渗流稳定计算

合集下载

渗流稳定计算

渗流稳定计算

赤峰市红山区城郊乡防洪工程5.6稳定计算5.6.1渗流及渗透稳定计算1)渗流分析的目的(1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。

(2)估算堤身、堤基的渗透量。

(3)求出局部渗流坡降,验算发生渗透变形的可能。

概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。

2)渗流分析计算的原则(1)土堤渗流分析计算断面应具有代表性。

(2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。

3)渗流分析计算的内容(1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。

(2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。

(3)设计洪水位降落时临水侧堤身内自由水位。

4)堤防渗流分析计算的水位组合(1)临水侧为设计洪水位,背水侧为相应水位。

(2)临水侧为设计洪水位,背水侧无水。

(3)洪水降落时对临水侧堤坡稳定最不利情况。

5)渗透计算方法堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。

6)土堤渗流分析计算计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。

采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式:TH L TH H D 88.0m k q q 11210++-+=)( (E.3.1)H m m b 121+-+=)(H H L (E2.1-3)11112m m H L +=∆ (E2.1-4) 当K≤k 0时h 0=a+H 2=q÷⎭⎬⎫⎩⎨⎧+++⎥⎦⎤⎢⎣⎡++++•T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(122022222+H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定X=k·T '0q h y -+k '222q h y - ……………(E.3.2-6)式中:q'= )(021112211m 2m 2k h m H L h H -++-+0211010m k h m H L h H T -+-(E.3.2-7)k ——堤身渗透系数; k 0——堤基渗透系数;H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m );q ——单位宽度渗流量(m 3/s·m ); m 1——上游坡坡率,m 1=3.0;m2——下游坡坡率,m2=3.0;b——坝体顶部宽度6.0m;h0——下游出逸点高度(m);锡伯河采用数据列表如下:正常工况锡伯河渗流计算结果表锡伯河防洪堤筑堤土为低液限粉土,基础为砂砾基础,强透水地基,堤身部分为相对不透水层,基础和堤身渗透系数相差100倍以上,下游无水,经计算堤身和堤脚无无出逸点,渗流稳定。

关于渗流稳定和抗滑稳定

关于渗流稳定和抗滑稳定

(三)渠道 1、地形、地貌、地层岩性、岩土体渗透性、地下水类型、地下水位及 变化、地下与地表水的水力联系,对砼钢腐蚀性。 2、渗漏问题 渗漏性质、范围、渗量计算方法、公式选择、参数确定、渗漏量计算 结果及分析说明、渗漏环境地质影响分析。 3、浸没 渠道两侧地下水壅高值计算方法选择,参数确定(平均值),计算结 果分析说明、浸没临界数值确定、范围、发展趋势。 4、渠道涌水 涌水范围、计算方法、公式选择、参数及边界确定、成果分析说明 ,涌水对渠道开挖施工、边坡稳定的影响分析。 5、冻胀问题
水文地质评价内容: (一)水库(水利水电工程地质手册 P328-333) 1、渗漏性质、迳流、范围、计算参数、计算方法、公式选择、计算结 果、分析及说明。一般采用解析法即可。 渗漏对水库运用和环境地质条件的影响 少 中等 严重 5% 5~10% >10% 年平均迳流量 2、浸没 地下水壅高计算公式选择和计算参数的确定,计算结果及说明,浸没 标准值确定(临界值)范围、发展趋势,对环境地质的影响 (二)坝(闸) 坝闸基、透、隔水层空间分布、渗透性、集中渗带发育特征、与地表 水连通和补、迳、排关系,岩土体渗透结构类型划分; 渗漏性质、迳流、范围、计算方法、计算公式选择、参数和边界条件 的确定,计算结果及分析说明,重点对水库蓄水、工程运用及周边环 境地质条件的影响; 基坑涌水、向上述渗漏;基底水埋藏条件有无承压水,基坑渗透稳定 性; 坝闸基渗透变形评价、类型判别,渗透水力比降确定,允许比降确 定,其对建筑物影响。
关于渗流稳定和抗滑稳定
内 容 提 要
1
渗流控制
2
3 4 5
关于渗流比降的几个问题
为排渗减压设计、地勘应作的工作安排 抗滑稳定中的有关问题 抗剪强度取值方法
山东省水利勘测设计院SDSS

稳定渗流计算

稳定渗流计算

5.5.6渗透和稳定性复核5.5.6.1石坑水陂防渗复核计算石坑水陂基础为粘土,根据《水闸设计规范》SL265-2001“表6.0.4”知,水平段允许渗流坡降值[Jx ]=0.40,出口段允许渗流坡降值[J]=0.70。

陂前水深: H设=2.66m;地基为粘土c=3;地下轮廓线最小长度[L]=c×H=3×2.66=7.98m;附图5-4 石坑水陂防渗计算简图a.渗透变形复核由附图5-4地下轮廓线实际长度L=13.88m,L>[L]=7.98m,不会发生渗透变形,满足安全要求。

b.渗透稳定性复核计算由附图5-4计算渗透压力:H 1=2.05m H2=1.96m H3=1.92m H4=1.85m H5=1.20m H6=1.06m H7=0.98mH 8=0.88m H9=0.29m H10=0.19m H11=0.11m H12=0.04m H13=0m 计算得渗透坡降:出口 J= H12/L12-13=0.04 /0.25=0.16<[J0]=0.40水平 Jw=(H5-H12)/(L5-L12)=0.50/8.00=0.06<[Jx]=0.70石坑水陂陂基满足抗渗要求,不会发生渗透破坏。

5.5.6.1塘村水陂防渗复核计算塘村水陂基础为粘土,根据《水闸设计规范》SL265-2001“表6.0.4”知,水平段允许渗流坡降值[Jx ]=0.40,出口段允许渗流坡降值[J]=0.70。

