2019届云南云大附中(一二一校区)中考一模数学试卷【含答案及解析】

合集下载

最新2019-2020年云南省昆明市中考数学一模试卷 解析版

最新2019-2020年云南省昆明市中考数学一模试卷  解析版

云南省中考数学一模试卷一、填空题(共6小题,每小题3分,满分18分)1.(3分)函数y=中,自变量x的取值范围是.2.(3分)太阳半径约为696 000千米,数字696 000用科学记数法表示为.3.(3分)写出满足<a<的整数a的值为.4.(3分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.5.(3分)如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是.6.(3分)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2018根火柴棍,并且正三角形的个数比正六边形的个数多7个,那么能连续搭建正三角形的个数是.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4分)已知资阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低()A.4℃B.﹣4℃C.4℃或者﹣4℃D.34℃8.(4分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志9.(4分)下列运算正确的是()A.a2+a3=a5B.a(b﹣1)=ab﹣aC.3a﹣1=D.(3a2﹣6a+3)÷3=a2﹣2a10.(4分)某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=811.(4分)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人12.(4分)已知关于x的一元二次方程kx2﹣2x+3=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>﹣C.k>﹣且k≠0D.k<且k≠0 13.(4分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc >0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个B.2个C.3个D.4个14.(4分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB'C',若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是()A.πB.πC.2πD.4π三、解答题(共9小题,满分70分)15.(10分)计算:(1)﹣2cos30°+(﹣)﹣2﹣|1﹣|;(2)解不等式组:16.(6分)先化简,再求值:(+x+2)÷,其中x是方程x2=2x的根.17.(6分)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.18.(8分)某校开展了以“人生观、价值观”为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如图所示的扇形统计图.(1)该班学生选择“和谐”观点的有人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐”和“感恩”观点的概率.19.(6分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型花片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用不超过6300元,求A型芯片至少购买多少条?20.(8分)如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,﹣4).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积;(3)观察图象,直接写出ax+b>的x取值范围.21.(7分)如图,对称轴为直线x=﹣1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC =2S△BOC,求点P的坐标.22.(7分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cos B=,求DE的长.23.(12分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;,BP=x(0≤x≤2),求y与x之间的函数关系式,(3)在平移变换过程中,设y=S△OPB并求出y的最大值.2019年云南省昆明市西山区中考数学一模试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3分)函数y=中,自变量x的取值范围是x≤3.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(3分)太阳半径约为696 000千米,数字696 000用科学记数法表示为 6.96×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中696 000有6位整数,n=6﹣1=5.【解答】解:696 000=6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)写出满足<a<的整数a的值为4.【分析】估算确定出整数a的值即可.【解答】解:∵9<10<16,16<17<25,∴3<<4,4<<5,则满足题意a的值代入4,故答案为:4【点评】此题考查了估算无理数的大小,并且估算无理数的方法是解本题的关键.4.(3分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有2个.【分析】根据若从中任摸一个球,恰好是黑球的概率为,列出关于n的方程,解方程即可.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.5.(3分)如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是16.【分析】根据三角形的中位线定理求出DE=BC,DE∥BC,求出△ADE∽△ABC,根据相似三角形的性质得出比例式,代入求出即可.【解答】解:∵D、E为边AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,∵△ADE的面积为4,∴△ABC的面积是16,故答案为:16.【点评】本题考查了相似三角形的性质和判定,三角形的中位线定理等知识点,能推出△ADE∽△ABC是解此题的关键,注意:相似三角形的面积比等于相似比的平方.6.(3分)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2018根火柴棍,并且正三角形的个数比正六边形的个数多7个,那么能连续搭建正三角形的个数是297.【分析】设搭建了x个正三角形,y个正六边形,则搭建正三角形用掉了(2x+1)根火柴棍,搭建正六边形用掉了(5y+1)根火柴棍,根据“搭建正三角形和正六边形共用了2018根火柴棍,并且正三角形的个数比正六边形的个数多7个”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设搭建了x个正三角形,y个正六边形,则搭建正三角形用掉了(2x+1)根火柴棍,搭建正六边形用掉了(5y+1)根火柴棍,依题意,得:,解得:.故答案为:297.【点评】本题考查了二元一次方程组的应用以及规律型:图形的变化类,找准等量关系,正确列出二元一次方程组是解题的关键.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4分)已知资阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低()A.4℃B.﹣4℃C.4℃或者﹣4℃D.34℃【分析】所求的数值就是最高气温与最低气温的差,利用有理数的减法法则即可求解.【解答】解:19﹣15=4(℃)答:这天的最低气温比最高气温低4℃.故选:A.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.8.(4分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A、图形是中心对称轴图形,也是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.(4分)下列运算正确的是()A.a2+a3=a5B.a(b﹣1)=ab﹣aC.3a﹣1=D.(3a2﹣6a+3)÷3=a2﹣2a【分析】根据合并同类项法则、单项式乘多项式、负整数指数幂及多项式除以单项式法则逐一计算可得.【解答】解:A、a2、a3不是同类项,不能合并,错误;B、a(b﹣1)=ab﹣a,正确;C、3a﹣1=,错误;D、(3a2﹣6a+3)÷3=a2﹣2a+1,错误;故选:B.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、单项式乘多项式、负整数指数幂及多项式除以单项式法则.10.(4分)某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=8【分析】根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.【解答】解:A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为[3×(8﹣8)2+(9﹣8)2+(7﹣8)2]=0.4,故本选项错误;D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;故选:D.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.同时考查了中位数、众数与平均数的定义.11.(4分)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯55次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12.(4分)已知关于x的一元二次方程kx2﹣2x+3=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>﹣C.k>﹣且k≠0D.k<且k≠0【分析】要使一元二次方程有两个不相等的实数根,判别式必须大于0,得到k的取值范围,因为方程是一元二次方程,所以k不为0.【解答】解:∵关于x的一元二次方程kx2﹣2x+3=0有两个不相等的实数根,∴△=4﹣12k>0,且k≠0∴k<且k≠0,故选:D.【点评】本题考查的是根的判别式,当判别式的值大于0时,方程有两个不相等的实数根,同时要满足二次项的系数不能是0.13.(4分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc >0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个B.2个C.3个D.4个【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=﹣2a<0,则可对②进行判断;利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用抛物线的对称性得到可对③进行判断;利用x=﹣1时,y<0可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,且两交点为抛物线上的对称点.熟练掌握二次函数图象与系数的关系.14.(4分)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°.把△ABC 绕点A 按顺时针方向旋转60°后得到△AB 'C ',若AB =4,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是( )A .πB .πC .2πD .4π【分析】根据阴影部分的面积是:扇形BAB ′的面积+S △AB ′C ′﹣S △ABC ﹣扇形CAC ′的面积,分别求得:扇形BAB ′的面积S △AB ′C ′,S △ABC 以及扇形CAC ′的面积,即可求解.【解答】解:扇形BAB ′的面积是:=,在直角△ABC 中,BC =AB •sin60°=4×=2,AC =AB =2,S △ABC =S △AB ′C ′=AC •BC =×2×2=2.扇形CAC ′的面积是:=,则阴影部分的面积是:扇形BAB ′的面积+S △AB ′C ′﹣S △ABC ﹣扇形CAC ′的面积=﹣=2π.故选:C .【点评】本题考查了扇形的面积的计算,正确理解阴影部分的面积是:扇形BAB ′的面积+S △AB ′C ′﹣S △ABC ﹣扇形CAC ′的面积是关键. 三、解答题(共9小题,满分70分)15.(10分)计算:(1)﹣2cos30°+(﹣)﹣2﹣|1﹣|;(2)解不等式组:【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=3﹣2×+4﹣(﹣1)=3﹣+4﹣+1=+5;(2)解不等式2(x+1)>5x﹣7,得:x<3,解不等式>2x,得:x<2,则不等式组的解集为x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(+x+2)÷,其中x是方程x2=2x的根.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=(x+2)(+1)÷=(x+2)••=,由于x2=2x,∴x=0或x=,当x=0时,∴原式==﹣1;当x=时,∴原式==﹣3﹣2.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(6分)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.【分析】(1)利用平行线的性质,根据SAS即可证明;(2)利用全等三角形的性质可知∠NAF=∠ECM,求出∠ECM即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)解:∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(8分)某校开展了以“人生观、价值观”为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如图所示的扇形统计图.(1)该班学生选择“和谐”观点的有5人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是36°.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有420人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐”和“感恩”观点的概率.【分析】(1)选择“和谐”观点的人数等于总人数乘以和谐观点的百分率,圆心角就是用圆周角乘以和谐观点的百分率;(2)用总人数乘以持感恩观点的所占的百分比即可得到选择感恩观点的学生数;(3)列出表格,然后求解答案.【解答】解:(1)共调查了50名学生,选择“和谐”观点的占10%,50×10%=5,360°×10%=36°;(2)∵选择“感恩”的占28%,∴1500×28%=420人,(3)∴恰好选到“和谐”和“感恩”观点的概率=.【点评】本题考查的是扇形统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.19.(6分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型花片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用不超过6300元,求A型芯片至少购买多少条?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,且符合题意,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)≤6300,解得:a≥.答:A型芯片至少购买条.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准数量关系,正确列出一元一次不等式.20.(8分)如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,﹣4).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积;(3)观察图象,直接写出ax+b>的x取值范围x<﹣2或0<x<4.【分析】(1)将B点坐标代入y=,求出反比例函数解析式;利用锐角三角函数关系得出HC的长,由点O是线段CH的中点得出A点横坐标,把A点横坐标的值代入反比例函数解析式,得出A点坐标,进而将A、B两点坐标代入y=ax+b,即可得出一次函数解析式;(2)根据三角形面积公式列式即可得出△BCH的面积;(3)观察一次函数图象在反比例函数图象上方的部分对应的自变量的取值范围即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过点B(4,﹣4),∴k=4×(﹣4)=﹣16,∴反比例函数解析式为:y=﹣.∵AH⊥x轴于点H,AC=4,cos∠ACH=,∴==,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,将x=﹣2代入y=﹣,得y=8,,∴A(﹣2,8).设一次函数解析式为:y=kx+b,将A(﹣2,8),B(4,﹣4)代入,得:,解得:,∴一次函数解析式为:y=﹣2x+4;(2)∵HC=4,B(4,﹣4),∴△BCH的面积为:×4×4=8;(3)观察图象可知:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象的上方,所以ax+b>的x取值范围是x<﹣2或0<x<4.故答案为x<﹣2或0<x<4.【点评】此题考查了反比例函数与一次函数的交点问题,利用待定系数法求函数的解析式,锐角三角函数定义,三角形的面积,正确得出A点坐标是解题关键.利用了数形结合思想.21.(7分)如图,对称轴为直线x=﹣1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC =2S△BOC,求点P的坐标.【分析】(1)由点A与点B关于直线x=﹣1对称可求得点B的坐标.将点A和点B的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标.【解答】解:(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y =x 2+2x ﹣3.(2)∵将x =0代y =x 2+2x ﹣3入,得y =﹣3, ∴点C 的坐标为(0,﹣3). ∴OC =3.∵点B 的坐标为(1,0), ∴OB =1.设点P 的坐标为(a ,a 2+2a ﹣3),则点P 到OC 的距离为|a |. ∵S △POC =2S △BOC ,∴OC •|a |=OC •OB ,即×3×|a |=2××3×1,解得a =±2. 当a =2时,点P 的坐标为(2,5); 当a =﹣2时,点P 的坐标为(﹣2,﹣3). ∴点P 的坐标为(2,5)或(﹣2,﹣3).【点评】此题考查了待定系数法求二次函数,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想,属于中考常考题型.22.(7分)如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连结BC ,交⊙O 于点D ,点E 是BC 边的中点,连结AE . (1)求证:∠AEB =2∠C ;(2)若AB =6,cos B =,求DE 的长.【分析】(1)根据切线的性质证明即可; (2)连接AD ,根据三角函数解答即可. 【解答】(1)证明:∵AC 是⊙O 的切线, ∴∠BAC =90°. ∵点E 是BC 边的中点,∴AE=EC.∴∠C=∠EAC,∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C.(2)连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB=6,,∴BD=.在Rt△ABC中,AB=6,,∴BC=10.∵点E是BC边的中点,∴BE=5.∴.【点评】此题考查切线的性质,关键是根据切线性质和三角函数解答.23.(12分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S,BP=x(0≤x≤2),求y与x之间的函数关系式,△OPB并求出y的最大值.【分析】(1)根据平移的性质,可得PQ,根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系;(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得二次函数,根据二次函数的性质,可得到答案.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE=,∴y=וx,即y=(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE=,∴y=וx,即y=﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y有最大值为;综上所述,∴当x=2时,y有最大值为2.【点评】本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键,又利用了二次函数的性质.。

