计量经济学-5异方差](https://img.taocdn.com/s3/m/4fb2700202020740be1e9b96.png)
ˆ Yi |ei| |ei|等级
9 8 6 7 5 4 1 2 3 10
di
0 -1 2 -1 -1 1 2 0 -2 -9
d
2 i
0 1 4 1 1 1 4 0 4 81
计量经济学
解:根据表中的数据, ˆ Y = 4 . 5615 − 0 . 7965 X
t
利用普通最小二乘得:
t
R
2
= 0 . 93
计量经济学
四、帕克(Pack)检验 帕克( )
假定σ i2与某一解释变量X k 有关 :
σ i2 = σ 2 X β e v , 或 ln(σ i2 ) = ln(σ 2 ) + β ln( X k ) + vi
i k
由于σ i2未知,以同方差假定下OLS估计得到的e i2 代替: ln(ei2 ) = α + β ln( X k ) + vi 进行回归,对β作显著性检验。若显著,则存在异方差。
且能确定影响随机项的解释变量。 且能确定影响随机项的解释变量。
计量经济学
夸特( 五、戈德菲尔德—夸特(Goldfied-Quandt)检验 戈德菲尔德 夸特 ) G-Q检验适用于大样本、随机项的方差与某异解释变量 检验适用于大样本、 检验适用于大样本 存在正相关的情况。检验的前提条件是: 存在正相关的情况。检验的前提条件是:随机项服从正态分 无序列相关。步骤: 布;无序列相关。步骤:
计量经济学
三、异方差的后果 基于CLRM假定的 假定的OLS估计参数结果将受到影响。 估计参数结果将受到影响。 基于 假定的 估计参数结果将受到影响 1、考虑异方差性的 、考虑异方差性的OLS估计 估计 E (u i ) = σ i2 ≠ 常数 ,保留其它的 保留其它的CLRM假定, 假定, 如果假定 假定 以双变量回归模型为例,普通OLS估计为: 估计为: 以双变量回归模型为例,普通 估计为
第五章-异方差性-答案说课讲解
![第五章-异方差性-答案说课讲解](https://img.taocdn.com/s3/m/66d702ae0722192e4436f64f.png)
第五章-异方差性-答案第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T )二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B )A. B. C. D. 7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=A. B. C. D. ∑=i i x y n 1b ˆ 8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模型时,应将模型变换为( C )。
计量经济学第五章 异方差
![计量经济学第五章 异方差](https://img.taocdn.com/s3/m/ba882d706edb6f1afe001f19.png)
X 20000
5.3异方差的侦查
利用残差图——绘制残差平方与X散点图
(一般把异方差看成是由于解释变量的变化而引起的)
5.1异方差的概念
三、异方差产生的原因 模型设定误差:省略了重要的解释变量
例:真实模型 Yi 1 2 X 2i 3 X 3i i 采用模型 Yi 1 2 X 2i i
如果X3随着X2的不同而对Y产生不同的影响,则 该影响体现在扰动项中。
测量误差: 一方面,测量误差常常在一定时间内逐渐增加,如X 越大,测量误差就会趋于增大 另一方面,测量误差随时间变化趋于减少,如抽样技 术的改进使得测量误差减少。
)
2 i
5.1异方差的概念
6 Y
4
300 Y
200
2
100
0 0
X
0
X
10
20
30
0
5000
10000
15000
20000
250
Y
二、常见的异方差类型: 200
递增型异方差:
150
100
递减型异方差:
50
条件异方差(略):
0 0
X
10
20
30
时间序列数据和截面数据中都有可能存在异方差。
经济时间序列中的异方差常为递增型异方差。
ˆ 2 ei2 (Yi ˆX i )2 (( ˆ) X i i )2
n 1
n 1
n 1
5.2异方差的后果
E (vaˆr(ˆ ))
E(
ˆ 2
X
2 i
)
E(
(( ˆ)X
(n 1)
计量经济学知识点整理:异方差
