特色训练1922菱形的判定

合集下载

2020-2021学年八年级下册冀教版数学22.5.2《菱形的判定》课后练习含答案

2020-2021学年八年级下册冀教版数学22.5.2《菱形的判定》课后练习含答案

22.5.2《菱形的判定》课后练习一、单选题1.下列命题中,正确的是( ).A .两邻边相等的四边形是菱形B .一条对角线平分一个内角的平行四边形是菱形C .对角线垂直且一组邻边相等的四边形是菱形D .对角线垂直的四边形是菱形2.已知四边形ABCD 是平行四边形,下列结论中正确的有( )①当AB =BC 时,四边形ABCD 是菱形;①当AC ①BD 时,四边形ABCD 是菱形;①当①ABC =90°时,四边形ABCD 是菱形:①当AC =BD 时,四边形ABCD 是菱形;A .3个B .4个C .1个D .2个3.如图,下列条件之一能使平行四边形ABCD 是菱形的为( )①AC ①BD ;①①BAD =90°;①AB =BC ;①AC =BD .A .①①B .①①C .①①D .①①① 4.如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处,易证四边形AECF 是平行四边形.当①BAE 为( )度时,四边形AECF 是菱形.A .30°B .40°C .45°D .50°5.如图,四边形ABCD 沿直线l 对折后重合,如果//AD BC ,则结论①AB //CD ;①AB =CD ;①AB BC ⊥;①AO OC =中正确的是( )A .1个B .2个C .3个D .4个6.如图,在ABCD 中,对角线AC BD ,相交于点O ,从下列条件中添加一个条件,仍不能判定ABCD 是菱形的是( )A .AC BD ⊥B .AB BC = C .12∠=∠D .AB BD = 7.如图,在给定的一张平行四边形纸片上按如下操作:连结AC ,作AC 的垂直平分线MN 分别交AD 、AC 、BC 于M 、O 、N ,连结AN ,CM ,则四边形ANCM 是( )A .矩形B .菱形C .正方形D .无法判断 8.如图,在①ABCD 中,用直尺和圆规作①BAD 的平分线AG 交BC 于点E ,以A 为圆心,AB 为半径的弧交AD 于点F ,连接EF .若BF =6,AB =5,则四边形ABEF 面积是( )A .12B .24C .36D .489.如图,ABCD 中,对角线AC ,BD 相交于点O ,下列条件:(1)190DBC ∠+∠=︒;(2)OA OB =;(3)12∠=∠,其中能判定ABCD 是菱形的条件有( )A.0个B.1个C.2个D.3个10.如图,已知线段AB,分别以A,B为圆心,大于12AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分①CAD B.CD平分①ACB C.AB①CD D.AB=CD二、填空题11.如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.12.如图,将两张长为18,宽为6的矩形纸条交叉,可知重叠部分是一个__________形(图形形状),那么该图形周长的最大值与最小值的差等于__________.13.如图,①以点A为圆心2cm长为半径画弧分别交①MAN的两边AM、AN于点B、D;①以点B为圆心,AD长为半径画弧,再以点D为圆心,AB长为半径画弧,两弧交于点C;①分别连结BC、CD、AC.若①MAN=60°,则①ACB的大小为_____.14.如图所示,BEAC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=,则E ∠=___.15.如图,在ABC 中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .若13AG =,6CF =,则四边形BDFG 的周长为______.16.如图,①ABC 中,①BAC =60°,①B =45°,AB =2,点D 是BC 上的一个动点,D 点关于AB ,AC 的对称点分别是E 和F ,四边形AEGF 是平行四边形,则四边形AEGF 的面积的最小值是__.17.如图,四边形ABCD 中,//AD BC ,90D ∠=︒,4=AD ,3BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,射线BE 交AD 于点F ,交AC 于点O ,若点O 恰好是AC 的中点,则CD 的长为________.三、解答题18.如图,AE①BF,BD平分①ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.=.连19.如图,在ABCD中,对角线AC平分BAD∠,点E、F在AC上,且CE AF接BE、BF、DE、DF.求证:四边形BEDF是菱形.20.如图,在Rt①ABC中,①BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.21.如图,四边形ABCD为矩形,O是对角线AC的中点,过点O的直线分别交边BC,AD于点E,F,连接AE,CF.(1)求证:①AOF①①COE;(2)当CE =5,AO =4,OF =3时,求证:四边形AFCE 是菱形.22.如图,在Rt ①ABC 中,①ACB =90゜,D 为AB 的中点,AE //CD ,CE //AB ,连接DE 交AC 于点O .(1)证明:四边形ADCE 为菱形;(2)若①B =60゜,BC =6,求菱形ADCE 的高.23.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过B 点作//BF AC ,过C 点作//CF BD ,BF 与CF 相交于点F .(1)求证:四边形BFCO 是菱形;(2)连接OF 、DF ,若2AB =,2tan 3OFD ∠=,求AC 的长.24.已知,如图,把矩形纸片ABCD 沿EF 折叠后,点D 与点B 重合,点C 落在点C '的位置上,连接DF .(1)求证:四边形BFDE 是菱形;(2)当160∠=︒,2AE =时,求矩形ABCD 的纸片的面积S .25.如图,在①ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE =BF ,连接AE ,CF .(1)求证:①ADE ①①CBF ;(2)连接AF ,CE .当BD 平分①ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.参考答案1.B解:两邻边相等的平行四边形是菱形,故选项A不符合题意;一条对角线平分一个内角的平行四边形是菱形,故选项B符合题意;对角线垂直且一组邻边相等的平行四边形是菱形,故选项C不符合题意;对角线垂直的平行四边形是菱形,故选项D不符合题意;2.D解:①四边形ABCD是平行四边形,①①当AB=BC时,四边形ABCD是菱形;故符合题意;①当AC①BD时,四边形ABCD是菱形;故符合题意;①当①ABC=90°时,四边形ABCD是矩形;故不符合题意;①当AC=BD时,四边形ABCD是矩形;故不符合题意;3.A解:①①ABCD中,AC①BD,根据对角线互相垂直的平行四边形是菱形,即可判定①ABCD 是菱形;故①正确;①①ABCD中,①BAD=90°,根据有一个角是直角的平行四边形是矩形,即可判定①ABCD 是矩形,而不能判定①ABCD是菱形;故①错误;①①ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定①ABCD是菱形;故①正确;D、①ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定①ABCD是矩形,而不能判定①ABCD是菱形;故①错误.4.A解:当①BAE=30°时,四边形AECF是菱形,理由:由折叠可知,①BAE=①CAE=30°,①①B=90°,①①ACE=90°﹣30°﹣30°=30°,即①CAE=①ACE,①EA=EC,①四边形AECF是平行四边形,①四边形AECF是菱形,5.C解:如图所示:①直线l是四边形ABCD的对称轴,①AB=AD,BC=DC,①1=①2,①3=①4,又①AD①BC,①①2=①3,①①1=①4,①AB①CD,故①正确;①四边形ABCD是菱形;①AB=CD,故①正确;①四边形ABCD是菱形;①AO=OC,故①正确.①当四边形ABCD是菱形时,直线l是四边形ABCD的对称轴,但是AB与BC不一定垂直,故①错误;6.D解:A、对角线垂直的平行四边形是菱形,正确,此选项不符合题意;B、有一组邻边相等的平行四边形是菱形,正确,此选项不符合题意;C、①四边形ABCD是平行四边形,①AD①BC,①①1=①ACB,又①1=①2,①①2=①ACB,①AB=BC,①四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形),正确,此选项不符合题意;D 、AB=BD 不能判断平行四边形一定是菱形,符合题意, 7.B解:①四边形ABCD 是平行四边形,①AD①BC ,①①DAC=①ACN ,①MN 是AC 的垂直平分线,①AO=CO ,在①AOM 和①CON 中MAO NCOAO CO AOM CON∠∠⎧⎪=⎨⎪∠∠⎩==,①①AOM①①CON (ASA ),①MO=NO ,①四边形ANCM 是平行四边形,①AC①MN ,①四边形ANCM 是菱形,8.B解:记AE 与BF 相交于O 点,如图,由作法得AB =AF =10,AE 平分①BAD ,①①BAE =①DAE ,①四边形ABCD 为平行四边形,①AD ①BC ,①①DAE =①BEA ,①①BAE =①BEA ,①BA =BE ,①AF =BE ,①AF ①BE ,①四边形ABEF 为平行四边形,①AB =AF ,①四边形ABEF 为菱形,①OA=OE,OB=OF=12BF=3,AE①BF,在Rt①AOB中,OA4==,①AE=2AO=8,①四边形ABEF面积116824 22AE BF=⋅=⨯⨯=.9.C解:①四边形ABCD是平行四边形,①OA=OC,OB=OD,AD①BC,①①1=①BCO,(1)若①1+①DBC=90°时,则①BCO+①DBC=90°,①①BOC=90°,①AC①BD,①四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;(2)若OA=OB,则AC=BD,①四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;(3)若①1=①2,则①2=①BCO,①AB=CB,①四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;10.D解:由作图知AC=AD=BC=BD,①四边形ACBD是菱形,①AB平分①CAD、CD平分①ACB、AB①CD,不能判断AB=CD,11.AB=AD.解:添加AB=AD,①OA=OC,OB=OD,①四边形ABCD为平行四边形,①AB=AD,①四边形ABCD是菱形,12.菱形16证明:过点A作AE①BC于E,AF①CD于F,①两条纸条宽度相同(对边平行),①AB①CD,AD①BC,AE=AF,①四边形ABCD是平行四边形,①S①ABCD=BC•AE=CD•AF,又①AE=AF,①BC=CD,①四边形ABCD是菱形;当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为x,由勾股定理:x2=(18-x)2+62,得:x=10,即菱形的最大周长为10×4=40.当两张纸条如图所示放置时,即是正方形时取得最小值为:6×4=24.则图形周长的最大值与最小值的差=40-24=16;13.30°解:由题意可得:AB =BC =CD =AD =2cm ,①四边形ABCD 是菱形,①BC①DA ,①CAB =①CAD =12①MAN =30°, ①①ACB =①CAD =30°,14.27°解:如下图,连接AE①BE①AC ,①①ADB=①BDC=90°①①ABD 和①CBD 是直角三角形在Rt①ABD 和Rt①CBD 中AB BC BD BD =⎧⎨=⎩①Rt①ABD①Rt①CBD①AD=DC①BD=DE①在四边形ABCE 中,对角线垂直且平分①四边形ABCE 是菱形①①ABC=54°①①ABD=①CED=27°15.20解:①AG①BD ,BD=FG ,①四边形BGFD 是平行四边形,①CF①BD ,①CF①AG ,又①点D 是AC 中点, ①BD=DF= 12AC , ①四边形BGFD 是菱形,设GF=x ,则AF=13-x ,AC=2x ,在Rt①AFC 中,由勾股定理可得:()()2236132x x +-=解得:5x =即GF=5①四边形BDFG 的周长=4GF=20.16解:由对称的性质得:AE=AD=AF ,①四边形AEGF 是平行四边形,①四边形AEGF 是菱形,①①EAF=2①BAC=120°,当AD①BC 最小时,AD 的值最小,即AE 的值最小,即菱形AEGF 面积最小, ①①ABC=45°,AB=2,①四边形AEGF 的面积的最小值=212⨯=.17.解:①AO OC =,//AD BC , ①OAF OCB ∠=∠,OFA OBC ∠=∠,①易证AOF ①COB △,①AF BC =,又①//AD BC ,①四边形AFCB 为平行四边形.①AO=CO ,连接AE ,CE ,则AE=CE ,①OE①AC ,①平行四边形AFCB 为菱形,①3AF FC BC ===,①1DF =,①CD ==18.证明见解析①AE ①BF ,①①ADB =①DBC ,①BD 平分①ABC ,①①DBC =①ABD ,①①ADB =①ABD ,①AB =AD ,又①AB =BC ,①AD =BC ,①AE ①BF ,即AD ①BC ,①四边形ABCD 为平行四边形,又①AB =AD ,①四边形ABCD 为菱形.19.证明见详解.证明:连结BD交AC于O,①对角线AC平分BAD∠,①①BAC=①DAC,在ABCD中,AB①DC,AB=DC,BC①AD,BC=AD,①①BAC=①DCA,①BCA=①DAC,①BC=BA,DC=DA,①平行四边形ABCD为菱形,①AC①BD,OA=OC,OB=OD,①CE AF=,①OA-AF=OC-CE,即OE=OF,①四边形BEDF为平行四边形,AC①BD,点E、F在AC上,①EF①BD,①平行四边形BEDF为菱形.20.(1)见解析;(2)S菱形ADCF=96.(1)证明:①E是AD的中点,①AE=DE,①AF∥BC,①①AFE=①DBE,在①AEF和①DEB中,①AFE DBEAEF DEBAE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,①①AEF①①DEB(AAS),①D是BC的中点,①AF=DB=DC,①四边形ADCF是平行四边形,①①BAC=90°,D是BC的中点,①AD=CD=12 BC,①四边形ADCF是菱形;(2)解:设AF到CD的距离为h,①AF∥BC,AF=BD=CD,①BAC=90°,①S菱形ADCF=CD•h=12BC•h=S①ABC=12AB•AC=12×12×16=96.21.(1)见解析;(2)见解析(1)证明:①四边形ABCD为矩形,①AD①BC,①①F AC=①ECA,①AFE=①CEF,①O是对角线AC的中点,①OA=OC,①①AOF①①COE(AAS);(2)由(1)知①AOF①①COE,①AF=CE=5,①AO=4,OF=3,①222345+=,即222OF OA AF+=,①①AOF=90°,①三角形AOF是直角三角形,①AF=CE,AF①CE,①四边形AFCE是平行四边形,①EF①AC,①平行四边形AFCE是菱形.22.(1)见解析;(2)(1)证明:①AE//CD,CE//AB,①四边形ADCE是平行四边形,①①ACB=90°,D为AB的中点,①CD=12AB=AD,①四边形ADCE为菱形;(2)解:过点D作DF①CE,垂足为点F,如图所示:DF即为菱形ADCE的高,①①B=60°,CD=BD,①①BCD是等边三角形,①①BDC=①BCD=60°,CD=BC=6,①CE//AB,①①DCE=①BDC=60°,①①CDF=30°,又①CD=BC=6,①CF=3,①在Rt①CDF中,DF23.(1)见解析;(2)解:(1)//BF AC ,//CF BD ,∴四边形OBFC 是平行四边形,矩形ABCD , ∴11,,22AC BD BO BD CO AC ===OB OC ∴=, ∴四边形OBFC 是菱形.(2)连接FO 并延长交AD 于H ,交BC 于K ,菱形OBFC ,90BKO ∴∠=︒,矩形ABCD ,90DAB ABC ∴∠=∠=︒,OA OD =, ∴四边形ABKH 是矩形,90DHF ∴∠=︒,2HK AB ==,H ∴是AD 中点, O 是BD 中点,112OH AB ∴==, 1FK OK OH ∴===,3HF ∴=,2tan 3OFD =, 2HD AH ∴==,4BC AD ∴==,①AC =24.(1)证明见解析;(2)ABCD S =矩形 (1)证明:①四边形ABCD 是矩形, ①AD①BC ,①①1=①2,①EF 为折痕,①BF=DF ,BE=DE ,①BEF=①2,①①BEF=①1,①BE=BF ,①BF=DF=BE=DE ,①四边形BEDF 是菱形;(2)解:由(1)知①2=①BEF=①1=60°, ①①3=180°-60°-60°=60°,①AE=2,①A=90°,①①ABE=30°,①BE=2AE=4,由勾股定理得:= ①四边形ABCD 是矩形,沿EF 折叠B 和D 重合, ①DE=BE=4,①AD=BC=2+4=6,AB=CD=①矩形ABCD 的面积S=6⨯= 25.(1)见解析;(2)菱形,见解析解:(1)证明:①四边形ABCD 是平行四边形, ①AD =CB ,①ADC =①CBA ,①①ADE =①CBF ,在①ADE 和①CBF 中,14 AD CB ADE CBF DE BF ⎧⎪∠∠⎨⎪⎩===,①①ADE ①①CBF (SAS );(2)当BD 平分①ABC 时,四边形AFCE 是菱形, 理由:如图,①BD 平分①ABC ,①①ABD =①CBD ,①四边形ABCD 是平行四边形,①OA =OC ,OB =OD ,AD ①BC ,①①ADB =①CBD ,①①ABD =①ADB ,①AB =AD ,①平行四边形ABCD 是菱形,①AC ①BD ,①AC ①EF ,①DE =BF ,①OE =OF ,又①OA =OC ,①四边形AFCE 是平行四边形,①AC ①EF ,①四边形AFCE 是菱形.。

