优选第六章园艺植物的染色体工程

合集下载

第六章 染色体工程

第六章 染色体工程
5 异代换系
某植物的一对染色体被他种植物的一对染色体所代换而成为异代换系。
四、单倍体育种
1 单倍体的特性
1)是研究基因或基因剂量效应,进行染色体遗传分析的理想实验材料。单倍体只有一套(基因)染色体,其上的每个基因都能表现相应的性状,尤其是隐性突变性状。
2)在育种上有极高的应用价值。单倍体加倍便可获得纯合二倍体,大大缩短了育种时间。
指采用组织培养的方法,使花药内花粉(小孢子)发育形成单倍体植株。
取F1代的花药置于特定培养基培养,由于细胞的全能性,(自身不育)诱导花粉长成单倍体植株,然后在秋水仙素的处理下,实现染色体加倍,加倍后的植株不仅正常可育,而且完全纯合。
目前统计,全世界已有52属,2000多种植物获得单倍体植株,其中大约有1/4首先是在中国得到的。
(二)多倍体产生的途径
1 原种或杂种所形成的未减数配子的受精结合。自然界中自发产生的多倍体多以此方式。
2 原种或杂种的合子的染色体加倍。多为人工诱导产生多倍体的方式。
(三)动、植物多倍体的特点比较
(四)多倍体育种方法
1 生物学方法
采用胚乳培养和体细胞杂交等方法进行。
3)在花药培养中还会出现三倍体、四倍体、多倍体等,为育种提供了大量的选择材料。
4)能克服远缘杂交的不孕性,创造出新物种。
2 人工诱导单倍体形成的方法——花药培养
人工诱导单倍体形成的方法很多,1964年前,人们尝试过的方法有远缘杂交、延迟授粉、激素处理、低温处理、照射花粉授粉等方法,都收效甚微。1964年,印度学者创造了花药培养法。目前是最为有效、应用最多的单倍体育种法。我国在这方面处于世界领先地位。
包括染色体的分离与微切割技术,可根据需要分离任意一条染色体或特定的染色体片段。