![计量经济学知识点整理:异方差](https://img.taocdn.com/s3/m/a238f371a45177232f60a229.png)
(2)X-~e i2的散点图进行判断异方差性1、定义:如果出现即对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性。
同方差性:σi2 = 常数 ≠ f(Xi)异方差时:σi2 = f(Xi) 2、后果:参数估计量非有效OLS 估计量仍然具有无偏性,但不具有有效性 因为在有效性证明中利用了 E(μμ’)=σ2I而且,在大样本情况下,尽管参数估计量具有一致性,但仍然不具有渐近有效性。
变量的显著性检验失去意义变量的显著性检验中,构造了t 统计量如果出现了异方差性,估计的S 出现偏误则t 检验失去意义。
其他检验也是如此。
模型的预测失效一方面,由于上述后果,使得模型不具有良好的统计性质;另一方面在预测的置信区间中,同样包含参数方差的估计量。
所以,当模型出现异方差性时,参数OLS 估计值的变异程度增大,从而造成对Y 的预测误差变大,降低预测精度,预测功能失效。
3、检验:检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。
图示法(1)用X-Y 的散点图进行判断,看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中)看是否形成一斜率为零的直线 帕克(Park)检验与戈里瑟(Gleiser)检验偿试建立方程:i ji i X f e ε+=)(~2Var i i ()μσ=2i ji i X e εασ++=ln ln )~ln(22i e X X f jiji εασ2)(=)12,12(~)12(~)12(~2122------------=∑∑k c n k c n F k c n e k c n e F i i 选择关于变量X 的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。
如: 帕克检验常用的函数形式:若α在统计上是显著的,表明存在异方差性。
戈德菲尔德-奎恩特(Goldfeld-Quandt)检验①将n 对样本观察值(Xi,Yi)按观察值Xi 的大小排队②将序列中间的c=n/4个观察值除去,并将剩下的观察值划分为较小与较大的相同的两个子样本,每个子样样本容量均为(n-c)/2,即3n/8③对每个子样分别进行OLS 回归,并计算各自的残差平方和④在同方差性假定下,构造如下满足F 分布的统计量⑤给定显著性水平α,确定临界值F α(v1,v2),若F> F α(v1,v2), 则拒绝同方差性假设,表明存在异方差。
计量经济学:异方差
![计量经济学:异方差](https://img.taocdn.com/s3/m/ab7cd828bed5b9f3f90f1c8b.png)
(1)布罗施-帕甘(Breusch-Pagan)检验
例4.2 使用BP检验对例4.1的回归模型进行异方差检验。 解:EViews中进行BP检验的结果如下:
从中可以看出,无论是使用F检验还是LM检验,在5%的显著性水 平下,均可拒绝随机误差项不存在异方差的原假设
2)怀特(White)检验
20000 X
30000
40000
(2)用 X e%i2 的散点图进行判断
第三节 异方差的检验
方法2:作X-ei2散点图
从图中可以看出,随着居 民可支配收入X的提高,随 机误差项平方ei2呈递增趋 势。表明随机误差项存在 递增型异方差。
ESQU
320000 280000 240000 200000 160000 120000
概 率 密 度
X1 X2 X3
同方差
概
率
Y
密
Y
度
E(Y|X) = β0 + β 1X
X
X1 X2 X3 异方差
E(Y|X) = β 0 + β 1X
X
异方差的矩阵表示
2 1
Var(u)
0 M
0
2 2
M
L L M
0
0
0
0
0
L
2 n
2、异方差的类型
•同方差性假定的意义是:每个ui围绕其零均值的离差,并不随解释 变量X的变化而变化,不论解释变量X的观测值是大还是小,每个ui
E(ˆ )(ˆ ) E ( X X )1 X Y ( X X )1 X Y
E ( X X )1 X X U ( X X )1 X X U
51异方差的概念讲解