菱形的判定练习

菱形的判定练习

菱形的判定练习一、选择题〔每题2分,共30分〕1 .菱形和矩形一定都具有的性质是〔〕A .对角线相等.B .对角线互相平分.C.对角线互相垂直. D .每条对角线平分一组对角.2. 四边相等的四边形是〔〕A .菱形B .矩形C.正方形D .梯形3. 菱形是轴对称图形,它的对称轴有〔〕A . 1条B. 2条C. 3条D. 4条4. 如图19-2-2-14,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG与FH交于点0,那么图中的菱形共有〔〕A . 4个B. 5个C. 6个D. 7个图19-2-2-145. 在菱形ABCD中,AC=6, BD=8,那么菱形的边长为〔〕A . 5 B. 10 C . 6 D . 86. 如图19-2-2-15,在菱形ABCD 中,AB=5,/ BCD=120° 那么对角线AC等于〔〕A. 20B. 15 C . 10 D . 5图19-2-2-157. 如图19-2-2-16,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么ABCD的周长是〔〕A. 4B. 8C. 12D. 168. 菱形的边长和一条对角线的长均为'1 r ,那么菱形的面积为〔〕A. 3cm2B. 4cm2C. 仏叶D. 2-讥叶9. 以下条件之一能使口ABCD是菱形的为〔〕①AC丄BD ②/ BAD=90°③AB=BC ④AC=BDA .①③B .②③ C.③④ D .①②③10. 以下说法正确的选项是〔〕A .对角线互相垂直且相等的四边形是菱形B .对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D .对角线相等的四边形是菱形11. 用两个边长为a的等边三角形纸片拼成的四边形是〔〕A .平行四边形B .正方形C.矩形D .菱形12. 菱形OABC在平面直角坐标系中的位置如图19-2-2-17所示, 仁'■… K,那么点B的坐标为〔〕A. dB.(i 应)C.D.(L】)13. 如图19-2-2-18,菱形ABCD 中,/ B=60° AB=2, E、F 分别是BC、CD的中点,连接AE、EF、AF,那么△ AEF的周长为〔〕A. B.・疵C. 4 2 D. 3图19-2-2-1814. 如图19-2-2-19,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线〔虚线〕剪下,再翻开,得到的菱形的面积为〔〕A. 10cm2B. 20cm2C. 40cm2D. 20cm2DB图19-2-2-1915. 将矩形纸片ABCD按如图19-2-2-20所示的方式折叠,得到菱形AECF.假设AB=3,那么BC的长为〔〕A. 1B. 2C.亡D.曲图19-2-2-20二、填空题〔每空3分,共15分〕16. 假设一个菱形的周长是40cm,它的一条对角线长10cm,那么菱形相邻的两个角度数分别是—.17. 如图19-2-2-21, P为菱形ABCD的对角线上一点,PE丄AB于点E, PF丄AD于点F, PF=3cm,那么P点到AB的距离是cm.图19-2-2-2118. 菱形的一个内角为60° 一条对角线的长为2舘,那么另一条对角线的长为19. 菱形的周长为40,—条对角线长为12,那么这个菱形的面积为—.20. 如图19-2-2-22, 一活动菱形衣架中,菱形的边长均为16cm 假设墙上钉子间的距离AB=BC=16cm,那么/仁—度.图19-2-2-2221 .如图19-2-2-23,在菱形ABCD 中,/ ADC=72° AD 的垂直平分线交对角线BD于点P,垂足为E,连接CP,那么卍口円? = ________ 度.图19-2-2-2322. _____________________________________ 如图19-2-2-24,在菱形ABCD中,AC、BD相交于点O, DE丄BC 于点E, 且DE=OC, OD=2,那么AC= _____________________ .三. 解答题 23. 〔本小题总分值 5分〕如图19-2-2-25,菱形ABCD 中,BE 丄AD , BF 丄CD , E 、F 为垂足,AE=ED ,求/ EBF 的度数.24. 〔本小题总分值 5分〕:如图19-2-2-26,矩形ABCD 中,DE // AC , CE // BD .试说明四边形 OCED 是菱形的理由.25. 〔本小题总分值5分〕如图19-2-2-27,^ABC 中,AC 的垂 直平分线MN 交AB 于点D ,交AC 于点O , CE / AB 交MN 于E ,连 结 AE 、CD .〔1〕求证:AD=CE ;图 19-2-2-24C图 19-2-2-25E〔2〕填空:四边形ADCE的形状是图19-2-2-2726. 〔本小题总分值5分〕如图19-2-2-28,将矩形ABCD沿对角线AC剪开,再把△ ACD沿CA方向平移得到△ A C .〔1〕证明:△ A AD^A CC B;〔2〕假设/ ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC D是菱形,并请说明理由.图19-2-2-2827. 〔本小题总分值5分〕如图19-2-2-29, ABCD的对角线AC的垂直平分线与两边AB、CD的延长线分别相交于E、F,求证: 四边形AECF为菱形28. 〔本小题总分值5分〕如图19-2-2-30,在厶ABC中,/ BAC=90° AD 丄BC 于D, CE 平分/ ACB,交AD 于G,交AB 于E, EF丄BC于F,求证:四边形AEFG是菱形;29. 〔本小题总分值5分〕如图19-2-2-31,四边形ABCD是菱形,DE丄AB交BA的延长线于E, DF丄BC,交BC的延长线于F .请你猜测DE与DF的大小有什么关系?并证明你的猜测图19-2-2-3130. 〔本小题总分值6分〕如图19-2-2-32,矩形ABCD中,0 是AC 与BD的交点,过0点的直线EF与AB、CD的延长线分别交于E、F.〔1〕求证:△ BOE^A DOF;〔2〕当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?证明你的结论.FDCE图19-2-2-3231. 〔本小题总分值7分〕如图19-2-2-33,有一矩形纸片ABCD , AB=6, BC=8,将纸片沿EF 折叠,使B 与D 重合.〔1〕四边形BEDF 是菱形吗?为什么? 〔2〕求EF 的长. 图 19-2-2-3332. 〔本小题总分值7分〕如图19-2-2-34,在四边形ABCD 中, E 为AB 上一点,△ ADE 和厶BCE 都是等边三角形,AB 、BC 、CD 、 DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边 形,并证明你的结论.图 19-2-2-34参考答案 1. B 2. A 3. B4. B 5. A 6. D 7. D 8. D 9. A 10. B11. D 12. C 13. B 14. A 15. D16. 60 °120° 17.3 18.6 19 .96 20.12021. .72 22.4 323. 60° 24. ・・ DE // AC , CE // BD , 二四边形OCED 是平行四边形, 又T 四边形ABCD 是矩形,••• AC 与BD 互相平分且相等,即OC=OD,•••(■■ OCED 是菱形.25. 〔1〕证明:T MN是AC的垂直平分线•OA=OC ,Z AOD= / EOC=90°, T CE// AB,•/ DAO= / ECO,•△ADO^A CEO,•AD=CE,〔2〕四边形ADCE是菱形.26. 〔1〕由平移得AA=CC'AD二A D=BC,Z DAC= / D A =A ACB,• △A AD^ CC B;1〔2〕当AC = 2AC时,四边形ABC D是菱形, 由〔1〕可得BC =AD , AB=CD ,•四边形ABC D是平行四边形,T AC =2AC,Z ABC=90°1二BC =2AC,••• BC =AC ,vZ ACB=30°,•/ CAB=60°,•AB二BC ,•四边形ABC D是菱形.27. v四边形ABCD是平行四边形,•AB// CD,•Z EOA= Z CFO,又vZ EOA= Z COF, OA=OC,•△AOE^A COF,•OE=OF,即AC与EF互相垂直平分,•四边形AECF为菱形28. 如图19-2-2-35,v CE 平分Z ACB, EA丄CA, EF 丄BC,•AE=FE,vZ 仁Z 2,•△ AEC^^ FEC,•AC=FC,v CG=CG,•••△ACG^A FCG,•••/ 5 二/ 7 二/B,•GF // AE,v AD 丄BC, EF 丄BC,•AG/ EF,v AG=GF〔或AE=EF〕,•四边形AGFE 是菱形〔一组邻边相等的平行四边形是菱形〕29.DE=DF.证明如下:连结BD,v四边形ABCD是菱形,•/ CBD= / ABD〔菱形的对角线平分一组对角〕,v DF 丄BC, DE 丄AB,•DF=DE〔角平分线上的点到角两边的距离相等〕.30. 〔1〕证明:v四边形ABCD是矩形,•OB=OD〔矩形的对角线互相平分〕,AE / CF〔矩形的对边平行〕.•/ E=Z F,/ OBE二/ ODF .•△BOE^A DOF〔AAS〕.〔2〕当EF丄AC时,四边形AECF是菱形.证明:v四边形ABCD是矩形,•OA=OC〔矩形的对角线互相平分〕.又由〔〔〕△ BOE^A DOF 得,OE=OF,•四边形AECF 是平行四边形〔对角线互相平分的四边形是平行四边形〕 ,又EF丄AC,•四边形AECF 是菱形〔对角线互相垂直的平行四边形是菱形〕.31. 〔 1〕如图,四边形BEDF 是菱形.:沿EF 折叠,使B 与D 重合, ••• EF 垂直平分BD ,即 OB=OD ,Z BOF 二/DOE=90°. v AD // BC ,• / 仁/2.• △ BOF ^A DOE .• OE=OF ,即EF 与BD 互相垂直平分.•四边形BEDF 是菱形.〔2〕设 CF=x ,那么 BF=DF=8-x=DF ,32. 如图 19-2-2-36, x 解得 7 4 , DF 8x25•/ BD 62 82 10,• OD 1£BD 2 5在 Rt A DOF中,OF 2得 DF 2 OD 2 22516 .• OF 154 .• EF 2OF 2 154 7.5在 Rt A DCF 中,由CF 2 DC 2 DF 2得,x 2 62图19-2-2-36连结AC、BD.v PQ为仏ABC的中位线,••• PQ_ 2AC.同理MN仝2AC.•MN PQ,•四边形PQMN为平行四边形.在厶AEC和厶DEB中,AE=DE,EC=EB,Z AED=60°/ CEB, 即/ AEC= / DEB.•△ AEC^^ DEB.•AC=BD.1 1•PQ=2AC=2BD=PN,•. PQMN为菱形.。