染色体工程的名词解释

染色体工程的名词解释

染色体工程的名词解释染色体工程(Chromosome Engineering),是指利用现代生物技术手段,对生物体的染色体进行人工操控和改造的过程。

通过改变染色体的结构和组成,染色体工程可以实现对生物体基因组的精确编辑和调控,从而影响生物个体的遗传特征和表达方式。

【引言】染色体是细胞核中的重要成分,携带着生物体遗传信息的基因。

染色体工程的出现,为人们深入研究基因的功能和调控机制,以及开展基因治疗、种质改良等方面的研究提供了前所未有的机会。

本文旨在对染色体工程的概念、操作方法和应用领域进行解释与阐述。

【染色体工程的概念】染色体工程源于20世纪60年代末的细胞遗传学研究,当时科学家们最早开始探索将人工合成的DNA序列导入真核细胞中的可能性。

随着技术的不断发展,染色体工程已逐渐演变为一种具有广泛应用前景的生物工程技术。

其基本原理是通过模块化设计的DNA序列和遗传载体的辅助,将人工合成的DNA片段引入目标生物的染色体中,实现对基因组的精确编辑和调控。

【染色体工程的操作方法】染色体工程的操作方法主要包括:基因克隆、DNA合成、基因导入和基因修饰等关键步骤。

首先,科学家们通过PCR、限制性内切酶和DNA合成等技术手段,将目标基因的DNA序列复制并扩增出来。

然后,利用载体(如质粒、病毒等),将目标基因导入到目标生物的染色体上。

最后,利用基因编辑工具(如CRISPR-Cas9系统),对染色体中的目标基因进行精确编辑和修饰。

【染色体工程的应用领域】染色体工程在许多领域都有广泛应用。

其中之一是基因治疗。

通过染色体工程技术,科学家们可以将治疗性基因导入到病人的染色体中,从而校正或替代患者染色体上的缺陷基因,实现对疾病的治疗和预防。

此外,染色体工程也在农业领域有着重要的应用,可以通过编辑作物染色体上的目标基因,提高农作物的产量、品质和抗逆性。

另外,染色体工程还可以用于生物工厂的构建,通过引入特定的代谢途径和基因组部件,实现对微生物的功能强化,从而生产出具有高附加值的化合物。

植物染色体工程

植物染色体工程

•异源四倍体 •AABB •(2n=4x)
•染色体加倍
无籽西瓜的育成:
•二倍体西瓜 •秋水仙素加倍 •四倍体西瓜
•2n=2x=22
•2n=4x=44
•四倍体西 瓜
•x
•二倍体西 瓜
•2n=4x=44
•2n=2x=22
•配子:n=2x=22 •配子:n=X=11
•三倍体西瓜 •2n=3x=33
异源八倍体小黑麦的培育
基本培养基选择 植物激素的调节 糖浓度调节
完整植物体的形成再生小植株的驯化和移植Βιβλιοθήκη (4)单倍体植物的染色体加倍
加倍方法:
用得最多的是化学诱变法 秋水仙素、富民农、对二氯苯、8-羟基喹
啉等
加倍技术
小苗浸泡法 生长锥处理 培养基加倍
二、染色体非整倍体变化
1. 个别染色体的削减和添加 2. 染色体代换
1、个别染色体的削减和添加
(2)植物单倍体育种方法
异源花粉授粉 延迟授粉 未授粉子房培养和花粉培养
种间或属间远缘杂交
• 栽培大麦(Hordeum vudare, 2n=2x=14)与野生球茎大麦(H. bulbosus, 2n=2x=14)杂种胚发育过程中,两物种染色体的行 为不协调可导致球茎大麦的染色体逐渐丢失(称为染色体消 减现象),可获得大麦的单倍体植株
植物染色体工程
2020年5月31日星期日
定义
染色体工程: 是人们按照一定的设 计,有计划地消减、添加或代换同种 或异种染色体的技术。
广义上讲它还包括染色体内部的部 分遗传操作技术。
染色体数目变异
整倍变化:
多倍体:细胞中含有三个或更多染色体组的个体 单倍体:细胞中含有正常体细胞的一半染色体数

第六章园艺植物有性杂交育种

第六章园艺植物有性杂交育种

第六章园艺植物有性杂交育种一、名词解释1.常规有性杂交育种:根据品种选育目标,有目的地选配遗传性不同的品种、变种、亚种或种作为亲本,通过人工交配使它们的雌雄配子结合产生变异的后代,再进行一系列的培育选择,经比较鉴定后,获得遗传性相对稳定的新品种,称为有性杂交育种,也称为重组育种。

2.非轮回亲本:只参加一次杂交的亲本称为非轮回亲本。

3.合成杂交:参加杂交的亲本先两两配成单交种,两个单交种再杂交。

4.轮回亲本:多代用以回交的亲本称为轮回亲本。

5.添加杂交:多个亲本逐个依次参加杂交的称为添加杂交。

6.杂交合成群体:由二个以上自交系品种杂交后繁殖出的分离的混合群体,最后成为一个由多种纯合基因型构成的混合群体。

个体纯合,个体间异质,但主要农艺性状表现差异较小。

7.回交育种:从杂种一代起多次用杂种与亲本之一继续杂交,从而育成新品种的方法。

8.近交:指不存在杂交障碍的同一物种内,不同品种或变种间的杂交。

9.远交:指植物学上不同种、属以上类型间的杂交。

10.亲本选择:根据品种选育目标选用具有优良性状的品种类型作为杂交亲本。

11.亲本选配:是指选用那两个(或两个以上)亲本配组杂交和配组的方式(如决定父母本,多亲杂交时那两个亲本先配组等)。

12.回交:杂交后代与其亲本之一再进行杂交称为回交。

13.单交:两个亲本之间只有一次杂交。

14.系谱法:按照育种目标,以遗传力为依据,从杂种的第一次分离世代开始,代代选单株,直到选出纯合一致、性状稳定的株系后,转为株系(系统) 评定。

由于当选单株有系谱可查,故称系谱法。

15.混合-单株选择法:在杂种分离世代按杂交组合混合种植,不选单株,只淘汰明显的劣株。

直到群体中纯合体频率达到要求(一般要求80%左右)时,才开始选择一次单株,下一代种成株系,从中选择优良株系升级试验。

16.单子传代法:从杂种第一次分离世代开始,每株取1粒(或者2粒)种子混合组成下一代群体,直到纯合程度达到要求时(F6及其以后世代)再按株收获,下年种成株(穗)行,从中选择优良株(穗)系,以后进行产量比较。

染色体工程

染色体工程

1、染色体的分离技术
哺乳动物细胞培养 秋水仙碱处理细胞使其处于分裂中期 低渗处理,加皂苷,破裂细胞 TMS液处理,离心,收集染色体 染色体储存于含20%甘油的TM液中
2、染色体转移技术
染色体悬液与受体细胞混合 生长于非选择培养基中持续3代,加多聚L 鸟氨酸可提高染色体进入受体细胞的几率 约3天后移入选择培养基 筛选与鉴定
YAC的缺点 YAC的缺点: 的缺点
1、插入片段大,稳定性较差,发生序列重排, 造成序列错乱。
四、细菌人工染色体(BAC) 细菌人工染色体(BAC)
三、人工染色体
染色体作为基因转移的天然载体,可转移 连锁的基因群,故在此基础上发展了人工 染色体。 现正在研究的人工染色体有三种: 酵母人工染色体(YAC,1000kb) 细菌人工染色体(BAC,300kb) 哺乳类人工染色体(MAC)
载体基本序列元件: YAC 载体基本序列元件:
• 酵母染色体DNA自主复制顺序(ARS): 负责DNA复制 • 酵母染色体的着丝粒顺序(CEN): 保证酵母细胞分裂时染色体的分配 • 酵母染色体的端粒顺序(TEL): 维持染色体结构的稳定性(两端各一个) • 选择标记:用于重组克隆的筛选 pYAC4是一个大肠杆菌穿梭质粒,含有Amp大肠杆 菌筛选标记
染色体工程
染 色 体 工 程 (chromosome engineering) 指 的是按设计有计划削减、添加和代换同种 或异种染色体的方法和技术,也称为染色 体操作。 染色体工程一词,虽然在20世纪70年代初 才 提 出 , 但 早 在 30 年 代 , 美 国 西 尔 斯 (E.R.Sears)及其学生就已开始研究。它不 仅在改良植物的遗传基础培育新品种上受 到重视,而且也是基因定位,和染色体转 移 等 基 础 研 究 的 有 效 手YAC构建 示意图