![51异方差的概念讲解](https://img.taocdn.com/s3/m/25b3c9317f1922791788e894.png)
第五章异方差•本章主要内容:第一节异方差的概念第二节异方差的来源与后果第三节异方差的检月第四节异方差的修正第五节案例分析前述计量经济学模型的回归分析,是在对线性回归模型提出若珂本假定的条件下,应用普通最小二乘法得到了无偏R.有效的参数估讣鼠o 但是,在实际问题中,完全满足这些基木假定的情况并不多见。
不满足基本假定的情况,称为基本假定违背。
主要包括:(1)随机谋差项序列"在异方差性:(2)随机误差项序列存在序列相关性;(3)解释变量之间存在多重共线性;(4)解释变量是随机变量乩与随机误差项相关(随机解释变量);在进行计量经济学模型的回归分析时,必须对模型是否满足基本假定进行检验,这种检验称为[吊经济学检埼.经过计量经济学检验发现出现一种或多种基本假定违背时,则不能直接用OLS法进行参数估计,而必须采取补救措施或发展新的估计方法.对于上述基本假定违背的四种情形,我们都依次讨论以下问题:(1)假定的含义及其违背的原因;(2)假定违背时将会产生什么不利影响;(3)如何检验假定是否成立;(4)假定违背时的处理方法。
存在异方差时〃的方差-协方差矩阵为^(7「 0 0Var(U)= £((/(/) = 0••• • • • 0• •• •0 ・・・ 0吭匸对角线上的元素不完全相同。
二、异方差的类型同方差性假定:卯=常数MX)异方差时: 5 J 必)异方差一般可归结为三种类型:(I)卩训递増?戏“2随X的增大而增大; ⑵小. 秆随X 的増人闻减小;⑶父杂丿仏q2与X的变化呈复杂形式。
三.实际经济问题中的异方差性例5.1:截面资料下研究居民家庭的储蓄行为齐=仇 + 0\X i + u.「第f•个家庭的储器额:X,:第i个家庭的町支配收入高收入家庭:储蓄的差异较大低收入家庭:储蒂则更有规律性,差异较小高收入家庭随机误差项的方差明显大于低收入家庭.例5・2 :截面资料下研究企'I k的成本函数丫产0曲伏X广叫乙:第/个企业的生产成本:X,:第i个企业的总产值工产规模较大的企业:工产成木的羌异较大牛产规模较小的企业:牛产成木的差异较小生产规模较大企业的随机误差项的方差比生产规模较小企业的大,模型出现了异方差.。
计量经济学 第五章 异方差 ppt课件
![计量经济学 第五章 异方差 ppt课件](https://img.taocdn.com/s3/m/26f8747d33d4b14e84246825.png)
H0:ut不存在异方差, H1:ut存在异方差。
10
5.4 异方差检验
(2) White检验
④在同方差假设条件下,统计量
TR 2 2(5)
其中T表示样本容量,R2是辅助回归式的OLS估计的可决系数。 自由度5表示辅助回归式中解释变量项数(注意,不计算常数 项)。T R 2属于LM统计量。 ⑤判别规则是
2
1
0
-1
1
0 20 40 60 80 100 120 140 160 180 200
-2
-3 0
T
50
100
150
200
散点图
残差图
7
5.4 异方差检验
(1) Goldfeld-Quandt 检验
H0: ut 具有同方差, H1: ut 具有递增型异方差。
①把原样本分成两个子样本。具体方法是把成对(组)的观 测值按解释变量顺序排列,略去m个处于中心位置的观测值 (通常T 30时,取m T / 4,余下的T- m个观测值自然分成 容量相等,(T- m) / 2,的两个子样本。)
主对角线上的部分或全部元素都不为零,误差项就是自相关的。
异方差通常有三种表现形式,(1)递增型,(2)递减型,(3)条件自回
归型。 7
Байду номын сангаас
6
Y 6
4
DJ P Y
5
2
4
0
3
-2
2
-4
1
-6
0 20 40 60 80 100 120 140 160 180 200
-8
计量经济学第五章异方差性参考答案讲解
![计量经济学第五章异方差性参考答案讲解](https://img.taocdn.com/s3/m/a3c36b700a1c59eef8c75fbfc77da26924c59653.png)