陂前水深: H设=2.16m;地基为粘土c=3;地下轮廓线最小长度[L]=c×H=3×2.16=6.48m;附图5-4 塘村水陂防渗计算简图a.渗透变形复核由附图5-4地下轮廓线实际长度L=7.67m,L>[L]=6.48m,不会发生渗透变形,满足安全要求。

b.渗透稳定性复核计算由附图5-4计算渗透压力:H 1=1.16m H2=1.07m H3=1.02m H4=0.96m H5=0.75m H6=0.66m H7=0.61mH 8=0.55m H9=0.19m H10=0.12m H11=0.08m H12=0.03m H13=0m 计算得渗透坡降:出口 J= H12/L12-13=0.03/0.20=0.15<[J0]=0.40水平 Jw=(H5-H12)/(L5-L12)=0.30/4.75=0.06<[Jx]=0.70塘村水陂陂基满足抗渗要求,不会发生渗透破坏。

稳定渗流的有限元计算新方法

稳定渗流的有限元计算新方法

稳定渗流的有限元计算新方法
稳定渗流是指流体在多孔介质中的渗流过程中,流体与固体颗粒之间的相互作用引起的非线性行为的一种现象。

稳定渗流的计算是地下水模拟和油藏开发等领域中的重要问题。

目前,有限元方法是求解稳定渗流问题的主要数值方法。

然而,传统的有限元方法在计算稳定渗流问题时,往往会产生数值不稳定或数值耗散等问题,影响计算结果的准确性。

为了解决这些问题,近年来出现了许多新的有限元方法,例如混合有限元方法、稳定性有限元方法、非均匀网格有限元方法等。

这些方法采用了不同的数值技术和算法,旨在提高求解稳定渗流问题的精度和稳定性。

其中,混合有限元方法是一种常用的方法,它采用了两种不同的有限元空间来描述压力和速度场,并利用斯托克斯方程作为基础方程。

稳定性有限元方法则是通过添加人工耗散项或人工黏性项来控制数
值解的波动,从而提高求解稳定渗流问题的数值稳定性。

非均匀网格有限元方法则是利用非均匀网格来描述多孔介质中的复杂几何形状,从而提高计算的精度和效率。

总之,这些新的有限元方法为求解稳定渗流问题提供了更多的选择和可能性,能够有效地提高计算的精度和稳定性,为解决实际问题提供了基础和支撑。

- 1 -。

理正软件计算土石坝渗流稳定

理正软件计算土石坝渗流稳定

用理正软件计算土石坝渗流稳定的方法1渗流计算1在CAD中绘制土石坝横断面图,图中坝坡下的长垫层为基岩,图例中有两种基岩,根据情况有几种画几种,长度为1.5-2倍坝长,注意不能使用镜像。

绘制时要注意并另存为DXF文件(最好存为最低版本即2000)2进行渗流计算打开理正岩土软件,选择渗流分析计算在选工程中选择软件生成结论的存储位置如上例,计算结论存在e盘考博文件中,确认后弹出下图直接点确认即可。

确认后点增,选择系统默认例题,点确认然后自动弹出下图中对话框然后点击左上角的“辅助功能”选择“读入DXF文件自动生成坡面、节点、土层数据”,弹出以下对话框选择已画好的CAD图打开打开后出现如下对话框,在图上双击后可放大图形,放大后可看到起始点编号(起始点在图中用红圈标出,及上游坝坡起始点)。

坡面线段数及坝坡分为几段,无马道土石坝坡面线段数为3,图例中有9条。

弹出以下对话框,在坡面形状中填写正确的上下游水位节点坐标一栏为理正自动生成坐标,不用修改土层定义一栏如下图,图中不同土性区域数为软件自动生成软件同时为不同区域编号,双击图中土石坝图形放大图形可以看到编号(如下附图2)Kx,Ky为土层的x,y向的渗透系数,同一土层两数相等且等于土层渗透系数,对应区号输入渗透系数(渗透系数由地质资料中查找)α值若无资料则都为0计算即可。

附图2面边界条件中,同样双击放大土石坝剖面图可以看到节点编号,顺时针输入计算所需要的坡面信息(即始末节点编号),面边界个数及浸润线可能经过的面,即上游所有水面线以下的坡面加上坝基上表面,下游所有坡面加坝基上表面,如图,蓝色为已知水面线,红色为可能的浸出面.点边界描述项数为2,节点即上下游水面线与坝体的交点,若下游无水则为下游坝脚,取值为0。

计算参数栏为系统默认,不用修改输出结果栏目中,需注意流量计算截面的点数一栏和理正边坡文件接口一栏。

流量计算截面的点数即下游截面所有点和基岩上表面所有点,如本例有5个,且须在右边一栏输入5个节点的坐标,坐标从第二栏节点坐标中查找。

某水库大坝渗流计算及稳定分析

某水库大坝渗流计算及稳定分析

某水库大坝渗流计算及稳定分析摘要:在病险水库除险加固工程中,经常需要对加固前的建筑物进行安全复核。

本文根据某水库的地勘资料,对其进行了渗流计算和坝坡稳定抗滑稳定计算,计算结果为水库大坝的加固提供合理的构筑建议和措施。

关键词:土石坝;渗流计算;稳定分析1.工程概况某水库位于罗山县西南约55km处的灵山镇境内,属丘陵地区水库,位于淮河水系小黄河支沟上,控制流域面积3.3km2,总库容102.02万m3。

水库是一座以防洪、灌溉为主,结合水产养殖等综合利用的小(1)型水库。

大坝为粘土心墙坝,现状坝长90m,最大坝高17.4m,坝顶宽约3m。

该水库按50年一遇设计,500年一遇防洪标准校核。

2.工程地质某水库位于秦岭-昆仑纬向复杂构造带之南亚带与新华夏系第二沉降带的交接复合部位。

受淮阳山字型构造与经向构造复合干扰,地质构造十分复杂。

据地质测绘及勘探揭露范围内,坝址区地层岩性主要为坝体人工填土(Qs)及燕山晚期侵入的花岗岩,仅在下游河槽分布有泥卵石。

坝址区地层根据时代、成因、岩性及其物理力学性特征,现由老到新分述如下:燕山晚期(r3 5)岩性为花岗岩,分布在水库两岸,肉红色、灰白色~淡红色,细粒~中粗粒结构,肉眼可见斑状矿物,矿物按含量依次为正长石、斜长石、石英、黑云母等。