2019年云南省中考数学模拟试卷含答案解析

2019年云南省中考数学模拟试卷含答案解析

2019年云南省中考数学模拟试卷一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是 .3.若x 、y 为实数,且|x+3|+=0,则 的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+ (3100),仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .237000 8.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=09.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B 2019x y()(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)11.下面空心圆柱形物体的左视图是()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A. B. C. D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则 的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值. 【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需2019x y()添加的一个条件是∠ABC=90°(只需添加一个即可)【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B (1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A. B. C. D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE 的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF 可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,=AC•CD=∴S△ACD(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。

2018-2019年云南省中考数学一模试卷含答案解析

2018-2019年云南省中考数学一模试卷含答案解析

中考数学一模试卷一、选择题(每小题4分,共32分)1.(4分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.2.(4分)下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x33.(4分)若代数式2x a y3z c与是同类项,则()A.a=4,b=2,c=3 B.a=4,b=4,c=3 C.a=4,b=3,c=2 D.a=4,b=3,c=44.(4分)下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.5.(4分)若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限6.(4分)若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()A.1 B.2 C.﹣D.﹣7.(4分)如图,CD是⊙O的直径,已知∠1=30°,则∠2=()A.30° B.45° C.60° D.70°8.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(每小题3分,共18分)9.(3分)的算术平方根是.10.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为.11.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为.12.(3分)x2+kx+9是完全平方式,则k= .13.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c= .14.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.三、解答题(共9小题,共70分)15.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.16.(7分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.17.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?18.(8分)如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD=BC,试判断四边形ABED的形状,并说明理由.19.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.(6分)某商店从厂家以每件18元购进一批商品出售,若每件售价为a元,则可售出(320﹣10a)件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?21.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.22.(8分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?23.(12分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.参考答案与试题解析一、选择题(每小题4分,共32分)1.(4分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.2.(4分)下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3【解答】解:A、x•x6=x7,原式计算错误,故本选项错误;B、(x2)3=x6,原式计算正确,故本选项正确;C、(x+2)2=x2+4x+4,原式计算错误,故本选项错误;D、(2x)3=8x3,原式计算错误,故本选项错误.故选B.3.(4分)若代数式2x a y3z c与是同类项,则()A.a=4,b=2,c=3 B.a=4,b=4,c=3 C.a=4,b=3,c=2 D.a=4,b=3,c=4【解答】解:∵代数式2x a y3z c与是同类项,∴a=4,b=3,c=2,故选C.4.(4分)下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选B.5.(4分)若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限【解答】解:由bk<0,知①b>0,k<0;②b<0,k>0,①当b>0,k<0时,直线经过第一、二、四象限,②b<0,k>0时,直线经过第一、三、四象限.综上可得函数一定经过一、四象限.故选D.6.(4分)若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()A.1 B.2 C.﹣D.﹣【解答】解:依题意得:x1+x2=3,x1•x2=﹣4,所以+===﹣.故选:C.7.(4分)如图,CD是⊙O的直径,已知∠1=30°,则∠2=()A.30° B.45° C.60° D.70°【解答】解:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ACD中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°,故选C.8.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.二、填空题(每小题3分,共18分)9.(3分)的算术平方根是.【解答】解:∵,,故答案为:2.10.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为 4.4×106.【解答】解:将4400000用科学记数法表示为:4.4×106.故答案为:4.4×106.11.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为 2 .【解答】解:菱形的面积=×1×4=2.故答案为:2.12.(3分)x2+kx+9是完全平方式,则k= ±6 .【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.13.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c= 1 .【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.14.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).【解答】方法一:解:∵直线y=x+1,x=0时,y=1,∴A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是:1=20,A1的横坐标是:0=20﹣1,∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,即点A4的坐标为(7,8).据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.即点A n的坐标为(2n﹣1﹣1,2n﹣1).∴点A6的坐标为(25﹣1,25).∴点B6的坐标是:(26﹣1,25)即(63,32).故答案为:(63,32).方法二:∵B1C1=1,B2C2=2,∴q=2,a1=1,∴B6C6=25=32,∴OC1=1=21=1,OC2=1+2=22﹣1,OC3=1+2+4=23﹣1…OC6=26﹣1=63,∴B6(63,32).三、解答题(共9小题,共70分)15.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.【解答】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.16.(7分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【解答】解:(﹣a+1)÷===,当a=0时,原式=.17.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为4% ,C级学生所在的扇形圆心角的度数为72°;(2)该班学生体育测试成绩的中位数落在等级 B 内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【解答】解:(1)总人数为25÷50%=50人,D成绩的人数占的比例为2÷50×100%=4%,表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°,故答案为:4%,72°;(2)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B 成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;故答案为:B;(3)×500=380(人),答:估计这次考试中A级和B级的学生共有380人.18.(8分)如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD=BC,试判断四边形ABED的形状,并说明理由.【解答】(1)证明:∵∠BDC=90°,∠BDE=∠DBC,∴∠EDC=∠BDC﹣∠BDE=90°﹣∠BDE,又∵∠C=90°﹣∠DBC,∴∠EDC=∠C,∴DE=EC;(2)若AD=BC,则四边形ABED是菱形.证明:∵∠BDE=∠DBC.∴BE=DE,∵DE=EC,∴DE=BE=EC=BC,∵AD=BC,∴AD=BE,∵AD∥BC,∴四边形ABED是平行四边形,∵BE=DE,∴▱ABED是菱形.19.(8分)在Rt△ABC中,∠AC B=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.【解答】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.20.(6分)某商店从厂家以每件18元购进一批商品出售,若每件售价为a元,则可售出(320﹣10a)件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?【解答】解:设每件商品的售价定为a元,则(a﹣18)(320﹣10a)=400,整理得a2﹣50a+616=0,∴a1=22,a2=28∵18(1+25%)=22.5,而28>22.5∴a=22.卖出商品的件数为320﹣10×22=100.答:每件商品的售价应定为22元,需要卖出这种商品100件.21.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA=90°,∴点A到A2的路径长为=π.22.(8分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.23.(12分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【解答】解:(1)∵分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0),将x=0,y=2代入y=﹣x2+bx+c得c=2,将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=,∴抛物线解析式为:y=﹣x2+x+2;(2)如答图1,设MN交x轴于点E,则E(t,0),BE=4﹣t.∵tan∠ABO===,∴ME=BE•tan∠ABO=(4﹣t)×=2﹣t.又N点在抛物线上,且x N=t,∴y N=﹣t2+t+2,∴MN=y N﹣ME=﹣t2+t+2﹣(2﹣t)=﹣t2+4t,∴当t=2时,MN有最大值4;(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,从而D为(0,6)或D(0,﹣2),(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,易得D1N的方程为y=x+6,D2M的方程为y=x﹣2,由两方程联立解得D为(4,4)故所求的D点坐标为(0,6),(0,﹣2)或(4,4).。

2019年云南省中考数学模拟试卷(一)含答案解析

2019年云南省中考数学模拟试卷(一)含答案解析

2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 . 2.在函数y=中,自变量x 的取值范围是.3.若x 、y 为实数,且|x+3|+=0,则 的值为 .4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 . 6.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7.一个数用科学记数法表示为2.37×105,则这个数是( ) A .237 B .2370 C .23700 D .2370008.下列运算正确的是( ) A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( ) A .(4,3) B .(3,4) C .(﹣1,﹣2) D .(﹣2,﹣1) 11.下面空心圆柱形物体的左视图是( )2019xy()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE ⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA ⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 ﹣2 . 【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答. 【解答】解:|﹣2|的相反数是-2, 故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0, 解得:x ≥1. 故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则 的值为 ﹣1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得:x+3=0,且y ﹣3=0, 解得x=﹣3,y=3. 则原式=﹣1. 故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019xy()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+...+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n 的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO ⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE ⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD 是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA ⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.21。