计量经济学第五章异⽅差性参考答案讲解第五章异⽅差性课后题参考答案 5.1(1)因为22()i i f X X =,所以取221iiW X =,⽤2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的⽅差为⼀固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最⼩⼆乘法,可得修正异⽅差后的参数估计式为***12233Y X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223?i i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223?ii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2 (1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+ [ln()]0 ()[ln()1][ln()]11E u E E u E u µ=∴=+=+=⼜(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E µµµµµµµ===?====∑∏∏∑∏∏不能推导出所以E 1µ()=时,不⼀定有E 0µ(ln )= (3)对⽅程进⾏差分得:1)i i βµµ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln则有:1)]0i i µµ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)⾸先,⽤Goldfeld-Quandt 法进⾏检验。
计量经济学第五章-异方差
![计量经济学第五章-异方差](https://img.taocdn.com/s3/m/4531a83aaef8941ea76e05ff.png)
可编辑ppt
5
一、参数的OLS估计仍然是线性无偏的,但不 是最小方差的估计量
1、线性性
bˆ1
= xi yi xi 2
= b1
+ xi ui xi 2
一元线性回归模型为例
2、无偏性
E( bˆ1 )=E(
b1
+
xi ui xi 2
在同方差的假定下才被证明是服从 t 分布的。 分母变大,t 值变小,t 检验也就失去意义。
三、降低预测精度
由于存在异方差,参数的OLS估计的方差增大,参数 估计值的变异程度增大,从而造成对 Y 的预测误差变大, 降低预测的精度。
可编辑ppt
7
第二节 异方差的检验
• 1、图解法 • 2、戈德菲尔德—匡特法(双变量模型) • 3、怀特检验(White) • 4、戈里瑟(Glejser)检验 • 5、帕克(Park)检验
• 二、随着收入的增长,人们有更多的备用收入,从而如何支配 他们的收入有更大的选择范围。因此,在做储蓄对收入的回归 时,很可能发现,由于人们对其储蓄行为有更多的选择,与收 入俱增。
• 三、个体户收入随时间变化。
• 四、异方差还会因为异常值的出现而产生。一个超越正常值范 围的观测值或称异常值是指和其它观测值相比相差很多(非常 小或非常大)的观测值。
)= b1+
xi E(ui xi 2
)
=
b1
3、方差
该形式不具有最小方差
Var( bˆ1 ) =
i 2
xi 2
在同方差时,
xi2 Xi2 xi 2
该形式具有最小方差
Var(
第五章6讲 异方差
![第五章6讲 异方差](https://img.taocdn.com/s3/m/4fe387bda76e58fafab003bb.png)
假定
σt = E(xt)=µt
函数变换
y t
= ln(xt )
对数序列时序图
波动性 仍然保 持原有 序列的 变化趋 势
一阶差分后序列图
∇y=t
ln X t
−
ln
X t
−1
差分后, 波动趋 势平稳
接下来 进一步 进行白 噪声检 验
延迟阶数 6 12 18
白噪声检验
LB统计量 3.58 10.82 21.71
例5.11续
对美国1963年4月——1971年7月短期国库券的 月度收益率序列使用方差齐性变换方法进行分析
通过下面的时序图看出序列波动性和序列值有相 关性,序列值越大,波动越大。假定
σt = E(xt)=µt
例5.11续
对美国1963年4月——1971年7月短期国库券的 月度收益率序列使用方差齐性变换方法进行分析
即序列标准差 σt 与其水平 µt 之间具有某种正
比关系。
对于这种异方差的性质,最简单的假定为
σt
=µt
⇔
σ
2 t
=µ
2 t
⇔
h(µt )
=µt2
常用转换函数的确定
转换函数的确定
g′(µt ) =
1 =1
h(µt ) µt