裂隙较发育,多为60度左右的高倾角,裂隙宽0.3mm,裂面平整,沿裂隙面充填有铁锰质薄膜。

表层2m左右多为全风化,岩芯多呈碎屑状、块状,地质取芯率(RQD)低于10%;多为中等风化,岩芯呈块状和柱状,岩心采取率60%~90%,RQD值25%~80%。

第四系全新统(alplQ4)岩性为泥卵石,分布在下游河槽内,卵石成分主要为安山岩、花岗岩,灰绿色,灰黄色,多呈次圆状,粒径一般3~5cm,最大10cm左右,含量50%左右,泥质充填,结构较松散。

坝体填土(QS)坝体为粘土心墙砂壳坝,坝轴线处2.4m以上主要为全风化的花岗岩碎屑,2.4~12.3m主要为低液限粘土,含有全风化花岗岩碎屑,局部含量较高,但颗粒较细,12.3m以下为低液限粘土,灰褐色,棕黄色,见有铁锈,粘粒含量较高。

渗流计算及渗流稳定分析

渗流计算及渗流稳定分析

渗流计算及渗流稳定分析
一、计算情况
根据《碾压式土石坝设计规范》有关规定,计算组合情况如下:
1、上游正常水位177.84米,下游无水;
2、上游设计洪水位180.57米,下游无水;
3、上游1/3坝高水位174米,下游无水
二、计算参数
坝体渗透系数Ko=3.3×10-6m/s,坝基Kt=3.0×10-6m/s
采用解析法计算成果见下图:
图1 桐峪沟水库大坝渗流安全计算图
三、防渗工程措施
计算结果如上图,由于计算出逸坡降大于允许坡降J=0.4,采取工程措施,下游坝脚采取贴坡排水, 排水体顶按规范要求高于最高出
逸点0.5米,即173.2米高程。