园艺植物育种

园艺植物育种

一、名词解释1.常规杂交育种:按育种目标选择选配亲本,通过人工杂交的方法将亲本的优良性状集于杂交后代,再通过对杂交后代进行自交分离,选择出符合目标要求的,遗传性稳定一致的优良新品种。

2.轮回亲本:在回交过程中多次参与杂交的亲本,又是特定有利性状的接受者,也叫“受体亲本”。

3.非轮回亲本:在回交过程中只参与一次杂交的亲本,也叫“供体”或“供体亲本”。

4.杂种优势:是生物界一种普遍现象,指两个形状不同的亲本杂交产生的杂种,在生长势、生活力、繁殖力、适应性以及产量、品质等性状方面超过其双亲的现象。

5.一般配合力:指若干个自交系或品种相互杂交,其中每一个自交系或品种与其他自交系或品种所配得的F1某种性状的平均值与所能配成的全部F1总评均值相比的差值,通常用离均差表示。

6.特殊配合力:某一杂交组合的的实际配合力可能距两亲本的一般配合力之和有些离差,这离差就称为特殊配合力。

7.自交不亲和:植物花期正常授粉,自交不能正常结实的特性称为自交不亲和。

具有自交不亲和的系统或品系称为自交不亲和系。

8.远缘杂交:指亲缘关系疏远类型之间的杂交。

一般认为植物学上种以上分类单位之间的杂交都是远缘杂交。

9.诱变育种:指利用理化因素诱发生物体发生变异,再通过选择培育成新品种的方法。

10.临界致死剂量:被照射生物体存活率为40%的剂量。

11.半致死剂量:被照射生物体存活率为50%的剂量。

12.多倍体:体细胞染色体组在三个(3x)或三个以上的个体。

13.同源多倍体:多倍体的几组染色体全部来自同一物种,或者说由同一个物种的染色体组加倍而成14.异源多倍体:来自不同种、属的染色体组构成的多倍体或者说由不同种、属间个体杂交得到的F1再经染色体加倍得到的多倍体15.单倍体:指由未受精的配子发育成的含有配子染色体数的体细胞或个体。

16.一元单倍体:来自二倍体植物(2n=2x)的单倍体细胞中,只有一组染色体(1x),叫做一元单倍体,简称一倍体17.多元单倍体:来自四倍体植物(2n=4x)的单倍体体细胞中,含有两组染色体(2x),叫做多元单倍体。

第6章染色体工程

第6章染色体工程

化学方法
有些化学物质也可以用来阻止第二极体的排出或 受精卵的有丝分裂而产生三倍体或四倍体。 细胞松弛素B能抑制肌动蛋白聚合微丝,从而抑 制细胞质分裂。 秋水仙碱可以抑制细胞分裂中纺锤丝的形成,因 而抑制有丝分裂,这在植物中已经广泛应用。 其它药物还有麻醉剂,如N2O、CHClF2和聚乙二 醇等。 缺点:化学药品一般比较昂贵、且具有毒性,影 响处理后的胚胎发育,同时加上化学药物诱导产 生的多倍体往往是在育种上没有价值的镶嵌体, 所以化学方法在实际中的应用不及物理方法。
优点和缺点
多倍体育种技术方法简单、见效快,具有潜在的理论和应 用价值。 许多诱导的多倍体动物如两栖类、鱼类、贝类等却具有良 好的生存力和生长率。 种间杂交生长快,可以同时具有两个不同的种的优良特性, 但成活率较低。 利用三倍体不育的特性,将生殖腺发育消耗的能量用于动 物生长,可以避免因繁殖季节及肉质下降而延误上市时间 或影响商品价值,缩短了养殖周期,减少了养殖成本,这 在鲍鱼、昆虫等方面已有应用。 某些多倍体动物肉质量、含氧量、抗病性等经济性状较二 倍体好。 虽然,还有一些难点比如准确的处理时间、诱导率、成活 率、孵化率、倍性鉴定方法等还未解决,但随生命科学的 进一步发展,多倍体育种技术将为人类做出更大的贡献。
历史
1911年,赫特威氏就第一个成功地人工消 除了精子染色体活性,并发现了“赫特威 氏效应”。 赫特威氏效应指只有在适当的高辐射剂量 下,才能导致精子染色体完全失活,届时 精子虽能穿入卵内,却能起到激活卵球启 动发育的作用。
雌核发育的关键问题
要达到实验性二倍体雌核发育目的, 必须解决两个最主要的问题。 第一:人为地使精子的遗传物质失活; 第二:阻止雌性个体染色体数目的减 少。 不同种类的物理辐射和化学药品的处 理对精子遗传物质失活颇为有效。