⇒ g(µt ) = log(µt )
现实中的经济序列通常都先对其进行对数变换然后 才进行一系列的模型分析,其目的之一就是为了实 现方差齐性。
P值 0.7337 0.5441 0.2452
白噪声 检验结 果说明 序列之 间不存 在相关 性,说 明差分 一次后 就平稳 了
拟合模型口径及拟合效果图
∇ log(xt ) = εt
对数完差 分一次后 平稳了, 说明
计量经济学第5章 异方差
![计量经济学第5章 异方差](https://img.taocdn.com/s3/m/c0b15566a45177232f60a2af.png)
10
~2 e i
~2 e i
X 同方差 递增异方差
X
~2 e i
~2 e i
X 递减异方差 复杂型异方差
X
11
• (二)戈德菲尔德-夸特(Goldfeld-Quandt) 检验
• 此检验方法以F检验为基础,适合于样本容量较大, 异方差为单调递增或单调递减的情况。 • 原假设为:H0:ui是同方差,即σ12=σ22=…=σn2 • 备择假设为: H1:ui是递增(或递减)异方差, 即σi2随X递增(或递减)(i=1,2,…,n) • 检验过程如下: • 1、将解释变量观测值Xi按大小的顺序排列,被解 释变量观测值Yi保持原来与解释变量的对应关系。
14
• 4、选择统计量 • 若是检验递增方差,
nc ESS2 /( k 1) ESS2 nc nc 2 F ~ F( k 1, k 1) nc 2 2 ESS1 /( k 1) ESS1 2
• 若是检验递减方差,
nc ESS1 /( k 1) ESS1 nc nc 2 F ~ F( k 1, k 1) nc 2 2 ESS2 /( k 1) ESS2 2
12
• 2、按照上述顺序排列的观测值,把位于中间的c 个删去,删去的数目c是Goldfeld-Quandt通过试 验的方法确定的。对于n≥30时,删去的中心观测 数目为整个样本数目的四分之一最合适(比如 n=30,c=8;n=60,c=16),将剩下的(n-c)个观测值 划分为大小相等的两个子样本,每个子样本的容 量均为(n-c)/2,其中一个子样本是相应的观测值 Xi较大的部分,另一个子样本是相应的观测值Xi 较小的部分。
18
• (四)帕克(Park)检验与戈里瑟(Gleiser)检验 • 帕克检验与戈里瑟检验的基本思想是:以ei2或|ei| 为被解释变量,以原模型的某一解释变量Xj为解释 变量,建立如下方程: 2 • ei f ( X ji ) i 或 | ei | f ( X ji ) i • 选择关于变量Xj的不同的函数形式,对方程进行估 计并进行显著性检验。如果存在某一种函数形式, 使得方程显著成立,则说明原模型存在异方差性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 异方差来源与后果
异方差来源:
(1) 时间序列数据和截面数据中都有可能存在异方差。 (2) 经济时间序列中的异方差常为递增型异方差。金 融时间序列中的异方差常表现为自回归条件异方差。
1.2E+12 1.0E+12
GDP of Philippin
8.0E+11
6.0E+11
4.0E+11
2.0E+11
8
6
4
2
0
-2 0
X
50
100
150
200
5.1异方差概念
当这个假定不成立时,Var(u) 不再是一个纯量对角矩阵。
11
0
Var(u) = 2 = σ 2
22
2 I
0
TT
当误差向量u的方差协方差矩阵主对角线上的元素不相等时,称该随机误差
系列存在异方差。非主对角线上的元素表示误差项之间的协方差值。若 非
H0:ut不存在异方差, H1:ut存在异方差。
5.4 异方差检验
(2) White检验
④在同方差假设条件下,统计量
TR 2 2(5)
其中T表示样本容量,R2是辅助回归式的OLS估计的可决系数。 自由度5表示辅助回归式中解释变量项数(注意,不计算常数 项)。T R 2属于LM统计量。 ⑤判别规则是
(2) 利用散点图做初步判断。
(3) 利用残差图做初步判断(以解释变量为横坐标 2
3 Y
2
1
0
-1
1
0 20 40 60 80 100 120 140 160 180 200
-2
-3 0
T
50
100
150
200
散点图
残差图
5.4 异方差检验
(1) Goldfeld-Quandt 检验
①首先对上式进行OLS回归,求残差ut 。
②做如下辅助回归式,