(完整)云南省2019年中考数学模拟试题及答案,推荐文档

(完整)云南省2019年中考数学模拟试题及答案,推荐文档

一元二次方程x 2-2x .2,021-==x x 1:对这两名运动员的成绩进行比较,下列
四个结论中,不正确的是
.甲运动员得分的极差大于乙运动员得分的极差如图3,△ABC 的周长为AC 对折,使顶点BC 边于点D ,交
,有一块含有点放在直尺的对边上
图730°. 已知A 点海班勤工俭学活动中获得2018元,班委会决定拿出不少于270元但不超过参加勤工俭学活动的同学购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件恤比每本影集贵9元,用200元恰好可以买到2件T 恤和5本影集.恤和每本影集的价格分别为多少元?1
1
y
图3图4。

2019年最新云南省中考数学模拟试卷含答案解析

2019年最新云南省中考数学模拟试卷含答案解析

九年级数学中考模拟试卷一、填空题:1.若|2x﹣1|=3,则x= .2.如图,已知AF∥EC,AB∥CD,∠A=65°,则∠C= 度.3.分解因式:x2+2x-3=____________.4.正多边形的一个外角等于20°,则这个正多边形的边数是______.5.设x,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22= .16.如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是.二、选择题:7.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10128.小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x之间的关系的大致图象是()A. B. C. D.9.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()10.计算÷=()A. B.5 C. D.11.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大概是( )12.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是713.下列图形中不是中心对称图形的是()14.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是( )A.(,3)、(﹣,4)B.()、(﹣)C.()、(﹣)D.()、(﹣)三、解答题:15.解不等式组:,并把解集在数轴上表示出来.16.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.17.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?18.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?19.某校为了了解本校九年级女生体育项目跳绳的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟跳绳测试,同时统计每个人跳的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥180),良好(150≤x≤179),及格(135≤x≤149)和不及格(x≤134),并将统计结果绘制成如下两幅不完整的统计图。

2019年云南省中考数学试卷和答案解析

2019年云南省中考数学试卷和答案解析

2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6℃.解析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.参考答案:解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.点拨:本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.解析:直接利用完全平方公式分解因式即可.参考答案:解:x2﹣2x+1=(x﹣1)2.点拨:本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140度.解析:根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.参考答案:解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.点拨:本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k =15.解析:点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.参考答案:解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:15点拨:考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k的值;比较简单.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.解析:由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.参考答案:解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.点拨:此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于16或8.解析:过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.参考答案:解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.点拨:本题考查了平行四边形的性质,平行四边形的面积公式的运用,30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.点拨:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.参考答案:解:将688000用科学记数法表示为6.88×105.故选:C.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°解析:n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.参考答案:解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.点拨:本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1解析:要根式有意义,只要令x+1≥0即可参考答案:解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.点拨:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π解析:首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.参考答案:解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.点拨:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1解析:观察指数规律与符号规律,进行解答便可.参考答案:解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.点拨:此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9解析:利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=r,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.参考答案:解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OFAE为正方形,设OE=r,则AE=AF=r,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.点拨:本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2解析:根据不等式组的解集的概念即可求出a的范围.参考答案:解:解关于x的不等式组得∴a≥2故选:D.点拨:本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(π﹣5)0﹣+(﹣1)﹣1.解析:先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.参考答案:解:原式=9+1﹣2﹣1=10﹣3=7.点拨:此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.解析:由SSS证明△ABC≌△ADC,得出对应角相等即可.参考答案:证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.点拨:本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件177048022018012090数人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解析:(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.参考答案:解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,月销售量大于和等于180的人数超过一半,所以中位数最适合作为月销售目标,有一半以上的营业员能达到销售目标.点拨:本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.解析:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.参考答案:解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.点拨:本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.解析:画树状图展示所有16种等可能的结果数,然后根据概率公式求解.参考答案:解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.点拨:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.解析:(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO =∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.参考答案:(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.点拨:本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.解析:(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P 的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.参考答案:解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在抛物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).点拨:主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.解析:(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.参考答案:解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+2200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+2200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.点拨:本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB是⊙C的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.解析:(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.参考答案:解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AE=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,设:即HB交ED于点H,∵∠BEH=∠EHF=α,∠EBH+∠EFH=90°,∴∠BEH+∠EBH=90°,即HB⊥ED,在△BED中,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BFsinβ=10×=,DM=BD﹣MB=.点拨:此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。

云大附中第一次月考数学考试试卷

云大附中第一次月考数学考试试卷

﹣2),C(1,0),点 P(0,2)绕点 A 旋转 180°得到点 P1,点 P1 绕点 B 旋转 180°
得到点 P2,点 P2 绕点 C 旋转 180°得到点 P3,点 P3 绕点 A 旋转 180°得到点 P4,…,
按此作法进行行行下去,则点 P2018 的坐标为

第 3⻚页(共 27⻚页)
云大大附中 2019 届初三上学期第一一次月月考数学卷
(时间:120 分,试卷共 6 ⻚页,共 23 题,满分:120 分)
一一.选择题(共 10 小小题) 1.如图是二二次函数 y=ax2+bx+c 的部分图象,由图象可知不不等式 ax2+bx+c<0 的 解集是( )
A.﹣1<x<5 B.x>5 C.﹣1<x 且 x>5 D.x<﹣1 或 x>5 2.如图,是一一个半径为 6cm,面面积为 12πcm2 的扇形纸片片,现需要一一个半径为 R 的圆形纸片片,使两张纸片片刚好能组合成圆锥体,则 R 等于( ) A.1.5cm B.2cm C.3cm D.4cm 3.下面面图形中,是中心心对称图形的是( )
A.3 B.4 C.5 D.6 9.如图,正三⻆角形 EFG 内接于⊙O,其边⻓长为 2 ,则⊙O 的内接正方方形 ABCD 的边⻓长为( )
A. B.
C.4 D.5
10.如图,已知 AB 是⊙O 的直径,AD 切⊙O 于点 A,点 C 是 的中点,则下 列列结论:①OC∥ AE;②EC=BC;③∠ DAE=∠ ABE;④AC⊥ OE,其中正确的有 ()
A.
B.
C.
D.
4.今年年“十十一一”⻓长假某湿地公园迎来旅游高高峰,第一一天的游客人人数是 1.2 万人人,第
三天的游客人人数为 2.3 万人人,假设每天游客增加的百分率相同且设为 x,则根据

云南省2019年中考数学模拟考试试卷(一)(含解析)

云南省2019年中考数学模拟考试试卷(一)(含解析)

2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是. 3.若x 、y 为实数,且|x+3|+=0,则的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .237000 8.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( )A .(4,3)B .(3,4)C .(﹣1,﹣2)D .(﹣2,﹣1)11.下面空心圆柱形物体的左视图是( )2019xy ()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019xy ()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。

2019年云南省昆明市中考数学模拟试卷(一)(解析版)

2019年云南省昆明市中考数学模拟试卷(一)(解析版)

A. 21,21
B. 22,21
C. 22,22
D. 21,22
4. 下列运算正确的是( )
A.
3
2
B.
12
22
C.
鍀ᢃ 2
2 鍀 2 ᢃ 鍀 ᢃ2
D.
2ᢃ 3
ᢃ3
5. 如图,AB∥CD,CE 交 AB 于点 E,∠1=48°15',∠2=18°45',则∠BEC 的度数为
()ቤተ መጻሕፍቲ ባይዱ
A.
B.
C.
D.
6. 如图,菱形 ABCD 中,∠BAD=60°,AC 与 BD 交于点 O,E 为 CD 延长线上的一点,且 CD=DE,连接
19. 有两个可以自由转动的均匀转盘 A、B 都被分成了 3 等份,并在每一份内 均标有数字,如图所示,规则如下: ①分别转动转盘,其中 A 转盘指针对着的数字记为横坐标,B 转盘指针对 着的数字记为纵坐标; ②两个转盘停止后观察两个指针所指份内的数字(若指针停在等分线上, 则重转一次,直到指针指向某一份内为止). (1)用列表或画树状图的方法表示出上述试验所有可能的结果; (2)张颖和刘亮想用这两个转盘做游戏,决定谁能获得唯一一张 2018 年昆明“南博会”的门票,他 们规定,两个指针所得坐标在第二象限,张颖获得门票,两个指针所得坐标在坐标轴上,刘亮获得门 票.这个游戏公平吗?若不公平,谁获胜的可能性大?
【解析】
解:从物体左面看,是左边 1 个正方形,中间 2 个正方形,右边 1 个正方形. 故选:B. 细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混