植物染色体工程概述

植物染色体工程概述

合肥学院Hefei University细胞工程课程综述题目: 植物染色体工程概述系别:专业:学号:姓名:2013年6月25日植物染色体工程概述李双双1002012045 生工二班摘要:植物细胞工程[1]涉及胚拯救、小孢子培养、体细胞杂交、离体受精、体细胞无性系变异、染色体工程等多方面内容。

本文是对染色体工程这方面的概述,主要内容包括加倍技术、内容、实践运用和发展方向。

关键词:染色体工程加倍技术内容实践运用发展方向染色体工程,又称染色体操作(chromosome manipulation),是人们按照一定的设计,有计划的削减、添加或代替同种或异种染色体,从而达到定向改变遗传特性和选育新品种的一种技术。

自从1879年,由德国生物学家弗莱明经过大量实验发现了染色体的存在。

由此后1883年美国学者提出了遗传基因,(所谓遗传基因,也称为遗传因子,是指携带有遗传信息的DNA或RNA序列,是控制性状的基本遗传单位。

)在染色体上的学说,科学家们对染色体的研究就从未断过,染色体工程也就不断在进展。

目前,植物学家们已经将染色体工程用于作物品种的改良,使其成为一门育种新技术,此外它也是研究基因定位和异源基因导入的有效手段。

其基本的操作程序包括如下几个步骤:杂交;依靠杂种(或亲本) 减数分裂时染色体联合的规律性变化产生具有不同染色体组成的配子;在杂种或杂种后代中通过细胞学鉴定,筛选所需要的材料。

一、染色体加倍技术[2]1 化学诱导方法1.1细胞松驰素B(cytochalasin)在细胞分裂中期使用,能抑制肌动蛋白聚合成微丝,从而抑制细胞质分裂,使用最早、最广泛,其诱导效果也最突出。

1.2秋水仙素(colchicine)在细胞分裂中期使用,阻止细胞分裂过程中的纺缍体的形成。

其特点为价格昂贵,有毒性。

2 物理学方法2.1温度休克法包括冷休克法和热休克法两种,即用略高于或略低于致死温度的冷或热休克来诱导三倍体或四倍体的方法。

染色体工程

染色体工程

一般认为CIPC是不引起染色体自身异常 一般认为CIPC是不引起染色体自身异常 CIPC 分裂抑制剂,能引起体细胞分裂异常, 分裂抑制剂,能引起体细胞分裂异常,作为获得 染色体的减数及单倍体的手段已经引起人们注 意.
七.转化作用体的选择
通过染色体导入使转化作用达到目的时, 通过染色体导入使转化作用达到目的时,导 入原生质体的染色体效率是极低的, 入原生质体的染色体效率是极低的,由于一般原 生质体自身分裂增值率也不太高, 生质体自身分裂增值率也不太高,所以这样的细 胞系的利用是必要而不可缺少的条件. 胞系的利用是必要而不可缺少的条件.
DNA作为直接受体被放出,使分解率增 DNA作为直接受体被放出, 作为直接受体被放出 因而染色体不可能完全导入, 高.因而染色体不可能完全导入,即使仅仅导入 部分基因也是好的.为了解决这样的缺点, 部分基因也是好的.为了解决这样的缺点,把微 小核包上细胞膜就形成细胞, 小核包上细胞膜就形成细胞,把这些和受体细胞 原生质体融合的方法,即如果是微小核细胞, 原生质体融合的方法,即如果是微小核细胞,和 变成受体的原生质体融合, 变成受体的原生质体融合,则把少数的染色体作 为微小核导入是可能的. 为微小核导入是可能的.
二提取步骤是: 减数分裂期染色体的一般提取步骤是 由花粉母细胞通过适当的酶液分离原生质体; ①由花粉母细胞通过适当的酶液分离原生质体 把获得原生质体在低渗透压的缓冲液中破坏以后; ②把获得原生质体在低渗透压的缓冲液中破坏以后; ③通过适当的缓冲液和离心操作重复进行几次提取 染色体, 染色体,这是一种精制的方法 。
三.染色体的识别和鉴定 染色体的识别和鉴定
染色体的识别和鉴定的正确而传统的手段是 核型分析法,所以通常通过对各个染色体的长度, 核型分析法,所以通常通过对各个染色体的长度, 着丝点的位置,髓体的有无等来进行识别。 着丝点的位置,髓体的有无等来进行识别。 荧光染色法, 光谱带法等通过利用染色体部 荧光染色法,C光谱带法等通过利用染色体部 位染色性的不同性质, 位染色性的不同性质,从各个染色体表现浓淡的 谱带的差别进行识别,已经广泛得到认可了。 谱带的差别进行识别,已经广泛得到认可了。

园艺植物生物技术课后习题答案

园艺植物生物技术课后习题答案

第一章至第五章一、主要名词和概念:一.1. 植物细胞全能性:植物体的每一个具有完整细胞核的细胞都具有该物种全部遗传物质,在一定条件下具有发育成为完整植物体的潜在能力。

2. 脱分化:将已分化的不分裂的静止细胞放在培养基上培养后,细胞重新进去分裂状态,一个成熟细胞转变为分生状态的过程。

3. 再分化:经脱分化的组织或细胞在一定的培养条件下可转变为各种不同的细胞类型,形成完整植株的过程。

4. 器官发生途径:由外植体或愈伤组织诱导形成不定根或不定芽,再获得再生植株的方法5. 体细胞胚胎发生途径:在组织培养中起源于一个非合子细胞,经过胚胎发生和胚胎发育过程,形成具有双极性的胚状结构而发育成再生植株的途径。