坝坡稳定计算及稳定分析
一、计算工况
根据有关规范,土石坝施工、建设、蓄水和库水位降落的各个时期不同荷载下,应分别计算其稳定性。

控制稳定的有施工期(包括竣工期)、稳定渗流期、水库水位降落期和正常运用遇地震四种情况。

二、计算参数
见下表
三、计算成果及分析
计算成果见下图,所示,经计算,各种工况下均满足设计要求。

图表 2 桐峪沟水库大坝上游坝坡抗滑稳定计算图
图表 3 桐峪沟水库大坝上游坝坡抗滑稳定计算图
图表4桐峪沟水库大坝下游坝坡抗滑稳定计算图。

渗流分析 稳定计算 理正

渗流分析 稳定计算 理正

理正软土地基堤坝设计软件计算项目:简单软土地基堤坝设计 1计算时间: 2014-08-17 10:01:01 星期日============================================================================原始条件:计算目标: 只计算稳定堤坝设计高度: 10.000(m)堤坝设计顶宽: 4.000(m)竣工后左侧工作水位高: 9.000(m)竣工后右侧工作水位高: 0.000(m)竣工后经过 2.000 个月注水到工作水位堤坝左侧坡面线段数: 1坡面线号水平投影(m) 竖直投影(m)1 20.000 10.000堤坝右侧坡面线段数: 1坡面线号水平投影(m) 竖直投影(m)1 20.000 10.000工后沉降基准期结束时间: 2(月) 荷载施加级数: 1序号起始时间 (月) 终止时间(月) 填土高度(m) 是否作稳定计算1 0.000 6.000 10.000 否堤坝土层数: 1 超载个数: 1层号层厚度(m) 重度(kN/m3) 饱和重度(kN/m3) 内聚力(kPa) 内摩擦角(度) 水下内聚力(kPa) 水下内摩擦角(度)1 10.000 14.000 18.500 25.000 20.000 20.000 15.000超载号定位距离(m) 分布宽度(m) 超载值(kPa) 沉降计算是否考虑稳定计算是否考虑1 4.000 12.000 80.000 否是地基土层数: 1 地下水埋深: 1.000(m)层号土层厚度重度饱和重度地基承载力快剪C 快剪Φ 固结快剪竖向固结系水平固结系排水层(m) (kN/m3) (kN/m3) (kPa) (kPa) (度) Φ(度) 数(cm2/s) 数(cm2/s)1 1.000 25.000 25.000 2000.000 500.000 30.000 30.000 0.00150 0.00150 否层号 e( 0) e( 50) e(100) e(200) e(300) e(400) e(500) e(600) e(800)1 0.721 0.676 0.636 0.602 0.587 0.577 0.573 0.570 0.570承载力计算参数:承载力验算公式: p ≤γR[fa]验算点距离中线距离: 0.000(m)承载力抗力系数γR: 1.00承载力修正公式: [fa] = [fa0] + γ2(h-h0)基准深度h0: 0.000(m)固结度计算参数:地基土层底面: 不是排水层固结度计算采用方法: 微分方程数值解法多级加荷固结度修正时的荷载增量定义为"填土高*容重"填土-时间-固结度输出位置距离中线距离: 0.000(m)填土-时间-固结度输出位置深度: 0.000(m)沉降计算参数:地基总沉降计算方法: 经验系数法主固结沉降计算方法: e-p曲线法沉降计算不考虑超载沉降修正系数: 1.200沉降计算的分层厚度: 0.500(m)分层沉降输出点距中线距离: 0.000(m)压缩层厚度判断应力比 = 15.000%基底压力计算方法:按多层土实际容重计算计算时不考虑弥补地基沉降引起的堤坝增高量工后基准期起算时间: 最后一级加载(堤坝施工)结束时稳定计算参数:稳定计算方法: 有效固结应力法加载与堤坝竣工的间隔时间(月): 1稳定计算不考虑地震力稳定计算目标: 自动搜索最危险滑裂面条分法的土条宽度: 1.000(m)搜索时的圆心步长: 1.000(m)搜索时的半径步长: 0.500(m)============================================================================稳定计算(1) 第1级加荷,从0.0~6.0月,堤坝设计高度10.000(m), 堤坝计算高度(不考虑沉降影响)10.000(m),加载结束时稳定结果用户不要求作稳定计算(2) 在8.0月堤坝注水到工作水位,堤坝设计高度10.000(m), 此时稳定结果土条起始x 土条面土条自条上荷总重αi Sinαi Cosαi Cqi Φqi 下滑力抗滑力抗滑力编号 (m) 积(m2) 重(kN) 重(kN) (kN) (度) (kPa) (度) (kN) WiCosαitgΦq CiLi-----------------------------------------------------------------------------------------------------------1 2.17 0.38 3.24 0.00 3.24 -16.75 -0.29 0.96 20.00 15.00-2.03 0.83 20.372 3.15 1.12 9.51 0.00 9.51 -14.12 -0.24 0.97 20.00 15.00-5.05 2.47 20.123 4.12 1.81 15.40 0.00 15.40 -11.51 -0.20 0.98 20.00 15.00-6.69 4.04 19.914 5.10 2.46 20.90 0.00 20.90 -8.93 -0.16 0.99 20.00 15.00-7.06 5.53 19.755 6.07 3.06 26.03 0.00 26.03 -6.36 -0.11 0.99 20.00 15.00-6.28 6.93 19.636 7.05 3.62 30.79 0.00 30.79 -3.81 -0.07 1.00 20.00 15.00-4.46 8.23 19.557 8.02 4.14 35.19 0.00 35.19 -1.27 -0.02 1.00 20.00 15.00-1.70 9.43 19.518 9.00 4.74 40.28 0.00 40.28 1.30 0.02 1.00 20.00 15.001.99 10.79 20.019 10.00 5.19 44.14 0.00 44.14 3.91 0.07 1.00 20.00 15.006.55 11.80 20.0510 11.00 5.60 47.61 0.00 47.61 6.53 0.11 0.99 20.00 15.0011.78 12.68 20.1311 12.00 5.96 50.69 0.00 50.69 9.16 0.16 0.99 20.00 15.0017.56 13.41 20.2612 13.00 6.28 53.37 0.00 53.37 11.81 0.20 0.98 20.00 15.0023.77 14.00 20.4313 14.00 6.54 55.63 0.00 55.63 14.48 0.25 0.97 20.00 15.0030.28 14.43 20.6614 15.00 6.76 57.47 0.00 57.47 17.19 0.30 0.96 20.00 15.0036.97 14.71 20.9415 16.00 6.93 58.86 0.00 58.86 19.94 0.34 0.94 20.00 15.0043.69 14.83 21.2816 17.00 7.03 59.79 0.00 59.79 22.74 0.39 0.92 20.00 15.0050.29 14.78 21.6917 18.00 4.72 40.78 0.00 40.78 25.11 0.42 0.91 20.00 15.0036.86 9.89 14.7318 18.67 4.73 42.09 0.00 42.09 27.04 0.45 0.89 20.00 15.0039.06 10.04 14.9719 19.33 4.71 43.67 0.00 43.67 29.01 0.48 0.87 20.00 15.0040.86 10.23 15.2520 20.00 6.33 63.69 0.00 63.69 31.43 0.52 0.85 20.00 15.0056.89 14.56 21.9421 20.94 5.77 65.49 0.00 65.49 34.33 0.56 0.83 20.00 15.0052.56 14.49 22.6722 21.87 5.13 66.72 0.00 66.72 37.34 0.61 0.80 20.00 15.0046.14 14.21 23.5523 22.81 2.91 40.70 0.00 40.70 39.89 0.64 0.77 25.00 20.0026.10 11.37 19.4224 23.40 2.60 36.39 0.00 36.39 41.94 0.67 0.74 25.00 20.0024.32 9.85 20.0325 24.00 3.35 46.85 80.00 126.85 44.82 0.70 0.71 25.00 20.00 89.42 32.75 35.2526 25.00 1.78 24.94 80.00 104.94 48.63 0.75 0.66 25.00 20.00 78.75 25.24 37.8327 26.00 0.26 3.68 43.60 47.28 51.75 0.79 0.62 25.00 20.00 37.13 10.65 22.01最不利滑动面:滑动圆心 = (9.000000,22.000000)(m)滑动半径 = 21.999712(m)滑动安全系数 = 2.163总的下滑力 = 413.411(kN)总的抗滑力 = 894.113(kN)土体部分下滑力 = 717.693(kN)土体部分抗滑力 = 894.113(kN)筋带的抗滑力 = 0.000(kN)地震作用下滑力 = 0.000(kN)坡外静水作用下滑力 = -304.282(kN)。

围堰渗流及稳定计算书(校核)

围堰渗流及稳定计算书(校核)

上游围堰采用土石挡水围堰,堰顶宽8m,最大堰高43m,上游边坡为1:1.8,下游边坡1:1.6,堰身采用复合土工膜防渗,基础采用C20混凝土防渗墙。

下游围堰采用土石挡水围堰,堰顶宽8m,最大堰高14.8m,堰体上、下游边坡均为1:1.6,堰身采用复合土工膜防渗,基础开挖至基岩。

2.计算内容
进行上游围堰的渗流及稳定计算。

3.渗流计算
1)计算工况
(1)正常运用:10年一遇设计洪水位稳定渗流。

2)计算采用参数
围堰渗流计算断面选取河床段最大堰体断面,计算所采用的相关参数见表3-1。

表3-1 围堰渗流计算参数表
3)计算结果
渗流计算结果见表3-2,正常蓄水位等势线图,见图3-1。

表3-2 堰体渗流计算成果表
注:渗漏量为堰体和堰基渗漏量的总和。

图3-1 10年一遇设计洪水位稳定渗流期等势线图
4.稳定计算
1)计算工况
(1)施工期上、下游坡
(2)10年一遇设计洪水位稳定渗流期上、下游坡
2)计算采用参数
计算所采用的相关参数见表4-1。