云南省2019年中考数学模拟试题及答案

云南省2019年中考数学模拟试题及答案

云南省 2019 年中考数学模拟试题及答案一、选择题(本大题共8 个小题,每小题只有一个正确选项,每小题3 分,满分24分)1.- 2018 的相反数是A.1B .1C .2018 D. 2018 2012 20122.下列等式一定成立的是A. a 2a3 a 5B.( a b) 2 a 2 b 2C. a a 3 a 4D. ( 2ab 2 )36a 3b63.从不同方向看一只茶壶,你认为是俯视图的是4. 一元二次方程2 A B C D x -2x =0 的解是A. x10, x2 2 B . x 0,x21121C. x1 0, x2 D. x10, x2 225.某赛季甲、乙两名篮球运动员9 场比赛得分情况如图 1:对这两名运动员的成绩进行比较,下列50四个结论中,不正确的是40...30A.甲运动员得分的极差大于乙运动员得分的极差20B.甲运动员得分的的中位数大于乙运动员得分的10的中位数1 2 3 4 5 6 7 8 9C.甲运动员的成绩比乙运动员的成绩稳定D.甲运动员的得分平均数大于乙运动员的得分平均数图 1 6.如图 2,若 AB 是⊙ 0 的直径, CD是⊙ O的弦,∠ C=30°, BD= 1,D 则⊙ O的半径是A.1 B . 3 AOC. 2 D . 2 37.某地区青少年活动中心计划新建一个容积CV (m3 ) 一定的长方体游泳池,池的底面积图 2间的函数关系式为S V (h 0) ,这个函数的图像大致是h甲乙BS(m2 ) 与其深度 h(m)之S S SO h O h O hA B C D8. 如图 3,△ ABC的周长为 24cm,把△ ABC的A 边 AC对折,使顶点C和点 A 重合,折痕E 交 BC边于点 D,交 AC边于点 E,连接 AD,若 AE=2cm,则△ ABD的周长是BD CA. 20cmB . 18cm C. 16cm D . 13cm 图 3二、填空题 ( 本大题共6 个小题,每小题 3 分,满分 18 分 )9.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们应该节约用水.若每人每天浪费水 0.32L ,那么100 万人每天浪费的水为201800L,用科学记数法表示为L.10.如图 4,有一块含有 45°角的直角三角板的两个顶点放在直尺的对边上. 如果∠ 2= 25°,那么∠ 1 的2 度数是° .11.在函数 y1中,自变量 x 的取值范围是.1图 4 x 212.已知一次函数y kx b(k 0) 的图像经过一、二、四象限,请你写出一个符合条件的函数关系式.13.某小组在迎新活动中,需制作 5 顶圆锥形的帽子,圆锥底面圆的直径为12cm,高为8cm,则共需材料cm2 .( 结果用含π的式子表示 )14.如图 5 所示的正五边形是一种跳棋的棋盘. 游戏规则是:给正五边形的顶点依次编号为1,2,3,4,5. 若从某一顶点开始,跳棋沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位” . 如:小明在编号为 3 的顶点时,那么他应走3 个边长,即从 3 → 4→ 5→1 为1第一次“移位”,这时他到达编号为 1 的顶点;然后从1→ 2 为第二52次“移位” . 若小宇从编号为1的顶点开始,第 9 次“移位”后,则他所处顶点的编号是____________.43三、解答题 ( 本大题共9 个小题,满分58分 )图 5115.(本小题 4 分)计算: 1 3.14 0sin 60 12 3 .2 216.(本小题 8 分)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的2018名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图、扇形图(如图6).( 1)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是________________ (填写年龄段);(2)求扇形统计图“一般”部分的圆心角的度数;(3)这次随机调查中,年龄段在“25 岁以下”的公民中,“不赞成”的有 5 名,它占“ 25 岁以下”人数的百分数是多少?( 4)如果把所持态度中的“很赞同”和“赞同”的统称为“支持”,那么请你估计该地区20180 名公民中“支百分数持”的人数.35% 很赞同25% 不赞同39%20% 18%10% 10% 一般赞同25岁 25~35 36~45 46~60 60岁年龄段(岁)31% 以下以上图 617.(本小题 6 分)星光中学春游活动中,某数学活动小组组织一次登山活动到达 B 点,再从 B 点沿斜坡BC到达山顶C点,路线如图7 所示 . 斜坡. 他们从山脚下 A 点出发沿斜坡AB的长为 2018 米,斜坡 BC的长为AB400米,在 C点测得B 点的俯角为30°.已知A 点海拔121 米, C 点海拔 821 米 . (1)求 B 点的海拔;(2)求斜坡 AB 的坡度 .18.(本小题6分)初三(5) 班勤工俭学活动中获得2018元,班委会决定拿出不少于270元但不超过300元的资金为参加勤工俭学活动的同学购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件 T恤和 5本影集.(1)求每件 T恤和每本影集的价格分别为多少元?(2)有几种购买方案?并说明 .19.(本小题 7 分)如图8,已知△ ABC ,以 BC 为直径,A点 O 为圆心的半圆交AC 于点 F . 点 E 为 CF 的中点,F 连接 BE 交 AC 于点 M , AD 为BAC 的角平分线,E 且 AD BE ,垂足为点 H .M ( 1)求证:△ CME ∽△BCE ;H2AB 是圆O的切线;BD O C()求证:( 3)若 AB 3, BC 4 ,求证: BE 2CE .图 820.(本小题 6 分)甲乙两名同学玩摸球游戏 . 把除颜色外完全相同的六个小球分别放到两个袋子中,其中一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球. 现在随机从两个袋子中分别摸出一个小球 .甲说:如果摸出两个不同颜色的小球我获胜,摸出两个相同颜色的小球你获胜;乙说:这个游戏规则对我不公平.请你用列表或画“树形图”的方法说明乙的观点是否正确.21.(本小题 6 分)在平面直角坐标系中,y已知△ABC 三个顶点的坐标分别为A( 1, 2), B( 3, 4), C( 2, 9) .(1)画出△ ABC 及△ ABC 绕点 A 顺时针旋转 90 后得到的△ A1 B1 C1;(2)写出点 B1 的坐标;(3)求出过点 B1 的反比例函数的解析式;( 4)求出从 ABC 旋转 90°得到A1 B1C1x1的过程中点 C所经过的路径长 .O 122.(本小题7分)探究问题:( 1)方法感悟:图 9如图 10,在正方形 ABCD中,点 E、F 分别为 DC、BC边上的点,且满足∠ EAF=45°,连接EF,求证 : DE + BF=EF .感悟解题方法,并完成下列填空:将△ ADE绕点 A 顺时针旋转 90°得到△ ABG,此时 AD与 AB 重合,由旋转可得:AB = AD , BG = DE, ∠ 1 = ∠ 2,∠ ABG =∠D=90°,∴∠ ABG +∠ ABF = 90°+ 90°=180°,A 2 D1 3E 因此,点 G、 B、 F 在同一条直线上.∵∠EAF=45°,∴∠ 2+∠ 3=∠ BAD - ∠EAF=90° -45°=45°.CG∵∠ 1=∠ 2,∴∠ 1+∠3=45°.B F即∠ GAF=∠ _________ .图 10又AG=AE, AF=AF,∴△ GAF≌ _______ .∴_________ =EF ,故 DE+BF = EF ;A D ( 2)方法迁移:如图 11,将 Rt ABC 沿斜边翻折得到△ADC,点 E、 F1分别为 DC、 BC边上的点,且∠EAF= ∠ DAB.试猜想DE、 BF、 EF 之间有何数量关系,并证明你的猜想;(3)问题拓展:如图 12,在四边形 ABCD中, AB=AD, E、 F 分别为 DC、BC上的点,满足EAF 1 DAB , 试猜想当∠ B 与∠ D2满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).23.(本小题 8 分)如图 13,在平面直角坐标系中,抛物线过A (-1,0EB CF图11A DDEBF CC图12)、 B(3,0 )、C(0,-1 )三点 .(1)求该抛物线的表达式;(2)若该抛物线的顶点为 D,求直线AD的解析式;(3)点 Q在 y 轴上,点 P 在抛物线上,要使 Q、 P、A、 B 为顶点的四边形是平行四边形,求所有满足条件的点 P 的坐标 .yA OB xCD图13参考答案(全卷共4 个大题,共4 页,满分50 分,考试用时30 分钟)1.(本题 12 分)注意:为了使同学们更好地解答本题,我们提供了—种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.魔方现在的售价为每个35 元,每天可卖出 50 个.市场调查反映:如果调整价格,每降价 1 元,每天可多卖出 2 个.请你帮助分析,当每个魔方降价多少元时,可使每天的销售额最大,最大销售额是多少?设每个魔方降价 x 元,每天的销售额为y 元.( 1)分析:根据问题中的数量关系,用含x 的式子填表:原价每个降价1元每个降价2元⋯⋯每个降价x 元每个售价 ( 元 ) 35 34 33 ⋯⋯每天销量 ( 个 ) 50 52 54 ⋯⋯( 2)由以上分析,用含x 的式子表示 y,并求出问题的解.M D2.(本题 12 分)如图 1 在圆内接四边形 ABCD中,CD为∠ BCA 外角的平分线, F 为 AD上C F点, BC=AF,延长 DF与 BA的延长线交于点 E.( 1)求证:△ ABD为等腰三角形.( 2)求证:△ DCA ∽△ FAE .B A E3.(本题 12 分)已知:如图2,四边形 ABCD是等腰梯形,其中AD∥ BC,AD=2, BC=4, AB=DC=2,点 M从点 B 开图1始,以每秒 1 个单位的速度向点C 运动;点 N 从点 D开始,沿 D— A— B 方向,以每秒1 个单位的速度向点B运动.若点 M、 N 同时开始运动,其中一点到达终点时,A ND另一点就停止运动,运动时间为t ( t > 0).过点 N作NP⊥ BC于点 P,交 BD于点Q.Q( 1)点 D到 BC的距离为;( 2)求出 t 为何值时, QM∥AB;( 3)设△ BMQ的面积为 S,求 S 与 t 的函数关系式;B M P C ( 4)求出 t 为何值时,△ BMQ为直角三角形.图 24.(本题 14 分)已知直线y = kx +3( k< 0)分别交 x 轴、 y 轴于 A、 B 两点,线段 OA上有一动点 P由原点 O向点 A 运动,速度为每秒1 个单位长度,过点 P 作 x 轴的垂线交直线AB于点 C,设运动时间为 t秒.( 1)当 k = ﹣ 1 时,线段OA上另有一动点 Q由点 A 向点 O运动,它与点 P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图3).①直接写出 t=1 秒时 C、 Q两点的坐标;②若以 Q、 C、 A 为顶点的三角形与△ AOB相似,求 t 的值.( 2)当k 3C为顶点的抛物线 y ( xm)2 n 与直线AB 4 时,设以的另一交点为(如图),4D①求 CD的长;②设△ COD的 OC边上的高为h,当 t 为何值时, h 的值最大?。

2019年云南省中考数学模拟试卷(一)(解析版)

2019年云南省中考数学模拟试卷(一)(解析版)