1922菱形的判定

1922菱形的判定

B
又∵AB=BC
∴□ABCD是菱形
2、四边相等的四边形是菱形
A
D AB=BC=CD=DA A
D
B C
四边形ABCD
∵AB=BC
∴四边形ABCD是菱形
探究2:用一长一短两根细木条,在它们的中 点处固定一个小钉,做成一个可以转动的十字, 四周围上一根橡皮筋,做成一个四边形.转动 木条,这个四边形什么时候变成菱形?
根据菱形的定义,可得菱形的第一个 判定的方法
1、有一组邻边相等的平行四边形叫做菱形
A
D
O
B
C
D
菱形的性质:
A
O C
菱形具有平行四边形的一切性质 B
边:对边平行,四条边都相等 角:对角相等,邻角互补 对角线: 互相垂直平分,并且每一条对角线平分一组对角 对称性:
菱形既是轴对称图形,也是中心对称图形
性质
□ABCD
B
C
菱形ABCD
∵在□ABCD中,AC⊥BD
∴ □ABCD是菱形
菱形的判定: 1、一组邻边相等的平行四边形是菱形 2、对角线互相垂直的平行四边形是菱形 3、四边相等的四边形是菱形
1、下列三个图形都是菱形吗?
5
34
43
5

3 44
3
5
5 5
5
有一组邻边 相等的平行 四边形叫做 菱形
对角线互相 垂直的平行 四边形是菱 形
等宽的纸条?
C
A
B
D
A
C
B
D
P58练习3 把两张等宽的纸条交叉重叠在一起,你 能判断重叠部分ABCD的形状吗?
(1)如何理解两张等宽的纸条?
A
D

初二菱形性质及判定练习题

初二菱形性质及判定练习题

初二菱形性质及判定练习题
菱形是一种特殊的四边形,具有以下特点:
1. 所有边相等:菱形的四条边都是相等的。

2. 对角线相交于直角:菱形的对角线相交于直角。

这意味着当我们将菱形细分为两个三角形时,这两个三角形的斜边互相垂直。

判定一个四边形是否为菱形,需要满足以下条件:
1. 四边相等:首先,我们需要确认四边是否相等。

如果四边都相等,则满足了菱形的第一个特点。

2. 对角线相等:然后,我们需要测量对角线的长度。

如果对角线也相等,则可以确认这个四边形是一个菱形。

3. 对角线垂直:最后,我们需要检查对角线是否相交于直角。

如果对角线相交于直角,则可以确定这个四边形是一个菱形。

以下是一些初二菱形性质及判定的练题:
1. 给定一个四边形ABCD,AB = BC = CD = DA,AC = BD,判断这个四边形是否为菱形。

2. 给定一个四边形PQRS,PQ = RS,QR = PS,PR ≠ QS,判断这个四边形是否为菱形。

3. 给定一个四边形WXYZ,WX = YZ,WZ ≠ XY,WX与ZY 互相垂直,判断这个四边形是否为菱形。

请注意,在判断四边形是否为菱形时,必须满足所有的菱形特性。

只有当四边都相等、对角线相等且对角线相交于直角时,这个四边形才可以被确定为菱形。

如果您需要更多的菱形性质及判定练题,可以参考相关数学教材或在线资源。

对于初二学生来说,通过解答这些练题,可以更好地理解菱形的特点和判定方法,提高数学能力。

19.2.2 菱形判定

19.2.2 菱形判定

已知: 已知:在 ABCD中,AC ⊥ BD 求证: 是菱形 求证:ABCD
A B O C D
菱形的判定方法: 菱形的判定方法:
对角线互相垂直的平行四边形是菱形; 对角线互相垂直的平行四边形是菱形; 是菱形 对角线互相垂直平分的四边形是菱形) (对角线互相垂直平分的四边形是菱形)
A D AC⊥BD ⊥ B C B C A D
19.2.2 菱 形 (2)
三菱越野汽车欣赏
菱形ABCD的性质:D 的性质: 菱形 的性质
5 6
1.具有平行四边形的 具有平行四边形的 具有平行四边形 一切性质。 一切性质。
A
1 2
O 7 8
3 4
C
B
2.菱形本身具有的特殊性质 菱形本身具有的特殊性质: 菱形本身具有的特殊性质 四条边相等, 四条边相等 两条对角线互相垂直平分 两条对角线互相垂直平分, 每一条对角 线平分一组对角. 线平分一组对角 3.菱形的面积等于菱形对角线乘积的一半 菱形的面积等于菱形对角线乘积的一半. 菱形的面积等于菱形对角线乘积的一半 为什么? (为什么?)
菱形的判定方法: 菱形的判定方法:
一组邻边相等的平行四边形是菱形; 一组邻边相等的平行四边形是菱形; 邻边相等 是菱形
A D AB=BC B A D
B
C
C
□ABCD
菱形ABCD 菱形ABCD
AB=BC 四边形ABCD是菱形 是菱形 四边形
□ABCD
命题:对角线互相垂直的平行四边形是菱形 命题:对角线互相垂直的平行四边形是菱形.
归纳
菱形常用的判定方法: 菱形常用的判定方法:
1、有一组邻边相等的平行四边形叫做菱形. 有一组邻边相等的平行四边形叫做菱形. 邻边相等的平行四边形叫做菱形 2、对角线互相垂直的平行四边形是菱形. 对角线互相垂直的平行四边形是菱形. 互相垂直 是菱形 (对角线互相垂直平分的四边形是菱形.) 对角线互相垂直平分的四边形是菱形. 互相垂直平分的四边形是菱形 3、有四条边相等的四边形是菱形. 有四条边相等的四边形是菱形. 边相等的四边形是菱形

菱形的判定方法

菱形的判定方法

菱形的判定方法菱形是一种几何图形,具有特殊的性质和判定方法。

在几何学中,我们经常会遇到菱形,因此了解菱形的判定方法对于解题和应用都非常重要。

接下来,我们将详细介绍菱形的判定方法,希望能够帮助大家更好地理解和运用菱形的相关知识。

首先,我们来看菱形的定义。

菱形是指四边形的一种,具有以下特点,四条边相等,对角线互相垂直且相等。

根据这个定义,我们可以得出菱形的判定方法。

判定方法一,四边相等。

要判定一个四边形是否为菱形,首先需要检查它的四条边是否相等。

如果一个四边形的四条边长度都相等,那么它就是一个菱形。

这是菱形的最基本特征,也是最直观的判定方法。

判定方法二,对角线相等。

除了四条边相等之外,菱形还具有对角线互相垂直且相等的特点。

因此,我们可以通过检查四边形的对角线是否相等来判定它是否为菱形。

如果一个四边形的对角线长度相等,那么它就是一个菱形。

判定方法三,对角线垂直。

在判定菱形时,我们还可以通过检查四边形的对角线是否互相垂直来确定。

如果一个四边形的对角线互相垂直,并且长度相等,那么它就是一个菱形。

对角线的垂直性是菱形的重要特征之一,也是判定菱形的重要方法之一。

综上所述,菱形的判定方法主要包括四边相等、对角线相等和对角线垂直这三个方面。

通过对这些特点的检查和验证,我们可以准确地判定一个四边形是否为菱形。

除了上述方法之外,我们还可以利用菱形的性质来进行判定。

例如,菱形的对角线相交于菱形的顶点,将菱形分成四个全等的直角三角形,这也可以作为判定菱形的方法之一。

总之,菱形是一种具有特殊性质的几何图形,它的判定方法主要包括四边相等、对角线相等和对角线垂直。

通过对这些特点的检查和验证,我们可以准确地判定一个四边形是否为菱形。

希望本文能够帮助大家更好地理解和运用菱形的相关知识。

2022年湘教版八年级下《菱形的判定》同步练习(附答案)