表4-1 围堰稳定计算参数表
3)计算结果
稳定计算结果见表4-2,见图4-1~4-2。

图4-1 竣工期上游围堰上、下游坡稳定计算结果图
图4-2 稳定渗流期上游围堰上、下游坡稳定计算结果图。

堤防稳定计算

堤防稳定计算

堤防稳定计算9.1 渗流及渗透稳定计算9.1.1 堤防应进行渗流及渗透稳定计算,计算求得渗流场内的水头、压力、比降、渗流量等水力要素,应进行渗透稳定分析,并应选择经济合理的防渗、排水设计方案或加固补强方案。

9.1.2 土堤渗流计算断面应具有代表性,并应进行下列计算,计算应符合本规范附录E 的有关规定:1 应核算在设计洪水或设计高潮持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点的位置、逸出段与背水侧堤基表面的出逸比降。

2 当堤身、堤基土渗透系数大于或等于1×10-3cm/s时,应计算渗流量。

3 应计算洪水或潮水水位降落时临水侧堤身内的自由水位。

9.1.3 河、湖的堤防渗流计算应计算下列水位的组合:1 临水侧为设计洪水位,背水侧为相应水位。

2 临水侧为设计洪水位,背水侧为低水位或无水。

3 洪水降落时对临水侧堤坡稳定最不利的情况。

9.1.4 感潮河流河口段的堤防渗流计算应计算下列水位的组合:1 以设计潮水位或台风期大潮平均高潮位作为临海侧水位,背海侧水位为相应的水位、低水位或无水等情况。

2 以大潮平均高潮位计算渗流浸润线。

3 以平均潮位计算渗流量。

4 潮位降落时对临水侧堤坡稳定最不利的情况。

9.1.5 进行渗流计算时,对比较复杂的地基情况可作适当简化,并应符合下列规定:1 对于渗透系数相差5倍以内的相邻薄土层可视为一层,可采用加权平均的渗透系数作为计算依据。

2 双层结构地基,当下卧土层的渗透系数小于上层土层的渗透系数100倍及以上时,可将下卧土层视为不透水层;表层为弱透水层时,可按双层地基计算。

3 当直接与堤底连接的地基土层的渗透系数大于堤身的渗透系数100倍及以上时,可视为堤身不透水,可仅对堤基进行渗流计算。

9.1.6 渗透稳定应进行下列判断和计算:1 土的渗透变形类型。

2 堤身和堤基土体的渗透稳定。

3 堤防背水侧渗流出逸段的渗透稳定。

9.1.7 土的渗透变形类型的判定,应按现行国家标准《水利水电工程地质勘察规范》GB 50487 的有关规定执行。

水闸渗流稳定及闸室稳定分析

水闸渗流稳定及闸室稳定分析

水闸渗流稳定及闸室稳定分析◎ 常聪聪 中交四航局港湾工程设计院有限公司摘 要:水闸在水利建设中扮演着重要的角色,本文结合闸坝的具体工程实例,详细介绍了水闸渗流稳定和闸室稳定的计算原理及计算步骤,计算结果表明该项目的结构设计方案较安全但偏保守,可进一步优化方案。

本文中所涉及的相关计算可为相似工程案例提供一定的参考。

关键词:水闸;渗流;闸室稳定1.引言水闸作为一种用来调节水位、控制流量且通常水头差不超过30m的低水头水工建筑物,具备挡水和泄水的两重作用,在水利工程建设中得到广泛应用。

水闸的渗流分析和闸室的稳定分析是水闸设计中两个重要部分,国内外众多学者针对该课题做了丰富的研究。

梁佳铭[1]、王建华[2]运用可靠度理论分析了水闸安全的主要影响因素,申向东[3]分析了单孔水闸的抗滑稳定,也有众多学者结合工程实例对水闸闸室的稳定进行了计算分析[4~7]。

改进阻力系数法是计算水闸闸基渗流稳定的重要方法,适应性广,众多水闸案例以此方法为基础进行设计验算[8~10]。

学者们还将水闸渗流分析的有限元分析法和改进阻力系数法作对比[11~14],表明两种方法在计算闸基渗流问题上均可靠,有限元分析法则更偏保守。

本文结合具体工程实例,按照现行规范[15],对水闸的闸基渗流及闸室稳定进行了具体计算分析,对相似案例工程具有一定的借鉴与参考意义。

2.工程概况本工程案例为广东某水闸的重建方案,泄水闸闸孔孔数为12孔,单孔净宽14m,总净宽168m。

根据《水利水电工程等级划分及洪水标准》(SL 252-2017)和《渠化工程枢纽总体设计规范》(JTS 181-1-2009),枢纽按库容分等指标,为Ⅲ等中型工程,建筑物级别为4级。

正常蓄水位为35m,中墩厚2.5m,边墩厚2.0m,上游铺盖长15m,闸室长度25.5m,消力池长30m。

地质条件:工程区域地震活动性较弱,区域地质稳定性良好,工程范围内本枢纽的地层主要有第四系填土层(Q4ml)、第四系冲积层(Q4al)、第四系冲洪积层(Q4al+pl)及石炭系下统大塘阶石磴子段(C1ds),中风化岩物理力学性质好,岩石强度高,分布较稳定,地基承载力较高。

用手算方法计算均质土坝渗流稳定

用手算方法计算均质土坝渗流稳定

某水库均质土坝渗流稳定计算1.渗流允许坡降(J 允)对粉质黏土,可按下式计算:J允(1)(1)/wG n c Kγ--+=式中 G —土粒比重,取2.73;n —土的孔隙率;/(1)n e e =+=0.849 /(1+0.849)= 0.4592;c —土的黏聚力,取7.0 kPa ;w γ—水的重度,取10 kN/m 3;K —安全系数,取2.0。

经计算得J = 0.818。

2.渗流计算方法根据地质勘察报告,坝基部位土层的渗透系数均小于 1.64×10-6cm/s ,属于弱~微透水层,可以认为本工程坝基为不透水地基。

本设计按均质坝、不透水地基、下游无排水设备进行计算,稳定渗流期计算简图如图1:图1 某水库稳定渗流期计算简图(无排水设备)稳定渗流期计算公式如下:221201200020211()(1)2()sin (1ln )(2)()(3)(4)21H H a q kH s H a q ka a s L m a H m m λβλ⎧-+=⎪+⎪⎪+=+⎪⎨⎪=-+⎪⎪=⎪+⎩式中 q —单位渗流量,m 3/s ·m ;k —渗透系数,取坝体平均渗透系数6.43×10-5cm/s (0.0556m 3/d );1H —上游水深,m ; 2H —下游水深,取7.45m ; 1m —上游坡比,取2.0; 2m —下游坡比,取2.0;0a —下游水位以上出逸点高度,m ; β—下游坝坡坡角,sin β=浸润线方程为:2212qy H x k=-渗流计算可采用迭代方法求解,即先假设一个0a 值,然后判断式(1)与式(2)计算结果是否相等。