2019年云南省中考数学模拟试卷(一)(解析版)2019年云南省中考数学模拟试卷(一)一、选择题(每小题4分,共32分)1.2019的相反数是()A。

-2019 B。

-1 C。

2019 D。

12.下列图形中,既是轴对称图形又是中心对称图形的是()A。

图A B。

图B C。

图C D。

图D3.下列运算正确的是()A。

3a^2-2a^2=a^2B。

-(2a)^2=-2a^2C。

(a+b)^2=a^2+b^2D。

-2(a-1)=-2a+14.云南宣威普立大桥,连接桥面的公路总长度约为米,将数据用科学记数法表示为()A。

1.46×10^5 B。

0.146×10^6 C。

1.46×10^6 D。

146×10^35.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A。

图A B。

图B C。

图C D。

图D6.一组数据2,4,6,4,8的中位数为()A。

2 B。

4 C。

6 D。

87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A。

35° B。

45° C。

55° D。

65°8.已知一元二次方程x^2+kx-3=0有一个根为1,则k的值为()A。

-2 B。

2 C。

-4 D。

4二、填空题(每小题3分,共18分)9.因式分解:8a^3-2ab^2=2a(4a^2-b^2)10.函数y=√(x-2)的自变量x的取值范围是[2,∞)11.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为1/312.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=50°13.如图,点D为矩形OABC的AB边的中点,反比例函数y=k/x的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=214.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为4π cm三、解答题(共9个小题,70分)15.(6分)计算:|-2|-2cos60°-(2019-1)=|-2|-2×1/2-2018=-201916.(6分)解不等式组:{x|x≤-2}∪{x|x>3},表示为数轴上的解集。

【精品】2019年云南省中考数学模拟试卷(一)含答案解析

【精品】2019年云南省中考数学模拟试卷(一)含答案解析

2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 . 2.在函数y=中,自变量x 的取值范围是.3.若x 、y 为实数,且|x+3|+=0,则 的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7.一个数用科学记数法表示为2.37×105,则这个数是( ) A .237 B .2370 C .23700D .2370008.下列运算正确的是( ) A .3a+2a=5a 2 B .3﹣3=C .2a 2•a 2=2a 6D .60=09.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( ) A .(4,3) B .(3,4) C .(﹣1,﹣2) D .(﹣2,﹣1) 11.下面空心圆柱形物体的左视图是( )2019x y()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 ﹣2 . 【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答. 【解答】解:|﹣2|的相反数是-2, 故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围. 【解答】解:根据题意得:x ﹣1≥0, 解得:x ≥1. 故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得:x+3=0,且y ﹣3=0, 解得x=﹣3,y=3. 则原式=﹣1. 故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019x y()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。

中考数学一模试卷(含答案解析)

中考数学一模试卷(含答案解析)