uˆ t 2 = 0 +1 xt1 +2 xt2 + 3 xt12 +4 xt22 + 5 xt1 xt2 + vt
即用 uˆ t 2 对原回归式中的各解释变量、解释变量的平方项、交叉积项进行
OLS回归。注意,上式中要保留常数项。求辅助回归式的可决系数R2。 ③White检验的零假设和备择假设是
5.4 异方差检验
(2) White检验
White检验由H. White 1980年提出。White检验不需要对观测值排序,也不
依赖于随机误差项服从正态分布,它是通过一个辅助回归式构造 2 统计量
进行异方差检验。以二元回归模型为例,White检验的具体步骤如下。
yt = 0 +1 xt1 +2 xt2 + ut
回归参数估计量仍具有无偏性和一致性。但是不再具有有效性。
E( ˆ ) = E[ (X 'X )-1 X 'Y ] = E[ (X 'X )-1 X ' (X + u) ] = + (X 'X)-1 X ' E(u) =
Var( ˆ ) = E [( ˆ - ) ( ˆ - )' ] = E [(X 'X )-1 X ' u u' X (X 'X)-1 ]
white检验、Glejser检验) 异方差的修正方法(GLS、WLS) 异方差案例分析
5.1异方差概念
同方差假定:模型的假定条件⑴ 给出Var(u) 是一个对角 矩阵,且主对角线上的元素都是常数且相等。
1 0
Var(u) = E(u u' ) = 2I =
σ2
1
0
1
12 10 Y
0
Y Y
50
100
150
X 200
5.4 异方差检验
(1) Goldfeld-Quandt 检验
②用两个子样本分别估计回归直线,并计算残差平方和。 相对于n2 和n1 分别用SSE2 和SSE1表式。
③ 构造F统计量。F = SS2E/(n2k)SS2E,(k为模型中被估参数个数)
SS1E/(n1k) SS1E
在H0成立条件下,F F(n2 - k, n1 - k) ④ 判别规则如下,
若 F F (n2 - k, n1 - k), 接受H0(ut 具有同方差) 若 F > F(n2 - k, n1 - k), 拒绝H0(递增型异方差) 注意: ① 当摸型含有多个解释变量时,应以每一个解释变量为基准检验异方差。 ② 此法只适用于递增型异方差。 ③ 对于截面样本,计算F统计量之前,必须先把数据按解释变量的值排序。
以下讨论都是在模型某一个假定条件违反,而其他 假定条件都成立的情况下进行。分5个步骤。
回顾假定条件。 假定条件不成立对模型参数估计带来的影响。 定性分析假定条件是否成立。 假定条件是否成立的检验(定量判断)。 假定条件不成立时的补救措施。
第5章 异方差
第5章 异方差
异方差概念 异方差来源与后果 异方差检验(Goldfeld-Quandt 检验、
0.0E+00 84 86 88 90 92 94 96 98 00 02
1. 2E+ 11 8. 0E+ 10
RESID
4. 0E+ 10
0. 0E+ 00
-4. 0E+ 10
-8. 0E+ 10 84 86 88 90 92 94 96 98 00 02
5.2 异方差来源与后果
异方差后果:
当 Var(ut) = t 2,为异方差时(t 2 是一个随时间或序数变化的量),
主对角线上的部分或全部元素都不为零,误差项就是自相关的。
异方差通常有三种表现形式,(1)递增型,(2)递减型,(3)条件自回
归型。 7
6
Y 6
4
DJ P Y
5
2
4
0
3
-2
2
-4
1
-6
0 20 40 60 80 100 120 140 160 180 200
-8 400 500 600 700 800 900 1000 1100 1200
= (X ' X)-1 X ' E (u u' ) X (X ' X )-1 = 2 (X 'X )-1 X ' X (X ' X )-1 不等于 (X ' X )-1,所以异方差条件下 ˆ 是非有效估计量。
5.4 异方差检验
5.4.1 定性分析异方差
(1) 宏观经济变量容易出现异方差(自回归条件异方差)。
H0: ut 具有同方差, H1: ut 具有递增型异方差。
①把原样本分成两个子样本。具体方法是把成对(组)的观 测值按解释变量顺序排列,略去m个处于中心位置的观测值 (通常T 30时,取m T / 4,余下的T- m个观测值自然分成 容量相等,(T- m) / 2,的两个子样本。)
7 6 5 4 3 2 1 0