2022年湘教版八年级下《菱形的判定》同步练习(附答案)

2.6.2 菱形的判定一、选择题1.以下四边形中不一定为菱形的是〔〕A.对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=•BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有〔〕.A.1种B.2种C.3种D.4种3.菱形的周长为32cm,一个内角的度数是60°,那么两条对角线的长分别是〔〕A.8cm和43cm B.4cm和83cmC.8cm和83cm D.4cm和43cm二、填空题4.如图1所示,平行四边形ABCD,AC,BD相交于点O,添加一个条件使平行四边形为菱形,添加的条件为________.〔只写出符合要求的一个即可〕图1 图25.如图2所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE是菱形,那么要增加的条件是________.〔只写出符合要求的一个即可〕6.菱形ABCD的周长为48cm,∠BAD:∠ABC=1:2,那么BD=_____,菱形的面积是______.7.在菱形ABCD中,AB=4,AB边上的高DE垂直平分边AB,那么BD=_____,AC=_____.三、解答题8.如下图,在四边形ABCD中,AB∥CD,AB=CD=BC,四边形ABCD是菱形吗?说明理由.四、思考题9.如图,平行四边形ABCD的对角线相交于点O,且OC=OD,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD是菱形吗?试说明理由.参考答案一、1.A 点拨:此题用排除法作答.2.D 点拨:根据菱形的判定方法判断,注意不要漏解.3.C 点拨:如下图,假设∠ABC=60°,那么△ABC 为等边三角形,• 所以A C=AB=14×32=8〔cm 〕,AO=12AC=4cm . 因为AC ⊥BD ,在Rt △AO B 中,由勾股定理,得OB=222284AB OA -=-=43〔cm 〕,• 所以BD=2OB=83cm .二、4.AB=BC 点拨:还可添加A C ⊥BD 或∠ABD=∠CBD 等. 5.点D 在∠BAC 的平分线上〔或AE=AF 〕6.12cm ;723cm 2点拨:如下图,过D 作DE ⊥AB 于E , 因为AD ∥BC ,•所以∠BAD+∠ABC=180°. 又因为∠BAD :∠ABC=1:2,所以∠BAD=60°,因为AB=AD ,所以△ABD 是等边三角形,所以BD=AD=12cm .所以AE=6cm . 在Rt △AED 中,由勾股定理,得AE 2+ED 2=AD 2,62+ED 2=122,所以ED 2=108, 所以ED=63cm ,所以S 菱形ABCD =12×63=723〔cm 2〕.7.4;43 点拨:如下图,因为DE 垂直平分AB ,又因为DA=AB ,所以DA=DB=4.所以△ABD 是等边三角形,所以∠BAD=60°, 由可得AE=2.在Rt △AED•中,•AE 2+DE 2=AD 2,即22+DE 2=42,所以DE 2=12,所以DE=23,因为12AC·BD=AB·DE,即12AC·4=4×23,所以AC=43.三、8.解:四边形ABCD是菱形,因为四边形ABC D中,AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以ABCD是菱形.点拨:根据条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、9.解:四边形PCOD是菱形.理由如下:因为PD∥OC,PC∥OD,所以四边形PCOD是平行四边形.又因为OC=OD,所以平行四边形PCOD是菱形.14.1.2 幂的乘方一、选择题1.计算〔-a2〕5+〔-a5〕2的结果是〔〕A.0 B.2a10 C.-2a10 D.2a72.以下计算的结果正确的选项是〔〕A.a3·a3=a9 B.〔a3〕2=a5 C.a2+a3=a5 D.〔a2〕3=a63.以下各式成立的是〔〕A.〔a3〕x=〔a x〕3 B.〔a n〕3=a n+3 C.〔a+b〕3=a2+b2 D.〔-a〕m=-a m4.如果〔9n〕2=312,那么n的值是〔〕A.4 B.3 C.2 D.1二、填空题5.幂的乘方,底数________,指数________,用字母表示这个性质是_________.•6.假设32×83=2n,那么n=________.7.n为正整数,且a=-1,那么-〔-a2n〕2n+3的值为_________.8.a3n=2,那么a9n=_________.三、解答题9.计算:①5〔a3〕4-13〔a6〕2②7x4·x5·〔-x〕7+5〔x4〕4-〔x8〕2③[〔x+y〕3]6+[〔x+y〕9]2④[〔b-3a〕2]n+1·[〔3a-b〕2n+1]3〔n为正整数〕10.假设2×8n×16n=222,求n的值.四、探究题11.阅读以下解题过程:试比拟2100与375的大小.解:∵2100=〔24〕25=1625375=〔33〕25=2725而16<27∴2100<375.请根据上述解答过程解答:比拟255、344、433的大小参考答案:1.A 2.D 3.A 4.B5.不变;相乘;〔a m〕n=a mn〔m、n都是正整数〕6.14 7.1 8.8 9.①-8a12;②-3x16;•③2〔x+y〕18;④〔3a-b〕8n+5 10.n=3 11.255<433<344。