初中数学试题2019年云南省曲靖市中考数学一模试卷一、选择题(本大题共8小题,共32.0分)1.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,不是中心对称图形.故不符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、是轴对称图形,也是中心对称图形.故符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查中心对称图形,轴对称图形的知识,记住:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.2.下列是一元二次方程的是()+2x−6=0A. x2+3=0B. xy+3x−4=0C. 2x−3+y=0D. 1x【答案】A【解析】解:A、该方程是一元二次方程,故本选项正确;B、该方程中含有两个未知数,不是一元二次方程,故本选项错误;C、该方程中含有两个未知数,不是一元二次方程,故本选项错误;D、该方程是分式方程,故本选项错误;故选:A.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.半径为r的圆的内接正六边形边长为()A. 12r B. √32r C. r D. 2r【答案】C【解析】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=r.故选:C.画出圆O的内接正六边形ABCDEF,连接OA,OB,得到正三角形AOB,可以求出AB的长.本题考查的是正多边形和圆,连接OA,OB,得到正三角形AOB,就可以求出正六边形的边长.4.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A. 2.4m2B. 3.2m2C. 4.8m2D.7.2m2【答案】B【解析】解:∵骰子落在世界杯图案中的频率稳定在常数0.4左右,∴估计骰子落在世界杯图案中的概率为0.4,∴估计宜传画上世界杯图案的面积=0.4×(4×2)=3.2(m2).故选:B.利用频率估计概率得到估计骰子落在世界杯图案中的概率为0.4,然后根据几何概率的计算方法计算世界杯图案的面积.本题考查了频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5.在平面直角坐标系中,点(1,−2)关于原点对称的点的坐标是()A. (1,2)B. (−1,2)C. (2,−1)D. (2,1)【答案】B【解析】解:点(1,−2)关于原点对称的点的坐标是(−1,2),故选:B.平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),记忆方法是结合平面直角坐标系的图形记忆.关于原点对称的点坐标的关系,是需要识记的基本问题.6.下列事件中必然发生的事件是()A. 一个图形平移后所得的图形与原来的图形不一定全等B. 不等式的两边同时乘以一个数,结果仍是不等式C. 过圆外一点引圆的两条切线,这两条切线的长度不一定相等D. 200件产品中有8件次品,从中任意抽取9件,至少有一件是正品【答案】D【解析】解:一个图形平移后所得的图形与原来的图形一定全等,A是不可能事件;不等式的两边同时乘以一个数0,结果不是不等式,B是随机事件;过圆外一点引圆的两条切线,这两条切线的长度一定相等,C是不可能事件;200件产品中有8件次品,从中任意抽取9件,至少有一件是正品,D是必然事件;故选:D.根据事件发生的可能性大小判断相应事件的类型.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=144∘,则∠C的度数是()A. 14∘B. 72∘C. 36∘D. 108∘【答案】D【解析】解:∵∠A=12∠BOD=12×144∘=72∘,而∠A+∠C=180∘,∴∠C=180∘−72∘=108∘.故选:D.先根据圆周角定理计算出∠A=72∘,然后根据圆内接四边形的性质求∠C的度数.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了圆周角定理.8.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2,求原正方形空地的边长xm,可列方程为( )A. (x−1)(x−2)=18B. x2−3x+16=0C. (x+1)(x+2)=18D. x2+3x+16=0【答案】A【解析】解:设原正方形的边长为xm,依题意有(x−1)(x−2)=18,故选:A.可设原正方形的边长为xm,则剩余的空地长为(x−1)m,宽为(x−2)m.根据长方形的面积公式方程可列出.本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.二、填空题(本大题共6小题,共18.0分)9.若式子√3−x有意义,则x的取值范围是______.【答案】x≤3【解析】解:根据题意得:3−x≥0,解得:x≤3.故答案是:x≤3.根据二次根式有意义的条件即可求解.本题考查的知识点为:二次根式的被开方数是非负数.10.如图,已知点O是△ABC的内切圆的圆心,若∠BOC=124∘,则∠A=______.【答案】68∘【解析】解:∵∠BOC=124∘,∴∠OBC+∠OCB=180∘−124∘=56∘,∵点O是△ABC的内切圆的圆心,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=112∘,∴∠A=180∘−112∘=68∘,故答案为:68∘.根据三角形内角和定理求出∠OBC+∠OCB,根据内心的性质得到∠ABC=2∠OBC,∠ACB=2∠OCB,根据三角形内角和定理计算即可.本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.11.若x2−2x=3,则多项式2x2−4x+3=______.【答案】9【解析】解:∵x2−2x=3,∴原式=2(x2−2x)+3=6+3=9.故答案为:9.原式前两项提取2变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于______cm.【答案】5【解析】解:根据题意得:S=πrl,即r=Sπl =30π6π=5,则圆锥底面圆的半径长等于5cm,故答案为:5利用圆锥的侧面积公式计算即可求出所求.此题考查了圆锥的计算,熟练掌握圆锥侧面积公式是解本题的关键.13.若y=(m+2)x m2−2+mx+1是关于自变量x的二次函数,则m=______.【答案】2【解析】解:根据二次函数的定义,得:m2−2=2,解得m=2或m=−2,又∵m+2≠0,∴m≠−2,∴当m=2时,这个函数是二次函数.故答案是:2.根据二次函数的定义条件列出方程与不等式求解即可.本题考查了二次函数,利用二次函数的定义是解题关键,注意二次项的系数不等于零.14.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90∘,把△AP1B绕点B顺时针旋转180∘,得到△BP2C,把△BP2C绕点C顺时针旋转180∘,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2019的坐标为______.【答案】(4037,1) 【解析】解:作P 1⊥x 轴于H , ∵A(0,0),B(2,0), ∴AB =2, ∵△AP 1B 是等腰直角三角形,∴P 1H =12AB =1,AH =BH =1, ∴P 1的纵坐标为1,∵△AP 1B 绕点B 顺时针旋转180∘,得到△BP 2C ;把△BP 2C 绕点C 顺时针旋转180∘,得到△CP 3D ,∴P 2的纵坐标为−1,P 3的纵坐标为1,P 4的纵坐标为−1,P 5的纵坐标为1,…, ∴P 2019的纵坐标为1,横坐标为2019×2−1=4037, 即P 2019(4037,1). 故答案为:(4037,1).根据题意可以求得P 2的纵坐标为−1,P 3的纵坐标为1,P 4的纵坐标为−1,P 5的纵坐标为1,…,从而发现其中的变化的规律,从而可以求得P 2019的坐标.本题考查坐标与图形变化−旋转,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.三、计算题(本大题共1小题,共6.0分)15. 先化简,再求值:(1+1x 2−1)÷x 2x 2−2x+1,其中x =2.【答案】解:(1+1x 2−1)÷x 2x 2−2x+1=x 2−1+1x 2−1÷x 2x 2−2x +1=x 2(x +1)(x −1)⋅(x −1)2x 2=x−1x+1, 当x =2时, 原式=2−12+1=13.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共8小题,共64.0分) 16. 计算:√9+(√93−2)0−|−3|−(13)−1 【答案】解:原式=3+1−3−3 =−2.【解析】直接利用零指数幂的性质以及零指数幂的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.17. 如图,在边长均为1的正方形网格纸上有△ABC 和△DEF ,顶点A 、B ,C ,D 、E 、F 均在格点上,如果△DEF 是由△ABC 绕着某点O 旋转得到的,点A(−4,1)的对应点是点D ,点C 的对应点是点F.请按要求完成以下操作或运算:(1)在图上找到点O 的位置(不写作法,但要标出字母),并写出点O 的坐标;(2)求点B 绕着点O 顺时针旋转到点E 所经过的路径长.【答案】解:(1)如图所示,连接AD ,CF ,作AD 和CF 的垂直平分线,交于点O ,则点O 即为旋转中心,由点A(−4,1)可得直角坐标系,故点O的坐标为(1,−1);(2)点B绕着点O顺时针旋转到点E所经过的路径长为:90×π×3180=32π.【解析】(1)根据旋转变换中对应点与旋转中心的距离相等,可知旋转中心即为对应点连线的垂直平分线的交点;根据点A(−4,1)可得直角坐标系,进而得到点O的坐标为(1,−1);(2)点B绕着点O顺时针旋转到点E所经过的路径为扇形的弧线,根据弧长计算公式即可得到路径长.本题主要考查了利用旋转变换作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.解方程(1)x2−4x+3=0(用配方法求解)(2)(2x−3)2−2x+3=0【答案】解:(1)x2−4x+3=0,x2−4x=−3x2−4x+4=−3+4,即(x−2)2=1,开方,得x−2=±1,解得x1=3,x2=1.(2)(2x−3)2−2x+3=0,(2x−3)(2x−3−1)=0,∴2x−3=0或2x−4=0,所以x1=32,x2=2.【解析】(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解;(2)提取公因式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.本题考查了解一元二次方程−因式分解法:先把一元二次方程化为一般式,然后把方程左边分解为两个一次式的积,从而可把一元二次方程化为两个一元一次方程,解两个一元一次方程,得到一元二次方程的解.也考查了配方法解一元二次方程.19.已知y=x2−(m+2)x+(2m−1)是关于x的抛物线解析式.(1)求证:抛物线与x轴一定有两个交点;(2)点A(−2,y1)、B(1,y2)、C(4,y3)是抛物线上的三个点,当抛物线经过原点时,判断y1、y2、y3的大小关系.【答案】(1)证明:y=x2−(m+2)x+(2m−1),∵△=[−(m+2)]2−4×1×(2m−1)=(m+2)2+4>0,∴抛物线与x轴一定有两个交点;(2)解:∵抛物线y=x2−(m+2)x+(2m−1)经过原点,∴2m−1=0.解得:m=12,∴抛物线的解析式为y=x2−52x.当x=−2时,y1=7;当x=1时,y2=−2;当x=4时,y3=6.∴y2<y1<y3.【解析】(1)根据一元二次方程的根的判别式求出即可;(2)由抛物线经过原点可求得m=12,从而得到抛物线的解析式,然后可求得y1、y2、y3的值,然后再比较大小即可.本题主要考查的是抛物线与x轴的交点,二次函数图象上点的坐标特征,求得m的值是解题的关键.20.一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;【答案】解:(1)设口袋中黄球的个数为x个,根据题意得:22+1+x =12,解得:x=1,经检验:x=1是原分式方程的解,∴口袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:212=16.【解析】(1)设口袋中黄球的个数为x个,根据概率公式得到22+1+x =12,然后利用比例性质求出x即可;(2)画树状图展示所有12种等可能的结果数,再找出两次摸出都是红球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.某网店经营一种新文具,进价为20元,销售一段时间后统计发现:当销售单价是25元时,平均每天的销售量为250件,销售单价每上涨1元,平均每天的销售量就减少10件.(1)求销售单价x(元)为多少时,该文具每天的销售利润W(元)最大?并求出W;(2)为回馈广大顾客同时提高该文具知名度,该网店决定在11月11日(双十一)开展降价促销活动.若当天按(1)的单价降价m%销售并多售出2m%件文具,求销售款额为5250时m的值.【答案】解:(1)∵销售量=250−10(x−25)=500−10x,∴总利润=(x−20)(500−10x)=−10x2+700x−10000=−10(x−35)2+2250∴当x=35时,最大利润为2250元.(2)原来销售量500−10x=500−350=150,35(1−m%)150(1+2m%)=5250设m%=a,∴(1−a)(1+2a)=1,解得:a=0或a=12,∵要降价销售,∴a=12,∴m=50.【解析】(1)首先确定有关利润与售价x之间的二次函数,配方后即可确定最大利润;(2)首先确定原来的销售量,然后销售量×单件利润=总利润列出方程求解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,二次函数的性质的运用,解答时根据条件建立方程是解答本题的关键.22.如图,AB是⊙O的直径,点C是⊙O外一点,连接AC,BC,AC与⊙O交于点D,弦DE与直径AB交于点F,∠C=∠E.(1)求证:BC是⊙O的切线;(2)若DE⊥AB,AE⏜=2BE⏜,AB=2√3,求CD的长.【答案】(1)证明:连接BD,则∠BAE=∠BDE,∵∠AFE=∠DFB,∴∠E=∠ABD,∵∠C=∠E,∴∠C=∠ABE,∵AB是⊙O的直径,∴∠ADB=90∘,∴∠BDC=90∘,∴∠C+∠CBD=90∘,∴∠ABD+∠CBD=90∘,∴AB⊥BC,∴BC是⊙O的切线;(2)解:∵AB是⊙O的直径,DE⊥AB,∴AD⏜=AE⏜,BD⏜=BE⏜,∵AE⏜=2BE⏜,∴AD⏜=2BD⏜,∴∠ABD=2∠DAB,∴∠BAC=30∘,∠ABD=60∘,∴∠C=60∘,∵AB=2√3,∴BC=√3AB=2,3BC=1.∴CD=12【解析】(1)连接BD,根据圆周角定理得到∠BAE=∠BDE,推出∠C=∠ABE,由AB 是⊙O的直径,得到∠ADB=90∘,推出AB⊥BC,于是得到结论;(2)根据垂径定理得到AD⏜=AE⏜,BD⏜=BE⏜,等量代换得到AD⏜=2BD⏜,求得∠ABD=2∠DAB,解直角三角形即可得到结论.本题考查了切线的判定和性质,垂径定理,解直角三角形,圆周角定理,熟练掌握切线的判定和性质是解题的关键.23.如图,对称轴为x=1的抛物线y=x2+bx+c与x轴交于点A(3,0)与y轴交于点B,顶点为C.(1)求抛物线的解析式;(2)求△ABC的面积;(3)若点P在x轴上,将线段BP绕着点P逆时针旋转90∘得到PD,点D是否会落在抛物线上?如果会,求出点P的坐标;若果不会,说明理由.【答案】解:(1)抛物线对称轴为x=1,点A(3,0),则抛物线与x轴另外一个交点为(−1,0),则抛物线的表达式为:y=(x+1)(x−3)=x2−2x−3,令x=0,则y=−3,即点B(0,−3),点C的坐标为(1,−4);(2)设对称轴交直线AB与点H,把点B、A坐标代入一次函数表达式:y=kx−3得:0=3k−3,解得:k=1,则直线BA的表达式为:y=x−3,则点H(1,−2),S△ABC=12CH×OA=12×2×3=3;(3)会,理由:①当点D在对称轴左侧时,如图所示,过点D分别作x、y轴的垂线于点N、M,设点P坐标为(m,0),∵∠DPN+∠OPB=90∘,∠OPB+∠OBP=90∘,∴∠OBP=∠DPN,∠DNP=∠BOP=90∘,PB=PD,∴△DNP≌△POB(AAS),∴DM=OB=3,DN=OP=−m,即点D的坐标(−3,−m)将点D坐标代入二次函数表达式解得:m=−12,即点P坐标为(−12,0),②当点D在对称轴右侧时,同理当点P坐标为(−5,0).【解析】(1)抛物线对称轴为x=1,点A(3,0),则抛物线与x轴另外一个交点为(−1,0),即可求解;(2)利用S△ABC=1CH×OA即可求解;2(3)会,理由:分①当点D在对称轴左侧时、②当点D在对称轴右侧时,两种情况求解即可.本题考查的是二次函数综合运用,涉及到三角形全等、一次函数等知识,题目难度不大,但要弄清题意,避免遗漏.研读课标著名特级教师于永正先生有一个习惯,总是把课程标准中各学段的教学目标复印下来,贴在备课本的首页上,作为“教学指南”。

2019年云南省中考数学模拟试卷含答案

2019年云南省中考数学模拟试卷含答案

2019年云南省中考数学模拟试卷含答案一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是. 3.若x 、y 为实数,且|x+3|+=0,则 的值为 .4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .2370008.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .5 2019x y ()10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2) D.(﹣2,﹣1)11.下面空心圆柱形物体的左视图是()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB 交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA ⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则 的值为 ﹣1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,2019x y ()解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是∠ABC=90°(只需添加一个即可)【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+...+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n 的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2) D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO ⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB 交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD 是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA ⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。

云南省昆明市2019年10月云大附中九年级期中模拟考试数学试卷

云南省昆明市2019年10月云大附中九年级期中模拟考试数学试卷

2019年10月昆明市云大附中九年级期中模拟考试数学试卷一..填空题(共5小题)1.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.2.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是m2.3.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.4.如图,A、B是反比例函数y=在第一象限内的图象上的两点,且A、B两点的横坐标分别是4和8,则△OAB的面积是.5.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为.6.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为.二,选择题(共9小题)7.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.154.如图,圆锥的底面半径为2,母线长为6,则侧面积为()A.4πB.6πC.12πD.16π5.如图,一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣2,y1).B(1,y2)两点,则不等式ax+b﹣<0的解集为()A.x<﹣2B.x<﹣2或0<x<1C.0<x<1D.﹣2<x<0或x>1 6.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12B.15C.16D.187.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则:①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac>0;④当时y>0,﹣1<x<3;其中正确的个数是()A.1个B.2个C.3个D.4个9.如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若=2,则的值为()A.B.C.D.三.解答题(共9小题)15.解方程:(1)x2﹣6x﹣4=0;(2)(x﹣3)2﹣9=0;(3)3x(x﹣2)=2(2﹣x);(4)3x2+5x﹣2=0.16.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求点C经过的路径长(结果保留π).17.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?18.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣的图象上的概率.19.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.20.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EF A的面积最大,最大面积是多少?21.网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30).(1)直接写出y与x之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若14<x≤30,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?22.如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2,CE=,求AE的长.23.如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A (),且△AOB∽△BOC.(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.。