6. 外植体:由活体植物体上切去下来的,用于组织培养的各种接种材料。

包括各种器官、组织、细胞或原生质体等。

7.褐化现象:指在外植体诱导初分化或再分化过程中,自身组织从表面想培养基释放褐色物质以至培养基逐渐变成褐色,外植体也随之进一步变褐而死亡的现象。

8. 看护培养:利用活跃生长的愈伤组织来看护单个细胞,使其持续分裂和增殖的培养方法。

9. 分批培养;把细胞分散在一定容积的培养基中培养,当培养物增值到一定量时,转接继代,建立起单细胞培养物。

10. 连续培养:利用特质的培养容器进行大规模细胞培养的一种培养方式。

11. 体细胞杂交:使分离出来的不同亲本的原生质体,在人工控制条件下,相互融合成一体,形成杂种细胞,并进一步发育成杂种植株的技术。

12. 雄核发育:在适宜的离体培养条件下,花粉(小孢子)的发育可偏离活体时的正常发育转向孢子体发育,经胚状体途径或器官发生途径形成完整植株。

13. 雌核发育:以未受精子房或胚珠为外植体诱导单倍体的方法。

14. 非整倍体:生物体的核内染色体数不是染色体基数整数倍,而发生个别染色体数目增减的生物体。

15. 代换系:生物体的染色体被异源种属染色体所代换的品系。

16. 易位系:某染色体的一个区段移接在非同源的另一个染色体上,具有发生染色体易位的品种。

园艺概论实验报告

园艺概论实验报告

《园艺概论》课程实验报告2011-2012第1学期实验一蔬菜种子形态识别种子的形状、大小.色泽表面状况气味等是识别种子的主要依据,同时和种子的质量、播种技术等也有密切关系。

大多数蔬菜种子的结构包括种皮和胚。

有些种子还含有胚乳。

一、实验目的了解主要蔬菜种子的外部形态及解剖结构的特点,并区别种子的新陈度。

二、材料与用具1. 休眠种子各种蔬菜的种子(芸苔属、萝卜属、茄科、南瓜属、葱属、豆科、绿叶菜类等)。

2. 吸水膨胀的种子萝卜、黄瓜、番茄、菜豆、菠菜。

3. 新、陈种子菜豆、韭菜、印度南瓜。

4. 发芽的种子蚕豆、韭菜、黄瓜。

5. 用具解剖镜、放大镜、解剖针、钢卷尺、镊子、刀片。

三、实验方法与步骤1. 种子识别根据种子形态学区别的方法,参考主要蔬菜种子的主要形态特征表,按照科、种识别本次实验所规定的各种休眠的蔬菜种子。

2. 主要蔬菜种子解剖用解剖针和刀片纵切已吸水膨胀的番茄、菠菜、菜豆、萝卜、黄瓜种子,在解剖镜和放大镜下观察五种胚的形态,并判断有无胚乳。

3. 用感官识别菜豆、韭菜、印度南瓜的新、陈种子。

4. 观察蚕豆、韭菜、黄瓜的出土方式。

四、作业与思考1. 识别各种休眠的蔬菜种子,并填写表1-1。

2. 填写表1-2,并绘制番茄、菜豆种子的纵切面图,注明各个部位的名称。

3. 比较新陈种子在色泽及气味上的区别,并填写表1-3。

4. 指出蚕互、韭菜、黄瓜的出土方式,并注意黄瓜的带帽出土和韭菜的弓形出土。

表1-1 蔬菜种子形态特征记载表科名种名形状大小色泽表面特征种子或果实有无胚乳气味表1-2 吸水膨胀的种子胚的形态蔬菜种类番茄菠菜菜豆萝卜中国南瓜表1-3 新陈种子对比蔬菜种类颜色光泽气味菜豆新陈韭菜新陈印度南瓜新陈实验二园艺产品感官品质鉴定一、实验目的掌握园艺产品感官鉴定的内容与方法。

二、材料与用具1.材料柑橘、桃、梨、葡萄、猕猴桃、板栗、柿、枣、黄瓜、茄子、番茄等主要园艺产品。

2.用具天平、台秤、游标卡尺等。

第六章 园艺植物的染色体工程 325[可修改版ppt]