菱形的判定方法

菱形的判定方法

菱形的判定方法
菱形是一种具有特殊形状的四边形,其特点是四条边相等,且相邻两条边互相垂直。

在几何学中,我们经常需要判定一个四边形是否为菱形,下面我将介绍一些菱形的判定方法。

首先,我们来看一个简单的判定方法,通过对角线的性质来判断一个四边形是否为菱形。

菱形的对角线是相等的,且互相垂直。

因此,如果一个四边形的对角线相等且互相垂直,那么这个四边形就是菱形。

这是最基本的菱形判定方法,也是最直观的方法之一。

其次,我们可以利用菱形的性质来判定一个四边形是否为菱形。

菱形的性质包括四条边相等和相邻两条边互相垂直。

因此,如果一个四边形的四条边相等且相邻两条边互相垂直,那么这个四边形就是菱形。

这种方法需要我们对菱形的性质有一定的了解,但是一旦掌握,就可以快速准确地判定一个四边形是否为菱形。

另外,我们还可以利用菱形的角度性质来判定一个四边形是否为菱形。

菱形的内角是直角,因此如果一个四边形的内角都是直角,那么这个四边形就是菱形。

这种方法需要我们对角度的判定有一定的经验,但是同样可以帮助我们准确地判定一个四边形是否为菱形。

除了以上介绍的方法,还有一些其他的判定菱形的方法,比如利用菱形的对边平行性质、利用菱形的对边相等性质等。

在实际应用中,我们可以根据具体情况选择合适的方法来判定一个四边形是否为菱形。

总之,判定一个四边形是否为菱形,需要我们对菱形的性质有一定的了解,同时需要我们灵活运用几何学的知识和方法。

希望以上介绍的菱形判定方法能够帮助大家更好地理解和掌握菱形的性质,从而更准确地判定一个四边形是否为菱形。

(完整版)菱形的判定专项练习30题.doc

(完整版)菱形的判定专项练习30题.doc

菱形的判定专项练习30 题(有答案)1.如图,梯形ABCD 中, AD ∥ BC,BA=AD=DC=BC ,点 E 为 BC 的中点.(1)求证:四边形 ABED 是菱形;(2)过 A 点作 AF ⊥ BC 于点 F,若 BD=4cm ,求 AF 的长.2.如图,四边形 ABCD 中,对角线 AC、BD 相交于点O,且 AC ⊥ BD .点 M ,N 分别在 BD 、AC 上,且 AO=ON=NC ,BM=MO=OD .求证: BC=2DN .3.如图,在△ ABC 中, AB=AC ,D ,E, F 分别是 BC ,AB , AC 的中点.(1)求证:四边形 AEDF 是菱形;(2)若 AB=12cm ,求菱形 AEDF 的周长.4.如图,在 ?ABCD 中, EF∥ BD ,分别交 BC , CD 于点 P, Q,交 AB ,AD 的延长线于点 E, F.已知 BE=BP .求证:( 1)∠ E= ∠F;( 2) ?ABCD 是菱形.5.如图,在△ ABC 中, D 是 BC 的中点, E 是 AD 的中点,过点 A 作 AF ∥ BC , AF 与 CE 的延长线相交于点 F,连接BF.( 1)求证: AF=DC ;( 2)若∠ BAC=90 °,求证:四边形AFBD 是菱形.6.已知平行四边形ABCD 中,对角线BD 平分∠ ABC ,求证:四边形ABCD 是菱形.7.如图,在一个含 30°的三角板 ABC 中,将三角板沿着 AB 所在直线翻转 180°得到△ ABF ,再将三角板绕点 C 顺时针方向旋转 60°得到△ DEC ,点 F 在 AC 上,连接 AE .(1)求证:四边形 ADCE 是菱形.(2)连接 BF 并延长交 AE 于 G,连接 CG.请问:四边形 ABCG 是什么特殊平行四边形?为什么?8.如图,已知四边形ABCD 是平行四边形,DE ⊥ AB , DF ⊥BC ,垂足分别是为E F,并且 DE=DF .求证:四边形 ABCD 是菱形.9.如图,在△ ABC 中, DE∥ BC,分别交 AB ,AC 于点 D , E,以 AD , AE 为边作 ?ADFE 交 BC 于点 G, H,且EH=EC .求证:( 1)∠ B= ∠ C;(2) ?ADFE 是菱形.10.如图,在△ ABC 中,∠ACB=90 °, CD 是 AB 边上的高,∠BAC 的平分线AE 交 CD 于 F, EG⊥ AB 于 G.(1)求证:△ AEG ≌ △ AEC ;(2)△ CEF 是否为等腰三角形,请证明你的结论;(3)四边形 GECF 是否为菱形,请证明你的结论.11.如图,在△ ABC 中, AB=AC ,点 D 、E、 F 分别是△ABC 三边的中点.求证:四边形ADEF 是菱形.12.如图,在四边形 ABCD 中, AB=CD , M 、 N、 E、 F 分别为 AD 、 BC 、BD 、 AC 的中点,求证:四边形 MENF 为菱形.13.已知:如图,在梯形 ABCD 中, AD ∥ BC, AB=AD ,∠BAD 的平分线 AE 交 BC 于点 E,连接 DE .求证:四边形ABED 是菱形.14.如图,在△ ABC 中, AB=AC , M 、 O、 N 分别是 AB 、 BC 、 CA 的中点.求证:四边形AMON 是菱形.15.如图:在△ ABC 中,∠BAC=90 °, AD ⊥ BC 于 D, CE 平分∠ ACB ,交 AD 于 G,交 AB 于 E, EF⊥ BC 于 F.求证:四边形AEFG 是菱形.16.如图,矩形ABCD 绕其对角线交点旋转后得矩形AECF , AB 交 EC 于点 N , CD 交 AF 于点 M .求证:四边形ANCM 是菱形.17.如图,四边形 ABCD 、 DEBF 都是矩形, AB=BF , AD 、BE 交于 M , BC 、DF 交于 N,那么四边形 BMDN 是菱形吗?如果是,请写出证明过程;如果不是,说明理由.18.已知如图所示, AD 是△ ABC 的角平分线, DE ∥ AC 交 AB 于 E, DF∥AB 交 AC 于 F,四边形 AEDF 是菱形吗?说明理由.19.已知:如图所示,BD 是△ABC 的角平分线, EF 是 BD 的垂直平分线,且交AB 于 E,交 BC 于点 F.求证:四边形 BFDE 是菱形.20.如图,在平行四边形ABCD 中, O 是对角线AC 的中点,过点O 作 AC 的垂线与边AD 、 BC 分别交于E、 F.求证:四边形AFCE 是菱形.21.如图,在矩形ABCD 中, EF 垂直平分BD .(1)判断四边形 BEDF 的形状,并说明理由.(2)已知 BD=20 , EF=15 ,求矩形 ABCD 的周长.22.如图所示,在?ABCD 中,点 E 在 BC 上, AE 平分∠BAF ,过点 E 作 EF∥ AB .求证:四边形ABEF 为菱形.23.已知,如图,矩形 ABCD 中, AB=4cm , AD=8cm ,作∠ CAE= ∠ ACE 交 BC 于 E,作∠ ACF= ∠ CAF 交 AD 于F.( 1)求证: AECF 是菱形;( 2)求四边形AECF 的面积.24.如图,平行四边形 ABCD 的对角线 AC 的垂直平分线与边 AD 、BC 分别交于 E、F.问四边形 AFCE 是菱形吗?请说明理由.25.如图:在平行四边形 ABCD 中, E、F 分别是边 AB 、CD 的延长线上一点,且 BE=DF ,连接 EF 交 AC 于 O.( 1) AC 与 EF 互相平分吗?为什么?( 2)连接 CE、AF ,再添加一个什么条件,四边形AECF 是菱形?为什么?26.已知:如图,△ABC 和△ DBC 的顶点在 BC 边的同侧, AB=DC ,AC=BD 交于 E,∠ BEC 的平分线交 BC 于 O,延长EO 到 F,使 EO=OF .求证:四边形 BFCE 是菱形.27.如图,在△ ABC 中, D 是 BC 边的中点, F, E 分别是 AD 及其延长线上的点,CF∥ BE.(1)求证:△ BDE ≌ △ CDF ;(2)请连接 BF, CE,试判断四边形 BECF 是何种特殊四边形,并说明理由;(3)在( 2)下要使 BECF 是菱形,则△ABC 应满足何条件?并说明理由.28.如图,在△ ABC 中,∠ACB=90 °, BC 的垂直平分线 DE 交 BC 于 D ,交 AB 于 E, F 在 DE 上,并且AF=CE .( 1)求证:四边形 ACEF 是平行四边形;( 2)当∠ B 的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.29.如图,在△ ABC 中, AD 是∠ BAC 的平分线, EF 垂直平分 AD 交 AB 于 E,交 AC 于 F.求证:四边形AEDF 是菱形.30.如图,△ ABC 中,点 O 是边 AC 上一个动点,过 O 作直线 MN ∥ BC,设 MN 交∠ BCA 的平分线于点 E,交∠BCA 的外角平分线于点 F.( 1)探究:线段OE 与 OF 的数量关系并加以证明;( 2)当点 O 运动到何处,且△ ABC满足什么条件时,四边形AECF 是正方形?( 3)当点 O 在边 AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明,若不是,则说明理由.矩形的判定专项练习30 题参考答案:1. 1)证明:∵点 E 为 BC 的中点,∴BE=CE= BC,∵BA=AD=DC= BC ,∴AB=BE=ED=AD ,∴四边形 ABED 是菱形;( 2)解:过点 D 作 DH ⊥BC ,垂足为H ,∵CD=DE=CE ,∴ ∠ DEC=60 °,∴ ∠ DBE=30 °,在 Rt△ BDH 中, BD=4cm ,∴ DH=2cm ,∵AF=DH ,∴AF=2cm .2.∵ AO=ON ,BM=MO ,∴ 四边形 AMND 是平行四边形,∵ AC ⊥ BD ,∴ 平行四边形 AMND 是菱形,∴ MN=DN ,∵ ON=NC , BM=MO ,∴ MN= BC ,∴ BC=2DN3.( 1)∵ D, E 分别是 BC , AB 的中点,∴DE∥ AC 且 DE=AF= AC .同理 DF∥ AB 且 DF=AE=AB .又∵ AB=AC ,∴DE=DF=AF=AE ,∴四边形 AEDF 是菱形.( 2)∵ E 是 AB 中点,∴ AE= AB=6cm ,因此菱形AEDF ∴∠1=∠2,在△AEF 和△DEC 中,∴ △ AFE ≌ △ DCE( AAS ),∴AF=DC ;(2)证明:∵ D 是 BC 的中点,∴ DB=CD= BC,∵AF=CD ,∴ AF=DB ,∵AF ∥BD ,∴四边形AFBD 是平行四边形,∵∠ BAC=90 °, D 为 BC 中点,∴AD= CB=DB ,∴四边形 AFBD 是菱形.6.∵对角线 BD 平分∠ ABC ,∴∠1=∠2,∵四边形 ABCD 是平行四边形,∴AB ∥DC ,∴∠ 3=∠ 1,∴∠ 3=∠ 2,∴DC=BC ,又∵四边形 ABCD 是平行四边形,∴四边形 ABCD 是菱形.的周长为 4×6=24cm .4.( 1)∵ BE=BP ,∴∠ E=∠BPE,7.( 1)∵三角板 ABC 中,将三角板沿着AB 所在直线∵BC∥AF ,翻转 180°得到△ ABF ,∴ ∠ BPE=∠ F,∴ ∠ E=∠ F.∴ △ ABC ≌ △ABF ,且∠BAC= ∠BAF=30 °,(2)∵EF∥BD ,∴ ∠ FAC=60 °,∴ ∠ E=∠ABD ,∠ F=∠ ADB ,∴ AD=DC=AC ,∴∠ABD= ∠ADB ,又∵ △ ABC ≌△ EFC,∴ AB=AD ,∴ CA=CE ,∵四边形 ABCD 是平行四边形,又∵ ∠ ECF=60 °,∴ □ABCD 是菱形.