2019年云南师范大学第二附属中学中考数学模拟试卷(4月)(有解析)

2019年云南师范大学第二附属中学中考数学模拟试卷(4月)(有解析)

2019年云南师范大学第二附属中学中考数学模拟试卷(4月)一.填空题(共6小题,满分18分,每小题3分)1.在实数,,3.14159,﹣π,,中,无理数有个.2.58万千米用科学记数法表示为:千米.3.如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.4.若a﹣=,则a2+的值为.5.如图,已知点A是反比例y=(x>0)的图象上的一个动点,连接OA,OB⊥OA,且OB=2OA,那么经过点B的反比例函数图象的表达式为.6.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D →A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.二.选择题(共8小题,满分32分,每小题4分)7.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.8.函数中,自变量x的取值范围是()A.x≠3B.x>3C.x≥3D.x≤39.下列运算正确的是()A.=9B.2 0190﹣=﹣2C.﹣=3D.(﹣a)2•(﹣a)5=a710.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<611.施工队要铺设2000米的下水管道,因在中考期间需停工3天,每天要比原计划多施工40米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.﹣=3B.﹣=3C.﹣=3D.﹣=312.如图,在平面直角坐标系中,A(3,0),B(0,2),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为()A.(,0)B.(﹣3,0)C.(﹣,0)D.(3﹣,0)13.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.若∠DCA=55°,则∠CAO的度数为()A.25°B.35°C.45°D.55°14.如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针方向旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确结论的个数是()A.1B.2C.3D.4三.解答题(共9小题,满分70分)15.(6分)计算:|﹣3|﹣+(﹣2)﹣1×2.16.(7分)如图,在▱ABCD中,E是CD的中点,连接AE并延长交BC的延长线于点F.(1)求证:AE=FE;(2)若AB=2BC,∠F=35°.求∠DAE的度数.17.(7分)为增强学生体质,正确树立健康意识,学校普遍开展了阳光体育活动.某校为了解全校1200名学生平均每天体育活动时间的情况,随机调查了部分学生,对学生每天参加体育活动的时间t(小时)按如下4个选项进行收集整理:(A)t≥1.5小时(B)1≤t<1.5小时(C)0.5≤t<1小时(D)t<0.5小时,并根据调查结果绘制了两幅不完整的频数分布直方图和扇形统计图.请你根据以上信息解答下列问题:(1)求本次调查的学生人数和图(2)中选项“C”的圆心角度数;(2)将图(1)中选项“B”的部分补充完整;(3)请估计该校有多少名学生平均每天参加体育活动的时间在1小时以上(包括1小时).18.(6分)转转盘和摸球是等可能概率下的经典模型.(1)在一个不透明的口袋中,放入除颜色外其余都相同的4个小球,其中1个白球,3个黑球搅匀后,随机同时摸出2个球,求摸出两个都是黑球的概率(要求釆用树状图或列表法求解);(2)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针2次都落在黑色区域的概率(要求采用树状图或列表法求解).19.(7分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高24米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:2.求(1)背水坡AB的长度.(2)坝底BC的长度.20.(8分)班委会决定选购圆珠笔、钢笔共22支,送给结对的山区学校的同学,钢笔每支6元,圆珠笔每支5元.(1)若购买钢笔、圆珠笔刚好用去120元,问钢笔、圆珠笔各买了多少支?(2)若购钢笔9折优惠,圆珠笔8折优惠,且购买钢笔的费用不低于圆珠笔的费用,至少要购买多少支钢笔?21.(8分)已知:AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,且∠A =30°.(1)求证:AC=PC;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE•DC=18,求⊙O的面积.22.(9分)已知二次函数y=ax2+bx+c,y与x的一些对应值如下表:(1)根据表中数据,求二次函数解析式;(2)结合表格分析,当1<x≤4时,y的取值范围是.23.(12分)如图,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,点E、F分别在线段BD、CD上,DE=DF=5.AE的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.(1)求证:BG=CH;(2)设AD=x,△ADN的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)联结FG,当△HFG与△ADN相似时,求AD的长.2019年云南师范大学第二附属中学中考数学模拟试卷(4月)参考答案与试题解析一.填空题(共6小题,满分18分,每小题3分)1.【分析】先计算=2,=2,然后根据无理数的定义得到在所给数中无理数有、﹣π.【解答】解:∵=2,=2,∴在实数,,3.14159,﹣π,,中,无理数有、﹣π.无理数有2个,故答案为:2.【点评】本题考查了无理数:无限不循环小数叫无理数.常见有:字母表示的无理数,如π等;开方开不尽的数,如2等;无限不循环小数,如0.101001000100001…(每两个1之间多一个0)等2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:根据58万=580000,用科学记数法表示为:5.8×105.故答案为:5.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】过C作CG∥AB,过D作DH∥EF,依据AB∥EF,可得AB∥EF∥CG∥DH,进而得出∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,可得∠BCD+∠CDE=35°+180°+25°=240°.【解答】解:如图所示,过C作CG∥AB,过D作DH∥EF,∵AB∥EF,∴AB∥EF∥CG∥DH,∴∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,∴∠BCD+∠CDE=35°+180°+25°=240°,故答案为:240°.【点评】本题主要考查了平行线的性质,解题时注意运用:两直线平行,同旁内角互补;两直线平行,内错角相等.4.【分析】先根据完全平方公式进行变形,再代入求出即可.【解答】解:∵a﹣=,∴a2+=(a﹣)2+2×=()2+2=7,故答案为:7.【点评】本题考查了完全平方公式,能灵活运用公式进行变形是解此题的关键.5.【分析】过点A作AC⊥y轴,垂足为C;过点B作BD⊥y轴,垂足为D,如图,证明Rt△OAC∽Rt△BOD得到=()2=,设点B的反比例函数图象的表达式为y=,利用k的几何意义得到|k|=2,然后解绝对值方程得到满足条件的k的值即可.【解答】解:过点A作AC⊥y轴,垂足为C;过点B作BD⊥y轴,垂足为D,如图,∵OB⊥OA,∴∠AOC+∠BOD=90°,∵∠AOC+∠OAC=90°,∴∠OAC=∠BOD,∴Rt△OAC∽Rt△BOD,∴=()2=,=×1=,∵S△OAC=2,∴S△OBD设点B的反比例函数图象的表达式为y=,∴|k|=2,而k<0,∴k=﹣4,∴点B的反比例函数图象的表达式为y=﹣.故答案为y=﹣.【点评】本题考查了用待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=xk (k为常数,k≠0);把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了相似三角形的判定与性质.6.【分析】由点A,B,C,D的坐标可得出四边形ABCD为矩形及AB,AD的长,由矩形的周长公式可求出矩形ABCD的周长,结合2019=202×10﹣1可得出细线的另一端在线段AD上且距A点1个单位长度,结合点A的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,四边形ABCD为矩形,=(3+2)×2=10.∴C矩形ABCD∵2019=202×10﹣1,∴细线的另一端在线段AD上,且距A点1个单位长度,∴细线的另一端所在位置的点的坐标是(1,1﹣1),即(1,0).故答案为:(1,0).【点评】本题考查了规律型:点的坐标,由四边形ABCD的周长找出细线另一端点所在的位置是解题的关键.二.选择题(共8小题,满分32分,每小题4分)7.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.【分析】根据题意得x﹣3≥0且x﹣3≠0,然后解不等式组即可.【解答】解:根据题意得x﹣3≥0且x﹣3≠0,∴x>3.故选:B.【点评】本题考查了函数自变量的取值范围:对于,当a≥0时有意义;如果函数关系式中有分母,则分母不能为0.9.【分析】直接利用同底数幂的乘法运算法则以及二次根式的加减运算法则、负指数幂的性质分别化简得出答案.【解答】解:A、(﹣)﹣2=9,故此选项正确;B、2 0190﹣=1+3=4,故此选项错误;C、﹣=,故此选项错误;D、(﹣a)2•(﹣a)5=﹣a7,故此选项错误;故选:A.【点评】此题主要考查了同底数幂的乘法运算以及二次根式的加减运算、负指数幂的性质分,正确掌握相关运算法则是解题关键.10.【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.11.【分析】根据“原计划所用时间﹣实际所用时间=3”可得方程.【解答】解:设原计划每天施工x米,根据题意,可列方程:﹣=3,故选:A.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可.【解答】解:∵点A,B的坐标分别为(3,0),(0,2),∴OA=3,OB=2,在Rt△AOB中,由勾股定理得:AB=,∴AC=AB=,∴OC=﹣3,∴点C的坐标为(3﹣,0),故选:D.【点评】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.13.【分析】由切线的性质可得OC⊥CD,由等腰三角形的性质可得OAC=∠ACO=35°.【解答】解:如图,连接OC,∵DC是⊙O切线∴OC⊥CD,∴∠DCA+∠ACO=90°,且∠DCA=55°,∴∠ACO=35°∵AO=CO∴∠OAC=∠ACO=35°故选:B.【点评】本题考查了切线的性质,圆的有关知识,熟练运用切线的性质是本题的关键.14.【分析】根据SAS定理可得①△ACE≌△BCD,于是选项②可根据其性质可得,③可根据△CFE∽△CEA得到,选项④可通过计算得到正确答案,即可判断正确与否.【解答】解:∵∠ACB=∠DCE=90°∴∠BCD=∠ACE而BC=AC,DC=CE∴△ACE≌△BCD(SAS)∴选项①正确;若∠BCD=25°,而∠B=45°∴∠BDC=110°而△ACE≌△BCD∴∠AEC=∠BDC=110°而∠DEC=∠EDC=45°∴∠AED=65°∴选项②正确;∵△ACE≌△BCD∴∠EAC=∠DBC=45°∴∠FEC=∠EAC=45°又∵∠ECF=∠ACE∴△CFE∽△CEA∴即CE2=CF•CA由勾股定理可知DE2=CE2+CD2=2CE2∴DE2=2CF•CA∴选项③正确;若AB=3,AD=2BD,∴AD=2,BD=∴CA=3,AE=BD=而∠BAC=∠EAC=45°∴∠DAE=90°∴DE==∴CE=而CE2=CF•CA∴5=CF×3∴CF=∴AF=CA﹣CF=3﹣=∴选项④不正确;故选:C.【点评】本题考查的是全等三角形与相似三角形的判定与性质,利用性质进行边与角的相关计算与证明是解决问题的常用方法.