第六章 园艺植物的染色体工程 325[可修改版ppt]
微室培养法:盖玻片上滴加一滴琼脂,花粉接种在 琼脂上,反向放置于凹型载玻片上。
2.雄核发育
在适宜离体培养的条件下,花粉(或小孢子)的发育 偏离活体时的正常发育而转向孢子体发育,经胚状体途 径或器官发生途径形成完整植株,称为雄核发育。
离体小孢子发育途径(雄核发育,Androgenesis):
小孢子第一次分裂为均等分裂(B途径)
形成大小相似的细胞,然后由单一类细胞形成多核花粉细 胞(途径Ⅰ)。
小孢子第一次分裂为不均等分裂(A途径):根据第二次及以后 的分裂不同又分为
A-V途径(营养核分裂,途径Ⅱ)、A-G(生殖核分裂,途径 Ⅲ)、A-VG(营养和生殖核均分裂,途径Ⅳ)、
C(分裂中出现融合加倍等现象)途径等。
(3)供体植株的生理状态:受植株生长环境和生理年龄等 影响。如木本植物幼龄植株比老龄诱导率高;始花期和盛 花期比开花末期适宜;一二年生草本生长健壮且处于生殖 高峰期的花粉花药诱导率高。
一、雄配子途径
采用花药或花粉培养 (或游离小孢子),即 离体培养花药和花粉 (小孢子),使小孢子 改变原来的配子体发育 途径,转向孢子体发育 途径,形成花粉胚或花 粉愈伤组织,最后形成 花粉植株,从中鉴定出 单倍体并加倍成纯合二 倍体。
离体条件下对植物的花粉或花药进
行培养(Pollen Culture and Anther Culture)获得单倍体植株 的技术最早是在1964年由印度植物 学家Guha 和Maheshiwari在毛叶
曼佗罗(Datura innoxia)的花药培
养中成功获得单倍体植株。 目前已在250多种植物中由花药或
花粉培养获得单倍体植株。
Hale Waihona Puke 1. 花药和花粉(小孢子)培养的基本程序: 2. 外植体的选择----预处理----表面灭菌----接种----

(完整word版)园艺植物育种学

(完整word版)园艺植物育种学

园艺植物育种学第一章绪论园艺植物育种学概念:研究选育园艺植物新品种的原理和方法的科学。

园艺植物育种的主要内容:根据人类需要利用自然变异以及利用品种间杂交、远缘杂交、人工诱变、离体组织培养和DNA分子改造等途径来创造新的变异,按照一定的目标进行选择,筛选出新品种。

进化:生物接受环境给予的刺激后产生形态和性状的改变,以适应现有的生境,这种演变发生的过程称为进化。

进化分为自然进化和人工进化。

达尔文把这些进化的要素归为变异、遗传和选择。

变异是选择的基础,遗传是选择的保证,选择是淘汰不良变异,积累优良变异的手段。

品种:指一个种内遗传特性稳定,经济价值较高,具有共同来源和一致性状的良种群体。

是育种的主要对象,同时也是栽培作物的基本单位。

新品种审定的主要内容:优良、适应、稳定、整齐、特异。

品系:育种过程中表现优良的株系。

良种:指在一定时间、一定的地区生产上有发展前途、栽培面积较大的品种。

园艺植物育种的基本途径:①雄性不育性的利用②远缘杂交创造新物种、新类型③花药培养和单倍体育种④诱变技术和诱变育种育种的传统方法:查(已有变异)引(已有变异)选(自然变异)育(创新变异)育种学的任务:根据生产和消费者对品种的要求,确定合适地育种目标,并根据园艺植物的遗传变异规律,不断地创造新种质,培育新品种,以满足生产和消费的需要。

第二章园艺植物的繁殖习性、品种类型和育种特点完全花:一朵具有花萼、花冠、雄蕊群、雌蕊群的花称完全花。

不完全花:缺少花萼、花冠、雄蕊群、雌蕊群一至三部分的花,称不完全花。

自交:雌雄同体的生物同一个体上的雌雄交配。

包括自花授粉和异花的同株授粉。

异交:不同个体上的雌雄交配。

自然异交率(%):F1中显性性状个体数/ F1总个体数×100%自花授粉:雌蕊接受同一花朵的花粉叫自花授粉。

自花授粉植物:自然情况下,以自花授粉为主的植物叫做自花授粉植物。

特点:①兼有雌蕊和雄蕊的完全花②雌雄蕊同时成熟③不存在自交不亲和④花器结构有利于自花授粉常自花授粉植物:指那些有自花授粉习性,但花器结构不太严密,从而发生部分异花授粉的植物,又叫常自交植物。

第六章 染色体工程

第六章 染色体工程

能特异性地与细胞中的微管蛋白质分子
结合,从而使正在分裂的细胞中的纺锤 丝合成受阻,导致复制后的染色体无法 向细胞两极移动,最终形成染色体加倍 的核。在一定浓度范围内,秋水仙素不 会对染色体结构有破坏作用,在遗传上 也很少引起不利变异。处理一定时间的 细胞可以在药剂去除后恢复正常分裂, 形成染色体加倍的多倍体细胞。
诱导多倍体形成的其他药物还有麻醉剂
如N2O、CHClF2和聚乙二醇等。
秋水仙素
秋水仙素则是至今发现的最有效、使用
最为广泛的染色体加倍诱导剂。 是从一种百合科秋水仙属植物器官中提 取的一种生物碱。
秋水仙素(Colchicine):可以抑制细
胞分裂中纺锤丝的形成,因而可以抑制 有丝分裂。这种方法已在植物多倍体诱 导中广泛使用。也可用秋水仙素与种间 杂交技术相结合来诱导异源多倍体。
染色体显微操作技术主要包括染色体的
分离与微切割技术,其优点是可以根据 需要分离任意一条染色体或特定染色体 片段。 将分离到的染色体或片段进行体外扩增 称为染色体微克隆。
细胞核融合转移法
细胞融合技术,其实也是整套染色体转
移而互相融合的一种技术。 下面以嵌合体小鼠的育成为例介绍一下 细胞核融合转移法的具体方法与过程。
多倍体产生的途径
(1)原种或杂种所形成的未减数配子
(即配子内保持原种或杂种的合子的染 色体数)的受精结合。 (2)原种或杂种的合子的染色体加倍。
多倍体育种
多倍体是由于细胞内染色体加倍而形成
的,如通过抑制受精卵第二极体的放出 产生三倍体或抑制第一次卵裂产生四倍 体。
目前广泛应用的诱导方法有生物学、物
染色体工程技术定义
按照一定的设计,有计划地消减、添加
或代换同种或异种染色体的技术,从而 达到定向改变遗传性和选育新品种的目 的。广义上讲它还应包括染色体内部的 部分遗传操作技术,因此也称为染色体 操作。 这一术语最早是由Rick和Khush在1966 年提出来的。