此方法在手算时比较烦琐,为此,将上述公式进行变换。

先将式(3)、式(4)代入式(1),并令式(1)= 式(2),经化简后成为一单变量0a 的非线性方程,即:2210000100(0.90)0.90()1ln (5)46.4 2.445H a a f a a H a a ⎛⎫-++=-+ ⎪--⎝⎭满足0()0f a =的0a 值即为所求。

防洪墙渗流稳定计算

防洪墙渗流稳定计算

(1) 防洪墙段
防洪墙断面渗流及渗透稳定计算采用改进阻力系数法,本次选取渗透系数最大的砂基断面进行计算,桩号1+600.00,该断面临水侧为C25砼埋石挡墙,背水侧为草皮护坡,坡比为1:2,该断面10年一遇设计洪水位为 2.42m ,背水侧无水,基础为粗砂砾砂,渗透系数为k=3⨯10-2cm/s ,允许水力比降为0.2。

其渗流及渗透稳定按照如下公式进行计算。

1)地基有效深度计算
05.0L T e =或 式中:Te ——地基有效深度; Lo ——地下轮廓的水平投影长度; So ——地下轮廓的垂直投影长度。

2)各段水头损失和单宽流量计算
①进出口段阻力系数计算
②内部垂直段阻力系数计算
③水平段阻力系数计算
式中:S ——板桩或齿墙的入土深度;
T——地基透水层深度;
S1、S2——进出口段板桩或齿墙的入土深度。

3)进出口段水头修正计算
式中:β’——阻力修正系数;
T’——板桩另一侧地基透水层深度。

4)出口坡降计算
式中:S’——出口段地下轮廓垂直长度;
ho’——出口段水头损失。

表5-6 渗流计算成果表
许比降[J]=0.2,不能满足渗流稳定要求,需增加截渗墙。

经计算,当截渗墙深入基础深度为1.0m时,单宽流量为0.000078m³/s·m,下游坡出口渗流比降为0.18,小于基础允许比降,满足要求。

围堰渗流及稳定计算书(校核)

围堰渗流及稳定计算书(校核)

上游围堰采用土石挡水围堰,堰顶宽8m,最大堰高43m,上游边坡为1:1.8,下游边坡1:1.6,堰身采用复合土工膜防渗,基础采用C20混凝土防渗墙。

下游围堰采用土石挡水围堰,堰顶宽8m,最大堰高14.8m,堰体上、下游边坡均为1:1.6,堰身采用复合土工膜防渗,基础开挖至基岩。

2.计算内容
进行上游围堰的渗流及稳定计算。

3.渗流计算
1)计算工况
(1)正常运用:10年一遇设计洪水位稳定渗流。

2)计算采用参数
围堰渗流计算断面选取河床段最大堰体断面,计算所采用的相关参数见表3-1。

表3-1 围堰渗流计算参数表
3)计算结果
渗流计算结果见表3-2,正常蓄水位等势线图,见图3-1。

表3-2 堰体渗流计算成果表
注:渗漏量为堰体和堰基渗漏量的总和。

图3-1 10年一遇设计洪水位稳定渗流期等势线图
4.稳定计算
1)计算工况
(1)施工期上、下游坡
(2)10年一遇设计洪水位稳定渗流期上、下游坡
2)计算采用参数
计算所采用的相关参数见表4-1。

表4-1 围堰稳定计算参数表
3)计算结果
稳定计算结果见表4-2,见图4-1~4-2。

图4-1 竣工期上游围堰上、下游坡稳定计算结果图
图4-2 稳定渗流期上游围堰上、下游坡稳定计算结果图。

防洪堤渗流稳定的计算方法和对应的工程措施

防洪堤渗流稳定的计算方法和对应的工程措施

防洪堤渗流稳定的计算方法和对应的工程措施瀑河三期为山区河道,地基材料为砾砂和角砾,具有强透水、易被冲刷、粒径大、固结性差的特点。

为工程造价记,新建及加固堤防主要采用河道开挖砂砾料填筑,主槽按10年一遇洪水不出槽考虑,堤顶平均填筑高度为1.5m。

迎水面边坡系数为1:3,堤顶宽度为 4.5m。

整体河道位于平泉市城区上游,原状地势险峻,防洪能力差,为下游城区段造成很大安全隐患,因此需要对该河道段的防洪堤采取优化处理措施,才能满足安全生态等要求。

一、防洪堤渗流稳定计算方法新建及加固堤防主要采用开挖砂砾料填筑,堤基主要为砾砂、角砾等。

堤身、堤基渗透破坏类型主要为管涌,砾砂、角砾的允许水力比降值分别为0.18、0.17。

渗流采用有限元数值分析方法计算,应用河海大学工程力学研究所研制Autobank7.0软件程序进行计算。

(1)渗流稳定计算过程①出逸坡降计算上述程序假定渗透介质不可压缩,渗流符合达西定律,计算域内没有源密度的情况,各向异性连续介质二维稳定渗流场的控制方程为:②渗流计算工况根据《堤防工程设计规范》渗流及渗透稳定计算中规定,拟定渗透稳定计算工况如下:工况1:河道设计水位正常运行,堤外无水,复核堤防背水坡稳定;工况2:河道设计水位正常运行工况下增加地震荷载,复核堤防临水、背水侧堤坡。