三.解答题(共9小题,满分70分)15.【分析】直接利用算术平方根的性质以及负指数幂的性质分别化简得出答案.【解答】解析原式=3﹣3+×2=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.【分析】(1)欲证明AE=FE,只要证明△ADE≌△FCE(AAS)即可.(2)根据∠DAE=∠BAD﹣∠FAB,只要求出∠BAD,∠FAB即可.【解答】解析(1)∵四边形ABCD是平行四边形,E是CD的中点,∴AD∥CF,DE=CE,∴∠DAE=∠CFE,∠D=∠ECF,∴△ADE≌△FCE(AAS),∴AE=FE.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠B+∠BAD=180°,由(1)的结论知AD=FC,∵AB=2BC,∴AB=FB,∴∠FAB=∠F=35°,∴∠B=180°﹣2∠F=110°,∴∠BAD=180°﹣∠B=70°,∴∠DAE=∠BAD﹣∠FAB=70°﹣35°=35°.【点评】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【分析】(1)根据A组人数60人占30%,即可求出总人数;根据圆心角=360°×百分比,可得选项“C”的圆心角度数;(2)求出B组人数即可画出条形图;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)学生人数==200(人);选项“C”的圆心角度数=360°×=54°;(2)选项“B”的系数有100人,条形图如图所示:(3)估计该校有多少名学生平均每天参加体育活动的时间在1小时以上人数为1200×=960(人).【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.【分析】(1)根据题意先画出树状图,得出所有等情况数和摸出两个都是黑球的情况数,然后根据概率公式即可得出答案;(2)记白色区域为A、黑色区域为B,将B区域平分成两部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在黑色区域的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意画图如下:共有12种等可能的结果,摸出两个都是黑球的情况数有6种,所以摸出两个都是黑球的概率是=;(2)记白色区域为A、黑色区域为B,将B区域平分成两部分,画树状图得:∵共有9种等可能的结果,两次指针都落在黑色区域的有4种情况,∴指针2次都落在黑色区域的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】(1)直接分别过点A、D作AM⊥BC,DN⊥BC垂足分别为点M、N,得出AM=DN=24(米),MN=AD=6(米),进而利用坡度以及勾股定理进而得出答案;(2)利用(1)中所求,进而得出BC的长.【解答】解:(1)分别过点A、D作AM⊥BC,DN⊥BC,垂足分别为点M、N,根据题意,可知AM=DN=24(米),MN=AD=6(米),在Rt△ABM中,∵=,∴BM=72(米),∵AB2=AM2+BM2,∴AB==24(米),答:背水坡AB的长度为24米;(2)在Rt△DNC中,=,∴CN=48(米),∴BC=72+6+48=126(米),答:坝底BC的长度为126米.【点评】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.20.【分析】(1)购买圆珠笔x支,钢笔y支,根据题意列出x和y的二元一次方程组,解方程组求出x 和y的值即可;(2)设购买x支钢笔,根据“购买钢笔的费用不低于圆珠笔的费用”列出关于x的不等式,解之可得.【解答】解:(1)设钢笔、圆珠笔各买了x支、y支.由题知解得答:钢笔、圆珠笔各买了10支、12支;(2)设购买x支钢笔,根据题意,得:6x×0.9≥5(22﹣x)×0.8,解题:x≥,∵x为整数,∴x最小为10,答:至少要购买10支钢笔.【点评】本题考查一元一次不等式、一元一次方程等知识,熟练应用方程或不等式解决实际问题是解题的关键,属于中考常考题型.21.【分析】(1)连接OC,根据切线的性质得到∠OCP=90°,证明∠P=∠CAO,根据等腰三角形的判定定理证明;(2)连接AD,根据圆周角定理得到∠ACD=∠DAE,证明△ACD∽△EAD,根据相似三角形的性质求出AD,根据等腰直角三角形的性质求出AB,根据圆的面积公式计算,得到答案.【解答】(1)证明:连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠COP+∠P=90°,∵OA=OC,∴∠OCA=∠OAC=30°,∵∠COP是△AOC的一个外角,∴∠COP=2∠CAO=60°,∴∠P=∠CAO=30°,∴AC=PC;(2)解:连接AD,∵D为的中点,∴∠ACD=∠DAE,又∠ADC=∠EDA,∴△ACD∽△EAD,∴=,即AD2=DC•DE,∵DC•DE=18,∴AD=3,∵=,∴AD=BD=3,∵AB是⊙O的直径,∴△ADB为等腰直角三角形,∴AB=6,∴OA=AB=3,∴S⊙O=π•OA2=9π.【点评】本题考查的是相似三角形的判定和性质、切线的性质、圆周角定理,掌握相似三角形的判定定理和性质定理是解题的关键.22.【分析】(1)利用表中对应值,可设交点式y=a(x﹣1)(x﹣3),然后把(0,3)代入求出a即可得到抛物线的解析式;(2)利用y=(x﹣2)2﹣1得到抛物线的对称轴为直线x=2,顶点坐标为(0,1),即x=2时,函数有最小值﹣1,从而得到当1<x≤4时所对应的函数值的范围.【解答】解:(1)抛物线过点(1,0),(3,0),(0,3),设抛物线的解析式为y=a(x﹣1)(x﹣3),把(0,3)代入得a•(﹣1)•(﹣3)=3,解得a=1,所以抛物线的解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3;(2)y=(x﹣2)2﹣1,则抛物线的对称轴为直线x=2,顶点坐标为(0,1),所以当1<x≤4时,﹣1≤y≤3,故答案为:﹣1≤y≤3.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.23.【分析】(1)由AD∥BC知,,结合DB=DC=15,DE=DF=5知,从而得,据此可得答案;(2)作DP⊥BC,NQ⊥AD,求得BP=CP=9,DP=12,由知BG=CH=2x,BH=18+2x,根据得,即,再根据知,由三角形的面积公式可得答案;(3)分∠ADN=∠FGH和∠ADN=∠GFH两种情况分别求解可得.【解答】解:(1)∵AD∥BC,∴,.∵DB=DC=15,DE=DF=5,∴,∴.∴BG=CH.(2)过点D作DP⊥BC,过点N作NQ⊥AD,垂足分别为点P、Q.∵DB=DC=15,BC=18,∴BP=CP=9,DP=12.∵,∴BG=CH=2x,∴BH=18+2x.∵AD∥BC,∴,∴,∴,∴.∵AD∥BC,∴∠ADN=∠DBC,∴sin∠ADN=sin∠DBC,∴,∴.∴.(3)∵AD∥BC,∴∠DAN=∠FHG.(i)当∠ADN=∠FGH时,∵∠ADN=∠DBC,∴∠DBC=∠FGH,∴BD∥FG,∴,∴,∴BG=6,∴AD=3.(ii)当∠ADN=∠GFH时,∵∠ADN=∠DBC=∠DCB,又∵∠AND=∠FGH,∴△ADN∽△FCG.∴,∴,整理得x2﹣3x﹣29=0,解得,或(舍去).综上所述,当△HFG与△ADN相似时,AD的长为3或.【点评】本题是相似三角形的综合问题,解题的关键是掌握平行线分线段成比例定理及相似三角形的判定与性质、分类讨论思想的运用等知识点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届云南云大附中(一二一校区)中考一模数学试
卷【含答案及解析】
姓名___________ 班级____________ 分数__________
一、填空题
1. ﹣8的立方根是.
2. 分解因式:my2﹣9m= .
3. 一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是.
4. 如图,BD∥CE,∠1=85°,∠2=37°,则∠A= °.
5. 如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为.
6. 一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点
A3;…若P(2015,m)是其中某段抛物线上一点,则m= .
二、选择题
7. 一个几何体零件如图所示,则它的俯视图是()
A. B. C. D.
8. 函数中自变量x的取值范围是()
A.x>4 B.x≥4 C.x≤4 D.x≠4
9. 下列运算中,正确的是()
A.2a﹣5a3=2a8
B.
C.(2x+1)(2x-1)=2x2﹣1
D.
10. 已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()
A.
B.
C.
D.
11. 不等式组的最小整数解是()
A.0 B.﹣1 C.1 D.2
12. 小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追
小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱
的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()
A.
B.
C.
D.
13. 如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则点N的坐标为()
A.(1,﹣2) B.(﹣1,﹣2)
C.(﹣1.5,﹣2) D.(1.5,﹣2)
14. 如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,
∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;
其中正确结论的是()
A.①②③ B.①②④ C.①③④ D.②③④
三、计算题
15. 计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.
16. 居民区内的“广场舞”引起媒体关注,小王想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)求本次被抽查的居民有多少人?
(2)将图1和图2补充完整;
(3)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.
四、解答题
17. 在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.
18. 一人自地平面上测得塔顶的仰角为60°,于原地登高50米后,又测得塔顶的仰角为30°,求塔高和此人在地面时到塔底的距离.
19. 甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙
袋中随机摸出一个白球.
(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?
20. 如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线(x<0)分
别交于点C、D,且C点的坐标为(﹣1,2).
(1)分别求出直线AB及双曲线的解析式;
(2)求出点D的坐标;
(3)利用图象直接写出:当x在什么范围内取值时,y1>y2?
21. 某商场出售一种成本为20元的商品,市场调查发现,该商品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种商品的销售利润为y(元).(1)求y与x之间的函数关系式;
(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
22. 如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.
(1)判断直线AC与⊙O的位置关系,并说明理由;
(2)当BD=6,AB=10时,求⊙O的半径.
23. 如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
参考答案及解析第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】。

相关文档
最新文档