∴ AC=EC=AE ,(2)证明:由( 1)可知:△ ACD ,△ AFC 是等边三角形,△ACB ≌△ AFB ,∴ ∠ EDC= ∠BAC=∠ FAC=30°,且△ ABC为直角三角形,∴BC= AC ,∵EC=CB ,∴EC= AC,∴E为AC 中点,∴DE⊥ AC ,∴AE=EC ,∵AG∥BC,∴ ∠ EAG= ∠ ECB ,∠AGE= ∠ EBC ,∴△AEG≌△CEB ,∴AG=BC ,( 7 分)∴四边形 ABCG 是平行四边形,∵ ∠ ABC=90 °,∴四边形 ABCG 是矩形8.在△ ADE 和△CDF 中,∵四边形 ABCD 是平行四边形,∴∠A=∠C,∵DE⊥ AB , DF⊥ BC,∴ ∠ AED= ∠ CFD=90 °.又∵ DE=DF ,∴△ADE ≌△CDF(AAS )∴DA=DC ,∴平行四边形 ABCD 是菱形9.( 1)∵在 ?ADFE 中, AD ∥EF,∴ ∠ EHC= ∠B (两直线平行,同位角相等).∵EH=EC (已知),∴ ∠ EHC= ∠C(等边对等角),∴ ∠ B=∠ C(等量代换);( 2)∵ DE ∥ BC (已知),∴∠AED= ∠C,∠ADE= ∠B.∵∠B=∠C,∴∠AED= ∠ADE ,∴AD=AE ,∴?ADFE 是菱形.10. 1)证明:∵ ∠ACB=90 °,在 Rt△AEG 与 Rt△ AEC 中,,∴Rt△AEG ≌ Rt△ AEC (HL );( 2)解:△ CEF 是等腰三角形.理由如下:∵CD 是 AB 边上的高,∴CD⊥AB .又∵ EG⊥AB ,∴EG∥ CD ,∴∠ CFE=∠ GEA .又由( 1)知, Rt△ AEG ≌ Rt△ AEC ,∴∠GEA= ∠ CEA,∴ ∠ CEA= ∠ CFE,即∠ CEF=∠ CFE,∴ CE=CF ,即△CEF 是等腰三角形;( 3)解:四边形GECF 是菱形.理由如下:∵由( 1)知,Rt△AEG ≌ Rt△ AEC ,则 GE=EC ;由( 2)知, CE=CF ,∴GE=EC=FC .又∵ EG∥CD ,即 GE∥ FC,∴四边形 GECFR 是菱形.11.∵ D、 E、F 分别是△ ABC 三边的中点,∴DE AC,EF AB ,∴四边形 ADEF 为平行四边形.又∵ AC=AB ,∴DE=EF .∴四边形 ADEF 为菱形.12.∵ M 、 E、分别为AD 、 BD 、的中点,∴ME∥AB ,ME= AB ,同理: FH∥AB , FH=AB ,∴四边形 MENF 是平行四边形,∵M.F 是 AD ,AC 中点,∴MF= DC,∵AB=CD ,∴MF=ME ,∴四边形 MENF 为菱形∴平行四边形 AEFG 是菱形.∵,证法二:∵ AD ⊥BC,∠ CAB=90 °, EF⊥ BC, CE 平分∴ △ BAE ≌△ DAE ( SAS)( 2 分)∠ACB ,∴ BE=DE ,( 3 分)∴ AD ∥EF,∠ 4=∠ 5,AE=EF ,∵AD ∥BC,∵ ∠ 1=180°﹣ 90°﹣∠ 4,∠ 2=180 °﹣ 90°﹣∠ 5,∴ ∠ DAE= ∠ AEB ,( 4 分)∴∠1=∠2,∴ ∠ BAE= ∠AEB ,∵ AD ∥EF,∴ AB=BE ,( 5 分)∴∠2=∠3,∴ AB=BE=DE=AD ,(6 分)∴∠1=∠3,∴四边形 ABED 是菱形.∴ AG=AE ,∵ AE=EF ,∴ AG=EF ,∵ AG ∥EF,∴四边形 AGFE 是平行四边形,14.∵ AB=AC ,M 、 O、 N 分别是 AB 、 BC、 CA 的中∵ AE=EF ,点,∴平行四边形 AGFE 是菱形.∴AM= AB= AC=AN ,M0 ∥ AC , NO ∥AB ,且 MO= AC=AN ,NO= AB=AM (三角形中位线定理),16.∵ CD∥ AB ,∴ AM=MO=AN=NO ,∴∠FMC= ∠FAN,∴四边形 AMON 是菱形(四条边都相等的四边形是菱∴ ∠ NAE= ∠ MCF (等角的余角相等),形)在△ CFM 和△ AEN 中,15.证法一:∵ AD ⊥BC ,∴ ∠ ADB=90 °,,∵ ∠ BAC=90 °,∴ ∠ B+∠ BAD=90 °,∠ BAD+ ∠ CAD=90 °,∴ △ CFM ≌△ AEN (ASA ),∴∠B=∠CAD ,∴ CM=AN ,∵ CE 平分∠ ACB , EF⊥ BC,∠ BAC=90 °( EA ⊥CA ),∴四边形 ANCM 为平行四边形,∴ AE=EF (角平分线上的点到角两边的距离相等),在△ADM 和△CFM 中,∵ CE=CE ,∴由勾股定理得: AC=CF ,,∵△ACG 和△FCG 中∴△ADM ≌△CFM (AAS ),,∴ AM=CF ,∴四边形 ANCM 是菱形∴△ACG≌△FCG,17.四边形 BMDN 是菱形.∴ ∠ CAD= ∠ CFG,∵AM ∥BC,∵∠B=∠CAD ,∴∠AMB= ∠MBN ,∴ ∠ B=∠ CFG,∵BM ∥FN∴GF∥AB ,∴∠MBN= ∠BNF ,∵AD ⊥BC,EF⊥ BC,∴∠AMB= ∠BNF ,∴AD ∥EF,又∵ ∠ A= ∠ F=90°, AB=BF ,∴DM=DN ,∵ED=BF=AB ,∠ E=∠ A=90 °,∠ AMB=∠EMD ,∴△ABM ≌△ EDM,∴ BM=DM ,∴ MB=MD=DN=BN ,∴四边形 BMDN 是菱形18.如图,由于 DE ∥ AC ,DF∥ AB ,所以四边形 AEDF 为平行四边形.∵DE∥ AC ,∴ ∠3=∠ 2,又∠ 1=∠ 2,∴∠ 1=∠3,∴ AE=DE ,∴平行四边形 AEDF 为菱形.19.∵ EF 是 BD 的垂直平分线,∴EB=ED ,∴∠ EBD= ∠EDB .∵BD 是△ ABC 的角平分线,∴ ∠ EBD= ∠FBD .∴ ∠ FBD=∠EDB ,∴ED∥BF.同理, DF∥ BE ,∴四边形 BFDE 是平行四边形.又∵ EB=ED ,∴四边形 BFDE 是菱形.20.方法一:∵ AE ∥ FC.∴ ∠ EAC= ∠FCA .( 2 分)又∵ ∠ AOE= ∠ COF, AO=CO ,∴△AOE≌△COF.(5 分)∴EO=FO .又 EF⊥AC ,∴AC 是 EF 的垂直平分线.( 8 分)∴AF=AE , CF=CE ,又∵ EA=EC ,∴AF=AE=CE=CF .∴四边形 AFCE 为菱形.( 10 分)方法二:同方法一,证得△ AOE ≌ △ COF.( 5 分)∴AE=CF .∴四边形 AFCE 是平行四边形.( 8 分)方法三:同方法二,证得四边形 AFCE 是平行四边形.( 8 分)又 EF⊥ AC ,(9 分)∴四边形 AFCE 为菱形21.( 1)四边形 BEDF 是菱形.在△ DOF 和△BOE 中,∠FDO= ∠ EBO ,OD=OB ,∠ DOF=∠BOE=90 °,所以△ DOF ≌ △BOE ,所以 OE=OF .又因为 EF⊥BD , OD=OB ,所以四边形 BEDF 为菱形.(5 分)(2)如图,在菱形 EBFD 中, BD=20 , EF=15,则 DO=10 , EO=7.5 .由勾股定理得 DE=EB=BF=FD=12.5 .S 菱形EBFD= EF?BD=BE ?AD ,即所以得 AD=12 .根据勾股定理可得AE=3.5 ,有 AB=AE+EB=16 .由 2(AB+AD ) =2( 16+12 )=56 ,故矩形 ABCD 的周长为 5622.∵四边形 ABCD 是平行四边形,∴AF ∥ BE,又∵EF∥AB ,∴四边形 ABEF 为平行四边形,∵AE 平分∠ BAF ,∴∠ BAE= ∠ FAE,∵∠FAE=∠BEA ,∴∠BAE= ∠ BEA ,∴BA=BE ,∴平行四边形 ABEF 为菱形23.( 1)证明:在矩形ABCD 中,∵AB ∥CD ,∴∠BAC= ∠ DCA ,又∠CAE= ∠ ACE,∠ACF= ∠CAF,∴∠EAC= ∠ FCA.∴AE ∥ CF.∴四边形 AECF 为平行四边形,又∠CAE= ∠ ACE,∴AE=EC .∴?AECF 为菱形.(2)设 BE=x ,则 EC=AE=8 ﹣ x,在 Rt△ABE 中,222菱形的判定 ---第10页共12页所以 EC=5 ,即 S 菱形AECF=EC ×AB=5 ×4=20.24.四边形 AFCE 是菱形,理由是:∵四边形 ABCD 是平行四边形,∴AD ∥BC,∴= ,∵AO=OC ,∴ OE=OF ,∴四边形 AFCE 是平行四边形,∵EF⊥AC ,∴平行四边形AFCE 是菱形25.( 1) AC 与 EF 互相平分,连接CE,AF ,∵平行四边形ABCD ,∴AB ∥ CD ,AB=CD ,又∵BE=DF ,∴AB+BE=CD+DF ,∴AE=CF ,∴AE ∥ CF, AE=CF ,∴四边形 AECF 是平行四边形,∴AC 与 EF 互相平分;( 2)条件: EF⊥ AC ,∵EF⊥AC ,又∵四边形 AECF 是平行四边形,∴平行四边形AECF 是菱形.26.∵ AB=DC AC=BD BC=CB,∴△ABC ≌△DCB ,∴∠DBC= ∠ACB ,∴BE=CE ,又∵ ∠ BEC 的平分线是EF,∴EO 是中线(三线合一),∴BO=CO ,∴四边形 BFCE 是平行四边形(对角线互相平分),又∵ BE=CE ,∴四边形 BFCE 是菱形.27.( 1)证明:∵ CF∥BE ,∴∠ EBD= ∠ FCD ,D是 BC 边的中点,则 BD=CD ,∠BDE= ∠CDF ,∴△BDE ≌△CDF .( 2)如图所示,由( 1)可得 CF=BE ,又 CF∥ BE ,所以四边形 BECF 是平行四边形;( 3)△ ABC 是等腰三角形,即 AB=AC ,理由:当AB=AC 时,则有 AD ⊥ BC,又( 2)中四边形为平行四边形,所以可判定其为菱形.28.( 1)∵ DE 为 BC 的垂直平分线,∴ ∠ EDB=90 °, BD=DC ,又∵ ∠ ACB=90 °,∴DE∥AC ,∴E 为 AB 的中点,∴在 Rt△ ABC 中, CE=AE=BE ,∴∠ AEF= ∠ AFE ,且∠ BED= ∠AEF ,∠ DEC= ∠ DFA ,∴AF ∥ CE,又∵ AF=CE ,∴四边形 ACEF 为平行四边形;( 2)要使得平行四边形ACEF 为菱形,则 AC=CE 即可,∵DE∥AC ,∴∠BED= ∠BAC ,∠DEC=∠ECA,又∵ ∠ BED= ∠ DEC,∴∠EAC= ∠ ECA,∴ AE=EC ,又 EB=EC ,∴ AE=EC=EB ,∵CE= AB ,∴AC= AB 即可,在 Rt△ABC 中,∠ ACB=90 °,∴当∠ B=30 °时, AB=2AC ,故∠ B=30 °时,四边形ACEF 为菱形.29.∵ AD 平分∠BAC∴ ∠ BAD= ∠CAD又∵EF⊥AD ,∴ ∠ AOE= ∠ AOF=90 °∵在△AEO 和△ AFO 中,∴ △ AEO ≌ △AFO ( ASA ),∴EO=FO即 EF、 AD 相互平分,∴四边形 AEDF 是平行四边形又 EF⊥AD ,∴平行四边形AEDF 为菱形30. 1)解: OE=OF .理由如下:∵ CE 是∠ACB 的角平分线,∴ ∠ ACE= ∠BCE ,又∵ MN ∥BC,∴ ∠ NEC= ∠ECB ,∴ ∠ NEC= ∠ACE ,∴OE=OC ,∵ OF 是∠ BCA 的外角平分线,∴ ∠ OCF= ∠FCD ,又∵ MN ∥BC,∴ ∠ OFC= ∠ECD ,∴ ∠ OFC= ∠COF,∴OF=OC ,∴OE=OF ;( 2)解:当∠ ACB=90 °,点 O 在 AC 的中点时,∵OE=OF ,∴四边形 AECF 是正方形;( 3)答:不可能.解:如图所示,∵CE 平分∠ ACB ,CF 平分∠ ACD ,∴ ∠ ECF=∠ ACB+∠ ACD=(∠ACB+∠ACD)=90 °,若四边形BCFE 是菱形,则BF ⊥ EC,但在△ GFC 中,不可能存在两个角为 90°,所以不存在其为菱形.。