5.5 植物染色体工程

5.5 植物染色体工程

三、染色体工程操作技术

② ③ ④ ⑤ 利用非整倍体技术进行异源基因的转移 染色体微切割 基因定位 利用染色体工程进行作物种内染色体的定向更换 利用染色体工程鉴定外源育性基因

染色体工程在作物杂种优势利用中的应用
利用非整倍体技术进行异源基因的转移:
异源染色体附加:专指将种内或异种属的染色体有选择 的导入到受体种染色体组中的全过程 异源染色体代换:即某一物种的某一染色体被同种属或 近缘种属的另一个物种的某一部分同源染色体或异源 染色体所代换的过程 染色体易位:指同种内非同源染色体或异种属异源染色 体间相互或单方面交换染色体的现象
本章小结
植物染色体工程的定义以及基础材料
染色体数变异
植物细胞工程的操作技术
植物染色体工程
什么是染色体工程?
染色体工程(chromosome engineering):是人们按照
一定的设计,利用染色体工程的基础材料,通过分离、导入、 重组等染色体操作以改变染色体组成,从而达到定向改变遗 传特性和选育新品种的一种技术。
一、染色体数变异
① 一是体细胞内以染色体组为基数进行的整倍 性变化,以整倍体染色体数目变化产生的变 异会产生多倍体和单倍体 ② 另一种是染色体组内的个别染色体数目有所 增减,使细胞内的染色体数目不是基数的的 完整倍数,因此被称为非整倍体
利用染色体工程进行作物种内染色体的定向更换 :
物种内染色体的定向更换:指在同品种间,将某一供 体品种携带某一突出优良农艺性状的染色体,定向 地更换到某一综合农艺性状比较优良,但对应供体 品种突出优良性状染色体的同类染色体却带有不良 农艺性状基因的受体品种中,以期达到定向改良品 种的目的 常用的更换方法:一种是缺体代换法;另一种是单 体代换法