③渗透稳定分析当实际出逸坡降大于允许渗流坡降时,可能发生渗透破坏,应采取措施,反之,则不会发生渗透变形。

(2)边坡抗滑稳定①计算方法边坡稳定分析采用瑞典圆弧法计算,公式如下:具体计算采用河海大学Autobank7.0软件计算。

②安全系数根据《堤防工程设计规范》,3级堤防边坡允许最小安全系数:a.正常工作条件1.1.20;b.非常运用条件Ⅱ为1.05;4级堤防边坡允许最小安全系数:a.正常工作条件1.15;b.非常運用条件Ⅱ为1.00;③计算工况拟定边坡稳定分析计算工况如下:工况1:河道设计水位正常运行,堤外无水,复核堤防迎水坡、背水坡稳定;工况2:河道设计水位正常运行工况下增加地震荷载,复核堤防临水、背水侧堤坡。

尾矿库渗流稳定分析的数值计算方法与结果解释

尾矿库渗流稳定分析的数值计算方法与结果解释

尾矿库渗流稳定分析的数值计算方法与结果解释尾矿库是矿山开采过程中产生的尾矿的存储和处理设施。

尾矿库的渗流稳定性分析对于保障尾矿库的安全运行至关重要。

本文将介绍尾矿库渗流稳定分析的数值计算方法与结果解释。

一、数值计算方法1.模拟尾矿库渗流的数学模型:尾矿库渗流的数学模型主要包括连续介质流体力学方程、渗流方程、边界条件和初始条件。

其中,连续介质流体力学方程包括质量守恒方程和动量守恒方程,渗流方程采用达西-贝奇定律进行描述。

2.数值计算方法选择:在尾矿库的渗流稳定性分析中,常用的数值计算方法包括有限差分法、有限元法和边界元法等。

根据尾矿库的实际情况和计算需求,选择适合的数值计算方法。

3.建立尾矿库渗流模型:根据尾矿库的实际情况,确定尾矿库的几何形状、材料特性和边界条件,并在计算领域中离散化建立数值模型。

4.离散化方法选择:离散化方法的选择根据计算模型和目标进行,一般可采用有限差分法或有限元法进行离散化处理。

5.数值解法选择:根据离散化后的数值模型,选择合适的数值解法求解连续介质流体力学方程和渗流方程,例如迭代法、求解稀疏矩阵方程等。

二、结果解释1.渗流场分析:通过数值计算方法,得到尾矿库内部的渗流场分布情况。

可以分析渗流速度、压力分布等参数,判断渗流情况是否稳定。

2.渗流通量计算:根据数值模型计算出的渗流场分布,可以计算尾矿库的渗流通量。

渗流通量的大小反映了尾矿库的稳定性,可以进一步评估尾矿库的安全性能。

3.渗流路径分析:通过数值计算方法,可以分析尾矿库内部的渗流路径。

根据渗流路径的分析结果,可以判断渗流路径是否稳定,以及是否存在渗漏的情况。

4.渗流位移分析:渗流位移是指尾矿库内部颗粒或溶质由于渗流作用引起的位移变化。

通过数值计算方法,可以分析尾矿库内部颗粒或溶质的渗流位移情况,判断尾矿库的渗流稳定性。

5.灾害风险评估:基于数值计算结果,可以进行尾矿库的灾害风险评估。

通过分析渗流场、渗流通量等参数,评估尾矿库的稳定性,为尾矿库的安全运营提供科学依据。

三家子坝体渗流与渗透稳定计算分析

三家子坝体渗流与渗透稳定计算分析

坝一般 由含细砂 、 级配不 良细砂等填 筑而 成 , 透水性 强 , 一般
都存在渗透 稳 定 问题 。混 合 坝 由低 液 限 黏 土 、 细 粒 土 细 含
i= (g c t ̄ p-t 。 () 6
砂 、 配不 良细砂等混合填筑 而成 , 级 各种 土混 合填筑 , 明显 无 分区 , 透水性强 , 坝体 质 量 较差 , 防渗 设计 中按砂 性 土计 算 。 坝体 的渗 流分析主要计算堤 内平均 渗透 比降 、 背水 坡渗 流 出 口比降及 发生渗透变形 的可能性 , 以便采 取 防止渗 透变形 的 措施 。坝体的渗流 分析 按 不透 水地 基 土堤 渗 流计 算 。其 公
土 坝 为 主 , 坝 总 长 为 97 0m, 合 坝 总 长 为 1 3 土 砂 1 混 00 0m。 坝 一 般 由低 液 限 黏 土 填 筑 而 成 , 密 实 , 体 质 量 较 好 。砂 较 坝
on- a志 s i =

由 于砂 坝及 混 合 坝 以 砂 为 主 , 聚 力 较 小 , 坡 临 界 比 黏 堤
20 09年 第 6期 ( 3 第 7卷)
黑 龙 江 水 利 科 技 He og agS i c n eh o g f t o sra c i nj n c n eadT cnl yo e C nevny l i e o Wa r
No 6. o0 . 2 9
( oa N .7 T dl o3 )
三家子坝体位于 呼兰区南部 , 全长 1. 8k 堤 高 3 8~ 10 m, .

5 8I, . 坝体类型有土坝 、 n 砂坝 和混合 坝 , 防洪标 准 为 5~1 0a

} + = 。 h ̄ o -

渗透稳定性验算

渗透稳定性验算

渗透稳定性验算
C.0.1 坑底以下有水头高于坑底的承压水含水层,且未用截水帷幕隔断其基坑内外的水力联系时,承压水作用下的坑底突涌稳定性应符合下式规定(图C.0.1):
()ty w K D h D ≥+∆γγ (C.0.1)
式中: K ty ──突涌稳定性安全系数; K ty 不应小于1.1;
D ──承压含水层顶面至坑底的土层厚度(m);
γ──承压含水层顶面至坑底土层的天然重度
(kN/m 3);对成层土,取按土层厚度加权的平均
天然重度;
Δh ──基坑内外的水头差(m);
1-截水帷幕;2-基底;3-承压水测管水位;4-承压水含
水层;5-隔水层
C.0.2 悬挂式截水帷幕底端位于碎石土、砂土或粉土含水层时,对均质含水层,地下水渗流的流土稳定性应符合下式规定(图C.0.2):
()se w
K h D D ≥∆+γγ'18.02 (C.0.2) 式中: K se ──流土稳定性安全系数;安全等级为一、二、
三级的支护结构,K se 分别不应小于1.6、1.5、
1.4;
D ──截水帷幕底面至坑底的土层厚度(m);
D 1──潜水水面或承压水含水层顶面至基坑底面的土层厚度(m);
γ'──土的浮重度(kN/m 3);
Δh ──基坑内外的水头差(m);
γw ──水的重度(kN/m 3)。