菱形的判定(5种题型)(解析版)

菱形的判定(5种题型)(解析版)

菱形的判定(5种题型)【知识梳理】一、菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形要点诠释:前一种方法是在四边形的基础上加上四条边相等.后两种方法都是在平行四边形的基础上外加一个条件来判定菱形。

二.菱形的判定与性质(1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.(2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.)(3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形.【考点剖析】题型一:添加一个条件使四边形为菱形∥,例1.(2023·安徽·校联考一模)如图,四边形ABCD的对角线AC,BD相交于点O,若AB CD =,想要判断四边形ABCD是菱形,则可以添加一个条件是_____________.AO CO【答案】AB AD =(答案不唯一)【分析】根据菱形的判定方法进行解答即可.【详解】解:∵AB CD ∥,∴OAB OCD ∠=∠,OBA ODC ∠=∠,∵AO CO =,∴△≌△AO B C O D , ∴AB CD =,∵AB CD ∥,∴四边形ABCD 为平行四边形,如果添加AB AD =,可以通过有一组邻边相等的平行四边形是菱形,判断四边形ABCD 为菱形; 故答案为:AB AD =.【点睛】本题主要考查了三角形全等的判定和性质,平行四边形的判定,平行线的性质,菱形的判定,解题的关键是熟练掌握菱形的判定方法.【变式】如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: ,使▱ABCD 是菱形.【分析】根据菱形的定义得出答案即可.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD =DC ,▱ABCD 为菱形;故答案为:AD =DC (答案不唯一).【点评】此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.题型二:证明四边形为菱形例2.如图,在△ABC中,AC=BC,点D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE 是菱形.【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【解答】证明:∵点D,E,F分别是AB,AC,BC的中点,∴DE∥CF,DE=BC,DF∥CE,DF=AC,∴四边形DECF是平行四边形,∵AC=BC,∴DE=DF,∴四边形DFCE是菱形;【点评】本题考查了菱形的判定和性质,等腰三角形的性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.例3.如图,四边形ABCD为平行四边形,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于E,F,且BE=BP,求证:(1)∠E=∠F;(2)四边形ABCD是菱形.【分析】(1)首先判定四边形BPFD是平行四边形,所以BP∥DF,利用平行线的性质可得∠F=∠BPE,又因为BE=BP,可得∠E=∠F;(2)利用平行线的性质以及菱形的判定方法进而得出即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BP∥DF,∵EF∥BD,∴四边形BPFD是平行四边形,∴BP∥DF,∴∠F=∠BPE,∵BE=BP,∴∠E=∠BPE,∴∠E=∠F;(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB∴∠ABD=∠ADB,又∵四边形ABCD为平行四边形,∴四边形ABCD是菱形.【点评】本题考查了平行四边形的性质和判定、菱形的判定等知识,得出四边形BPFD是平行四边形是解题关键.【变式】如图,已知平行四边形ABCD,点E在AC的延长线上,连接BE、DE,过点D作DF∥EB交CA的延长线于点F,连接FB(1)求证:△DAF≌△BCE;(2)如果四边形ABCD是菱形,求证:四边形BEDF是菱形.【分析】(1)由平行四边形的性质得出AD=CB,AD∥CB,证出∠DAF=∠BCE,∠DFA=∠BEC,由AAS证明△DAF≌△BCE即可;(2)先证明四边形BEDF是平行四边形,再由菱形的性质得出AC⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA,∴∠DAF=∠BCE,∵DF∥EB,∴∠DFA=∠BEC,在△DAF和△BCE中,,∴△DAF≌△BCE(AAS);(2)证明:连接BD,如图所示:由(1)得:△DAF≌△BCE,∴DF=BE,又∵DF∥BE,∴四边形BEDF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,即EF⊥BD,∴四边形BEDF是菱形.【点评】本题考查了菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.题型三:根据菱形的判定与性质求角度 例4.(2023春·福建福州·九年级统考期中)如图,在ABC 中,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,连接AE .(1)求证:AB AE =;(2)若A ABC CB =∠∠,证明:直线AE 与BC 互相垂直.【分析】(1)由ABC 绕点C 顺时针旋转60︒得到DEC ,可得60BCE ∠=︒,BC EC =,而30ACB ∠=︒,即得30ACE ACB ∠=︒=∠,可证()SAS ACB ACE △≌△,故AB AE =;(2)根据ABC 绕点C 顺时针旋转得到DEC ,AB AC =,可得AC DC DE AE ===,证明四边形ACDE 是菱形,得到DA CD ∥;又306090BCD ∠=︒+︒=︒,进而推导出AE BC ⊥.【详解】(1)证明:ABC 绕点C 顺时针旋转60︒得到DEC ,60BCE ∴∠=︒,BC EC =,30ACB ∠=︒,30ACE ACB ∴∠=︒=∠,AC AC =,()SAS ACB ACE ∴≌,AB AE =∴; (2)解:ABC 绕点C 顺时针旋转得到DEC ,AC DC ∴=,AB DE =,由(1)可知AB AE =,AE DE ∴=,若AB AC =,则AC AE =,AC DC DE AE ∴===,∴四边形ACDE 是菱形,AE CD ∴∥;30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,306090BCD ∴∠=︒+︒=︒,即CD BC ⊥,AE BC ∴⊥,即直线AE 与BC 互相垂直.【点睛】本题考查三角形的旋转问题,涉及菱形的判定及全等三角形的判定与性质,解题的关键是掌握旋转的性质,证明ACB ACE △≌△. 模拟预测)如图,在正方形网格中,ABC 的顶点在格点上,请仅用无刻度的直尺 (1)在图1中,作45CAE ∠=︒.(2)在图2中,作ABC 的角平分线CF .【分析】(1)如图,取格点E ,连接AE ,则CAE ∠即为所作;(2)如图,取格点F ,作射线CF ,则射线CF 即为所作;【详解】(1)解:如图,CAE ∠即为所作,由图可得:2AN CM ==,1CN EM ==,90ANC CME ∠=∠=︒,∴()SAS ANC CME ≌,∴CAN ECM ∠=∠,AC CE =,∵90CAN ACN ∠+∠=︒,∴90ECM ACN ∠∠=︒,∴90ACE ∠=︒,∵AC CE =,∴45CAE CEA ∠=∠=︒;(2)解:如图,射线CF 即为所作,由图可得:AC CG GF AF ===∴四边形ACGF 为菱形,∴CF 平分ACG ∠,即CF 是ABC 的角平分线【点睛】本题考查网格作图,全等三角形判定与性质,等腰直角三角形,菱形的判定与性质,熟练掌握菱形的判定与性质是解题的关键.题型四:根据菱形的判定与性质求线段长 例5.(2023·山西长治·校联考二模)如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,E 为OD 的中点,连接AE ,CE .(1)实践与操作:利用尺规在线段OB 上作出点F ,使得四边形AFCE 为平行四边形,连接AF ,CF ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)应用与求解:若4,60AB BC ABC ==∠=︒,求EF 的长.【答案】(1)见解析(2)【分析】(1)利用圆规在OB 上作OF OE =,根据对角线互相平分的四边形是平行四边形可得四边形AFCE 为平行四边形;(2)先根据平行四边形的性质和已知条件证明EF OB =,再证ABC 是等边三角形,求出4AC =,再证四边形ABCD 是菱形,推出BO AC ⊥,最后根据勾股定理求出OB 即可.【详解】(1)解:如图所示:以点O 为圆心,OE 长为半径作弧,与线段OB 的交点即为点F ,连接AF ,CF .(2)解:由(1)知OF OE =,ABCD Y 中,E 为OD 的中点,∴1122OE OD OB ==, ∴12OF OE OB ==,∴EF OB =,4,60AB BC ABC ==∠=︒,∴ABC 是等边三角形,∴4AC =,ABCD Y 中,AB BC =,∴四边形ABCD 是菱形,∴BD AC ⊥,即BO AC ⊥, ∴122AO AC ==,∴OB ==∴EF =【点睛】本题考查尺规作图,平行四边形的判定与性质,菱形的判定与性质,等边三角形的判定与性质,勾股定理等,解题的关键是掌握菱形、平行四边形、等腰三角形的性质.【变式】如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点E ,点F 为四边形ABCD 外一点,DA 平分∠BDF ,∠ADF =∠BAD ,且AF ⊥AC .(1)求证:四边形ABDF 是菱形;(2)若AB =5,求AC 的长.【分析】(1)首先证明四边形ABDF 是平行四边形,再证明邻边相等即可证明.(2)在Rt △AFC 中,利用勾股定理求解即可.【解答】(1)证明:∵∠ADF =∠BAD ,∴AB ∥DF ,∵AF ⊥AC ,BD ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形;∵DA 平分∠BDF ,∴∠ADF =∠BDA ,∴∠BAD =∠BDA ,∴BD =AB ,∴四边形ABDF 是菱形.(2)解:∵DA 平分∠BDF ,∴∠ADF =∠BDA ,∵BD垂直平分线段AC,∴DA=DC,∴∠ADB=∠BDC=∠ADF,∵DA=DF=DC,∴∠DAF=∠F,∠DAC=∠DCA,∴∠ADC=180°﹣2∠DAC,∠ADF=180°﹣2∠DAF,∵∠DAF+∠DAC=90°,∴∠ADF+∠ADC=360°﹣2(∠DAC+∠DAF)=180°,∴C,D,F三点共线,∴∠ADB=∠BDC=∠ADF=60°,∵FA=FD,∴△ADF是等边三角形,∴AF=DF=CD=5,∵∠FAC=90°,∴AC==5.【点评】本题考查了平行四边形的判定和性质、菱形的判定、角平分线的性质,勾股定理的应用,解题的关键是利用勾股定理列方程,属于中考常考题型.题型五:根据菱形的判定与性质求面积例6.已知,如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.【分析】(1)先证明四边形ABEF是平行四边形,再证明邻边相等即可证明.(2)作FG⊥BC于G,根据S菱形ABEF=•AE•BF=BE•FG,先求出FG即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,∴∠EBF=∠AFB,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AB=AF,∵BO⊥AE,∴∠AOB=∠EOB=90°,∵BO=BO,∴△BOA≌△BOE(ASA),∴AB=BE,∴BE=AF,BE∥AF,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)解:作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S菱形ABEF=•AE•BF=BE•FG,∴GF=,∴S平行四边形ABCD=BC•FG=.【点评】本题考查平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是利用面积法求出高FG,记住菱形的三种判定方法,属于中考常考题型.【变式】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使EF=BE,连接CF.(1)求证:四边形BCFE为菱形;(2)若CE=8,∠CFE=60°,求四边形BCFE的面积.【分析】(1)证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,BC=2DE,由已知条件得出EF =BC,证出四边形BCFE是平行四边形,再由EF=BE,即可得出结论;(2)作CM⊥DF于M,由菱形的性质得出EF=CF,证出△CEF是等边三角形,得出CF=CE=8,由三角函数求出CM,即可得出四边形BCFE的面积.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,BC=2DE,∴EF∥BC,∵BE=2DE,∴BC=BE,∵EF=BE,∴EF =BC ,∴四边形BCFE 是平行四边形,又∵EF =BE ,∴四边形BCFE 为菱形;(2)解:作CM ⊥DF 于M ,如图所示:由(1)得:四边形BCFE 为菱形,∴EF =CF ,∵∠CFE =60°,∴△CEF 是等边三角形,∴CF =CE =8,∴CM =CF •sin60°=8×=4,∴四边形BCFE 的面积=EF •CM =8×4=32.【点评】三角形中位线定理、等边三角形的判定与性质;熟练掌握菱形的判定与性质,证明△CEF 是等边三角形是解决问题(2)的突破口.【过关检测】一、单选题 1.(2023·陕西西安·校考二模)在下列条件中,能判定平行四边形ABCD 为菱形的是( )A .AB BC ⊥B .AC BD = C .AB BC = D .AB AC =【答案】C【分析】根据菱形的判定定理,即可进行解答.【详解】解:A 、若AB BC ⊥,则平行四边形ABCD 为矩形;不符合题意;B 、若AC BD =,则平行四边形ABCD 为正方形;不符合题意; C 、若AB BC =,则平行四边形ABCD 为菱形;符合题意;D 、若AB BC =,则平行四边形不是特殊的平行四边形;不符合题意;故选:C .