染色体工程

染色体工程

基本步骤
细胞分裂同步处理:秋 01 水仙素,抑制纺锤丝形 成,使细胞分裂停留在 中期。
02 染色体荧光素染色:细
胞温和破碎,染色。
染色体分离:把制备的染 03 色体转移到细胞分类器上 进行分离
微细玻璃针切割法
采用特细玻璃针(直径0.17微米),在倒 置显微镜下对目的基因所在染色体区段进 行切割与分离 费用低,但技术性要求高、不易掌握。
利用简并引物直接PCR法 利用单一引物PCR法
染色体转移技术
定义:将染色体(甚至是全套染色体)和 分离提取的细胞核或DNA大分子片段, 可采用细胞融合或细胞显微注射法将染 色体或染色体片段导入细胞内,使该基 因能得以表达,并能在细胞分裂中传递 下去的技术称为染色体转移或染色体转 导。
染色体转移技术
用遗传标志鉴别雄核发育的二倍体化,即 由第一次有丝分裂的阻碍,还是由保留极 体而来。
假如二倍体源自第一次有丝分裂的抑制,杂合 雌性个体的子代都是纯合型;而如果是通过阻 止第二极体的外排产生的雌核发育个体,则子 代的情况取决于着丝点与基因间的距离。在着 丝点-基因距离远离时,将明显增加杂合型子 代的比例。
多倍体植物的性状比原来 的二倍体气孔、花、果实 和种子比二倍体者为大, 叶肉较厚,茎秆也较粗壮。
多倍体草莓
多倍体动物如两栖类、鱼 类、贝类都具有良好的生 存力和生长率。
四倍体鲫鱼
多倍体技术方法
生物诱变法:动物通过杂交方 01 法尤其是种间杂交获得异源多 倍体。种间杂交导致第二极体 不排出。植物包括胚乳培养、 体细胞杂交等。 化学诱变法:利用化学物质诱 02 导多倍体。常用的化学物质有: 细胞松弛素B、秋水仙素,还有 麻醉剂、聚乙二醇。 物理诱变法:温度激变(温度 03 休克法)、机械损伤、电离辐 射、离心、水静压法和高盐高 碱法等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优选第六章园艺植物的染色体 工程
第一节 园艺植物单倍体的制备
单倍体(haploid)是指体细胞中含有本物种配子体 (gametophyte)染色体数目的个体。制备园艺植物单倍 体一般采用离体诱导法从具有单倍染色体数的性器官获得 植株。其中,雄配子途径以雄性器官为外植体,经历雄核 发育(androgenesis)获得单倍体;而雌配子途径以雌性 器官及其相关结构为外植体,经雌核发育(gynogenesis) 获得单倍体植株。
第一次有丝分裂为均等分裂,B途径.
第一次有丝分裂为不均等分裂. A.途径(D. 自然萌发)
C途径,在第一次不均等分裂后,营养核、生殖核同时核内复制
Figure - Segmentation pattern of in vitro wheat pollen observed from the 1st to 14th day of anther culture. The figure shows that a uninucleated microspore may degenerate before division, (a) or may give rise, by mitosis, to normal binucleated grain presenting vegetative and generative nuclei (b). Identical nuclei are formed in low frequency (c). The first mitotic division occurs at the 4th day of culture. The normal binucleated pollen may follow the normal in situ developmental pattern forming starch and then, degenerate (d). The second mitotic division takes place at the 6-8th and at the 10th day of culture. In the androgenetic pollen, the vegetative, generative or both nuclei are able to divide giving rise to an embryo (e, f, g). In pollen with identical nuclei, both cells contribute to androgenesis (h). Pollen degeneration can occur in any step of this process. At the 14th day, multicellular structures can be seen (i).
花粉植株的诱导: (1)胚状体途径
直接形成胚状体。 (2)愈伤组织途径
形成愈伤组织然后分化出不定芽等药和花粉(小孢子)培养的主要因素
(1)供体植株基因型:植物属间、种间、品种间可能存在 一定的差异。
(2)小孢子发育时期:醋酸洋红染色镜检花粉发育时期。 大多数植物以单核后期花粉适宜花药培养。
小孢子第一次分裂为均等分裂(B途径)
形成大小相似的细胞,然后由单一类细胞形成多核花粉细 胞(途径Ⅰ)。
小孢子第一次分裂为不均等分裂(A途径):根据第二次及以后 的分裂不同又分为
A-V途径(营养核分裂,途径Ⅱ)、A-G(生殖核分裂,途径 Ⅲ)、A-VG(营养和生殖核均分裂,途径Ⅳ)、
C(分裂中出现融合加倍等现象)途径等。
一、雄配子途径
采用花药或花粉培养 (或游离小孢子),即 离体培养花药和花粉 (小孢子),使小孢子 改变原来的配子体发育 途径,转向孢子体发育 途径,形成花粉胚或花 粉愈伤组织,最后形成 花粉植株,从中鉴定出 单倍体并加倍成纯合二 倍体。
离体条件下对植物的花粉或花药进
行培养(Pollen Culture and Anther Culture)获得单倍体植株 的技术最早是在1964年由印度植物 学家Guha 和Maheshiwari在毛叶
B.过筛:把上述的花药残渣和花粉的混合液经·一定孔 径的不锈钢网或尼龙网过滤。花粉滤液注入离心管。
C.清洗:花粉药壁混合液置于100-1000转/分的速 度下离心1-5分钟,上清液再离心,最后悬浮花粉。密 度为104-105/ml。
(3)花粉培养方式:
直接培养法:不经预处理直接接种于培养基。
看护培养法:花药接种于培养基,上面放置一块 滤纸,花粉接种于滤纸上。
曼佗罗(Datura innoxia)的花药培
养中成功获得单倍体植株。 目前已在250多种植物中由花药或
花粉培养获得单倍体植株。
1. 花药和花粉(小孢子)培养的基本程序:
外植体的选择----预处理----表面灭菌----接种---培养----再生植株-----单倍体鉴定----染色体加倍---获得纯合二倍体。
微室培养法:盖玻片上滴加一滴琼脂,花粉接种在 琼脂上,反向放置于凹型载玻片上。
2.雄核发育
在适宜离体培养的条件下,花粉(或小孢子)的发育 偏离活体时的正常发育而转向孢子体发育,经胚状体途 径或器官发生途径形成完整植株,称为雄核发育。
离体小孢子发育途径(雄核发育,Androgenesis):
(1)材料的表面灭菌与无菌操作:
对花蕾进行表面灭菌,然后分离花药和花粉。
(2)花粉的分离与清洗:
花药漂浮培养自然释放法:把花药接种在液体培养基 上,花药漂浮于液体表面经1-7天的培养,药壁开裂, 花粉自然散落下来.及时将花药壁从培养瓶取出,留下 的花粉继续培养。
机械分离法
A.分离:把花药放在玻璃容器中,加入一定量适当浓 度的蔗糖溶液,加入适量液体培养基,用注射器内筒 轻轻挤压花药把花粉挤出来。或用磁力搅拌器把花药 搅裂使花粉散出来。
(3)供体植株的生理状态:受植株生长环境和生理年龄等 影响。如木本植物幼龄植株比老龄诱导率高;始花期和盛 花期比开花末期适宜;一二年生草本生长健壮且处于生殖 高峰期的花粉花药诱导率高。
相关文档
最新文档