图C.0.2 采用悬挂式帷幕截水时的流土稳定性验算
1-截水帷幕;2-基坑底面;3-含水层;4-潜水水位;
5-承压水测管水位;6-承压含水层顶面
C.0.3 坑底以下为级配不连续的不均匀砂土、碎石土含水层时,应进行土的管涌可能性判别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

赤峰市红山区城郊乡防洪工程
5.6稳定计算
5.6.1渗流及渗透稳定计算
1)渗流分析的目的
(1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。

(2)估算堤身、堤基的渗透量。

(3)求出局部渗流坡降,验算发生渗透变形的可能。

概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。

2)渗流分析计算的原则
(1)土堤渗流分析计算断面应具有代表性。

(2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。

3)渗流分析计算的内容
(1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。

(2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。

(3)设计洪水位降落时临水侧堤身内自由水位。

4)堤防渗流分析计算的水位组合
(1)临水侧为设计洪水位,背水侧为相应水位。

(2)临水侧为设计洪水位,背水侧无水。

(3)洪水降落时对临水侧堤坡稳定最不利情况。

5)渗透计算方法
堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。

6)土堤渗流分析计算
计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。

采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式:
T
H L T
H H D 88.0m k q q 11210
++-+=)( (E.3.1)
H m m b 121+-+=)(H H L (E2.1-3)
111
1
2m m H L +=
∆ (E2.1-4) 当K ≤k 0时
h 0=a+H 2=q ÷⎭
⎬⎫⎩⎨
⎧+++⎥⎦⎤⎢⎣⎡++++∙T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(1220222
22
+H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定
X=k ·T '0q h y -+k '
22
2q h y - ……………(E.3.2-6)
式中:q'= )
(021112
0211
m 2m 2k h m H L h H -++-+0
2110
10m k h m H L h H T -+-(E.3.2-7)
k ——堤身渗透系数; k 0——堤基渗透系数; H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m );
q ——单位宽度渗流量(m 3/s ·m ); m 1——上游坡坡率,m 1=3.0;
m2——下游坡坡率,m2=3.0;
b——坝体顶部宽度6.0m;
h0——下游出逸点高度(m);
锡伯河采用数据列表如下:
正常工况锡伯河渗流计算结果表
锡伯河防洪堤筑堤土为低液限粉土,基础为砂砾基础,强透水地基,堤身部分为相对不透水层,基础和堤身渗透系数相差100倍以上,下游无水,经计算堤身和堤脚无无出逸点,渗流稳定。

半支箭防洪堤计算结果如下:按照《堤防工程设计规范》E.7.1中说明地基中表层土透水性较强,两层的渗透系数之比大于100即可称为双层地基,计算得知越流系数为0.008,本设计筑堤土了为低液限粉土,基础为砂砾基础,强透水地基,堤身部分为相对不透水层,下游无水,经计算堤身和堤脚无无出逸点,渗流稳定。

(采用公式为0
101
k k T T A (T 1为弱透水层厚度,T 0为强透水层厚度)。

5欢迎下载。

6欢迎下载
7、抗滑稳定计算 计算方法:
此堤防的稳定计算分析采用理正边坡稳定分析系统,选用复杂土层土坡稳定计算,采用碾压式土石坝设计规范,分别考虑了稳定渗流期,施工期,水位降落期三种情况。

采用圆弧滑动法,根据实际情况考虑了地震烈度7度,计算方法采用简化毕肖普法,自动搜索最危险滑裂面,求得最小安全系数。

在计算过程中,根据大坝的实际情况输入土坝的重度和饱和重度,粘聚力,内摩擦角,考虑了孔隙水压力,采用近似方法计算,不考虑渗透力的作用。

计算成果表见下面。

以下为计算过程中采用的公式: 简化毕肖普法:(1)施工期的安全因数:
[]∑∑⎭
⎬⎫⎩

⎧-+=β
φφθ
sin 1
')1('W tg m tg B W b C K (有效应力法) (5.1-24)
[]∑
∑⎭⎬
⎫⎩⎨⎧+=βφθsin 1W m Wtg b C K u u (总应力法) (5.1-25)(2)水库降落
期的总应力法:
[]∑
∑⎭⎬⎫⎩⎨⎧-+=βφθsin 1)(W m tg b u W C K cu
i cu (5.1-26)
(3)稳定渗流期或水库水位降落期有效应力法
[]∑∑+⎭⎬⎫
⎩⎨⎧-+++=βφγθsin )(1'))21(('2
1W W m tg ub Zb W W b C K w
(5.1-27)
式中:
b 条块宽度;
W 条块实重,W=W1+W2+rwZb ;
W1在坝坡外水位以上的条块实重;
W2 在坝坡外水位以下的条块浮重;
Z 坝坡外水位高出条块底面中点的距离;
Ui 水库水位降落前坝体中的孔隙压力;
U 稳定渗流期或水库降落期坝体或地基中的孔隙压力;
β条块的重力线与通过此条块底面中点的半径之间的夹角。

C’'φ施工期有效应力法中粘性土的强度指标
C u uφ施工期总应力法中的土的强度指标。

C cu,cu
φ稳定渗流期和水库水位降落期中的土的强度指标。

锡伯河堤防稳定计算成果表
安全系数符合规范要求,坝体稳定。

通过以上计算,根据《堤防工程设计规范》(GB 50286-98),两道堤防均属2级,抗滑稳定安全系数正常运用条件k允=1.25,非常运用条件Ⅰk允=1.15,由成果知上游各个工况的稳定安全系数均在允许范围内的安全系数,堤防稳定。

堤防上下游坡稳定计算简图如前页。

精品文档。

10欢迎下载
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档