【点睛】本题主要考查了菱形的判定,解题的关键是掌握有一组另邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形. A .点O 为ABCD Y 的对称中心C .::ABE BDF S S AE ED =△△【答案】B 【分析】由作图知,EF 是线段BD 的垂直平分线,利用平行四边形的性质可判断选项A ;根据菱形的判定定理可判断选项C ;根据菱形的性质得到BDF BDE S S =△△,可判断选项D ;BE 不一定平分ABD ∠,选项B 不正确.【详解】解:由作图知,EF 是线段BD 的垂直平分线,即点O 为ABCD Y 的对称中心,故选项A 正确,不符合题意;∵四边形ABCD 是平行四边形,∴DE BF ∥,∴DEF BFE ∠=∠,∵EF 是线段BD 的垂直平分线,∴BE ED =,BF FD =,BFE EFD ∠=∠,∴DEF EFD ∠=∠,∴DE DF =,∴DE DF BE BF ===,∴四边形BEDF 为菱形,故选项D 正确,不符合题意;∴BDF BDE S S =△△,∴:::ABE BDF ABE BDE S S S S AE ED ==△△△△,故选项C 正确,不符合题意;BE 不一定平分ABD ∠,故选项B 不正确,符合题意;故选:B .【点睛】本题考查平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.(2023·陕西西安·校考一模)在平行四边形ABCD 中,添加下列条件,能判定平行四边形ABCD 是菱形的是( )A .AB AD =B .AC BD = C .90ABC ∠= D .AB CD =【答案】A【分析】根据一组邻边相等的平行四边形是菱形即可求得答案.【详解】解:∵四边形ABCD 是平行四边形,又AB AD =, ∴平行四边形ABCD 是菱形,故选:A .【点睛】本题考查菱形的判定,熟记菱形的判定是解题的关键. 4.(2023·河北衡水·校联考模拟预测)春节期间,某广场布置了一个菱形花坛,两条对角线长分别为2310m ⨯和2410m ⨯,其面积用科学记数法表示为( )A .42610m ⨯B .421.210m ⨯C .521.210m ⨯D .22610m ⨯【答案】A 【分析】利用菱形的面积等于对角线乘积的一半进行计算,或者利用菱形对角线垂直的性质进行面积求解,最后化为科学记数法的形式即可.【详解】菱形的对角线相互垂直()2222ABD CBD ABCD BD AO OC BD AO BD CO BD AC S S S ⨯+⨯⨯⨯=+=+==四边形∴菱形的面积=对角线成绩的一半=224131********⨯⨯⨯⨯=⨯2m 【点睛】本题考查用对角线计算菱形的面积及科学记数法,也可以利用对角线垂直的性质进行面积的计算,注意所有对角线垂直的四边形面积均等于对角线乘积的一半.正确的使用公式和理解科学记数法的写法是解题的关键. 5.(2023·陕西西安·西安市铁一中学校考模拟预测)在下列条件中,能够判定ABCD Y 为菱形的是( )A .AB AC =B .AC BD ⊥ C .90A ∠=︒ D .AC BD = 【答案】B【分析】由菱形的判定和矩形的判定分别对各个选项进行判断即可.【详解】解:A 、由AB AC =,不能判定ABCD Y 为菱形,故选项不符合题意;B 、由AC BD ⊥,能判定ABCD Y 为菱形,故选项符合题意;C 、由90A ∠=︒,不能判定ABCD Y 为菱形,故选项不符合题意;D 、由AC BD =,能判定ABCD Y 为矩形,不能判定ABCD Y 为菱形,故选项不符合题意;故选:B .【点睛】本题考查了菱形的判定,熟练掌握菱形的判定定理是解题的关键.二、填空题【答案】2【分析】由菱形的性质可得OA OD 、的长,则可求得AD 的长,再由三角形中位线定理即可求得结果.【详解】解:在菱形ABCD 中,114322OA AC OD OB BD =====、,AC BD ⊥,由勾股定理得:5AD ,∵H是AB的中点,∴OH是ABD△的中位线,∴1522 OH AD==,故答案为:5 2.【点睛】本题考查了菱形的性质,勾股定理,三角形中位线定理,熟悉这些性质与定理是解题的关键.7.(2023·宁夏石嘴山·统考一模)如图,是小明作线段AB的垂直平分线的作法及作图痕迹,则四边形ADBC一定是______________.【答案】菱形【分析】根据作图方法可知AC BC AD BD===,再根据四条边相等的四边形是菱形即可得到答案.【详解】解:由作图方法可知,AC BC AD BD===,∴四边形ABCD是菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,线段垂直平分线的尺规作图,熟知菱形的判定条件是解题的关键.8.(2023·广东广州·广州市育才中学校考一模)菱形的两个内角的度数比是1:3,一边上的高长是4,则菱形的面积是__________.【答案】【分析】根据菱形相邻的两个角度之比求出对应的角度,利用等腰直角三角形的性质求出菱形的边长,然后用菱形面积公式计算即可.【详解】如左图所示,∵菱形对角相等,互补,且两个内角的度数比是1:3,118045,1804513513A C B D ∴∠=∠=⨯︒=︒∠=∠=︒−︒=︒+,如图1所示,过点D 作BC 边上的高交BC 于点H ,则4DH =,90DHC ∠=︒,45C ∠=︒,∴△CDH 是等腰直角三角形,4CH DH ∴==,CD ∴=∵菱形四条边都相等,BC CD ∴==4ABCD S BC DH =⋅==菱如图2,当过点A 作CD 边上的高交CD 于点H ,同理可证△ADH 为等腰直角三角形,可求得CD AD ==4ABCD S CD AH =⋅==菱故答案为: 【点睛】本题考查了菱形的性质,等腰直角三角形的性质,解题的关键在于求出菱形的边长. 9.(2023春·四川成都·九年级成都嘉祥外国语学校校考阶段练习)如图,在ABCD Y 中,尺规作图:以点A 为圆心,AB 的长为半径画弧交AD 于点F ,分别以点B ,F 为圆心,以大于BF 的长为半径画弧交于点P ,作射线AP 交BC 与点E ,若12BF =,10AB =,则AE AB +的值为________.【答案】26【分析】证明四边形ABEF 是菱形,利用勾股定理求出OA 即可解决问题.【详解】解:由题意可知:AB AF =,AE BF ⊥,OB OF ∴=,BAE EAF ∠=∠,四边形ABCD 是平行四边形,AD BC ∴∥,EAF AEB ∴∠=∠,BAE AEB ∴∠=∠,AB BE AF \==,AF BE ∥,∴四边形ABEF 是平行四边形,AB AF =,∴四边形ABEF 是菱形,OA OE ∴=,162OB OF BF ===,在Rt AOB △中,8OA ,216AE OA ∴==,26AE AB ∴+=.故答案为:26.【点睛】本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是判定四边形ABEF 是菱形.【答案】8【分析】如图所示,连接EF ,设AE BF 、交于O ,由作图方法可知,AE 是线段BF 的垂直平分线,则BE FE =,OB OF =,证明OAF OEB △≌△,得到AF BE =,进而证明四边形ABEF 是菱形,则13902OB BF AE OA AOB ====︒,,∠ ,由勾股定理得4OA ==,则28AE OA ==.【详解】解:如图所示,连接EF ,设AE BF 、交于O ,由作图方法可知,AE 是线段BF 的垂直平分线,∴BE FE =,OB OF =,∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAF OEB OFA OBE ==∠∠,∠∠,∴()AAS OAF OEB △≌△,∴AF BE =,∴AF AB EF BE ===,∴四边形ABEF 是菱形,∴13902OB BF AE OA AOB ====︒,,∠ ,在Rt ABO △中,由勾股定理得4OA ==,∴28AE OA ==,故答案为:8.【点睛】本题主要考查了菱形的性质与判定,平行四边形的性质,勾股定理,线段垂直平分线的性质和尺规作图,证明四边形ABEF 是菱形是解题的关键. 11.(2023春·四川成都·九年级专题练习)如图,在ABC 中,AB AC =,分别以C 、B 为圆心,取AB 的长为半径作弧,两弧交于点D .连接BD 、AD .若130ABD ∠=︒,则CAD ∠=__________.【答案】25︒/25度【分析】由题意和作法可知:AB AC BD CD ===,可得四边形ABDC 是菱形,再根据菱形及等腰三角形的性质,即可求解.【详解】解:如图:连接CD ,由题意和作法可知:AB AC BD CD ===,∴四边形ABDC 是菱形,)()11180180130252BAD ABD ∠︒−∠=︒−︒=︒,25CAD BAD ∴∠=∠=︒,故答案为:25︒.【点睛】本题考查了菱形的判定与性质,等腰三角形的性质,证得四边形ABDC 是菱形是解决本题的关键.12.(2023·甘肃陇南·校考一模)如图,在平行四边形ABCD 中,2AB BC ==,60BAD ∠=︒,点M 为CD 的中点,连接AM BE AM ⊥,于点E ,则BE 的长为 ___________.【答案】【分析】连接BD BM ,,由题意可得△BCD 是等边三角形,BM CD ⊥,利用勾股定理分别求出BM AM 、,再由等积法求BE 的长即可.【详解】解:连接BD BM ,,∵四边形ABCD 是平行四边形,2AB BC ==,∴四边形ABCD 是菱形,∴2AB BC CD DA ====,CD AB ∥∵60BAD ∠=︒,∴60C ∠=︒,∴BCD △是等边三角形,∵M 是CD 的中点,∴BM CD ⊥, ∴112CM DM CD ===,AB BM ⊥,∵21BC CM ==,,∴BM =在Rt ABM 中,AM ===∵BE AM ⊥,∴AB BM BE AM ⋅==,故答案为:.【点睛】本题考查平行四边形的性质,菱形的判定及性质,等边三角形的判定与性质,熟练掌握菱形的判定及性质,等边三角形的性质,勾股定理,等积法是解题的关键. 13.(2023·湖北襄阳·校考一模)如图,▱ABCD 中,AB AD =,点E 是AB 上一点,连接CE 、DE ,且BC CE =,若40BCE ∠=︒,则ADE ∠=______.【答案】15︒/15度【分析】首先证明四边形ABCD 是菱形,然后根据等腰三角形的性质可得()118040702CEB B ∠=∠=︒−︒=︒,利用三角形内角和定理即可解决问题.【详解】解:在▱ABCD 中,AB AD =, ∴四边形ABCD 是菱形,AB AD BC CD ∴===,//AB CD ,BC CE =,CD CE ∴=,CED CDE ∴∠=∠,40BCE ∠=︒,()118040702CEB B ∴∠=∠=︒−︒=︒,70ADC B ∴∠=∠=︒,70ECD BEC ∠=∠=︒,()118070552CDE CED ∴∠=∠=︒−︒=︒,705515ADE ∴∠=︒−︒=︒.故答案为:15︒.【点睛】本题考查了平行四边形的性质,菱形的判定与性质,等腰三角形的性质,解决本题的关键是掌握菱形的判定与性质.三、解答题 14.(2023·陕西榆林·统考二模)如图,在ABC 中,BAC ∠的平分线AD 交BC 于点D .请利用尺规分别在AB 、AC 上求作点E 、F ,使得四边形AEDF 是菱形.(保留作图痕迹,不写作法)【答案】见解析【分析】作AD 的垂直平分线交,AC AB 于点,E F ,则点,E F 即为所求.【详解】解:如图所示,作AD 的垂直平分线交,AC AB 于点,E F ,则点,E F 即为所求理由如下,∵EF 是AD 的垂直平分线,∴,==EA ED FA FD ,∴EAD EDA ∠=∠,∵BAC ∠的平分线AD 交BC 于点D ,∴∠∠E A D F A D =,∴EDA FAD ∠=∠,∴AF DE ∥,同理可得AE DF ∥,∴四边形AEDF 是平行四边形,∵EA ED =,∴四边形AEDF 是菱形.【点睛】本题考查了作垂直平分线,角平分线的定义,菱形的判定,熟练掌握基本作图是解题的关键. (1)求证:ABC ADC ≅.(2)若EO CO =,试判断四边形【答案】(1)见解析(2)四边形BCDE 是菱形,理由见解析【分析】(1)根据SSS 定理推出即可;(2)先判断AC 为BD 的垂直平分线得到AC BD OB OD ⊥=,,再由EO CO =,可判断四边形BCDE 为平行四边形,然后利用AC BD ⊥可判断四边形BCDE 是菱形.【详解】(1)在ABC 与ADC △中,AB AD BC DCAC AC =⎧⎪=⎨⎪=⎩,∴()ΑSSS BC ADC ≅.(2)四边形BCDE 是菱形,理由如下:∵AB AD CB CD ==,,∴AC 垂直平分BD ,即AC BD ⊥且BO DO =.∵EO CO =,∴四边形BCDE 是平行四边形.∵AC BD ⊥,∴四边形BCDE 是菱形.【点睛】本题考查了全等三角形的判定,线段的垂直平分线的判定和性质及菱形的判定,解题的关键是了解菱形的判定方法,难度不大. 九年级专题练习)如图,在ABC 中,上的中点,将ABC 绕着点 【答案】(1)见解析(2)【分析】(1)根据旋转的性质可得,AC BD AD BC ==,从而得到AC BD AD BC ===,即可求证;(2)过点A 作AE BC ⊥于点E ,先证明ABC 是等边三角形,可得112BE BC ==,2AB BC ==,再由勾股定理可得AE【详解】(1)证明:∵将ABC 绕着点O 旋转180︒得ABD △,∴,AC BD AD BC ==,∵AC BC =,∴AC BD AD BC ===,∴四边形AECD 是菱形;(2)解:如图,过点A 作AE BC ⊥于点E ,∵60,2B BC AC ∠=︒==,∴ABC 是等边三角形, ∴112BE BC ==,2AB BC ==,∴AE∴菱形AECD 的面积为AE BC ⨯=【点睛】等边三角形的判定和性质,勾股定理,熟练掌握菱形的判定和性质,等边三角形的判定和性质,勾股定理是解题的关键. 17.(2023·黑龙江哈尔滨·统考一模)如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和点O 均在小正方形的顶点上.(1)在方格纸中画出DEF ,使DEF 和ABC 关于点O 对称(点A 、B 、C 的关于点O 的对称点分别为点D 、E 、F );(2)在方格纸中画出以线段EF 为一边的菱形EFMN ,且菱形EFMN 的面积为3,连接CN .请直接写出线段CN 的长.【答案】(1)见解析(2)图见解析;CN =【分析】(1)作出点A 、B 、C 关于点O 的对称点D 、E 、F ,顺次连接即可得出DEF ;(2)找出格点M 、N ,连接MF 、MN 、NE ,即可得出菱形EFMN ,求出线段CN 的长即可.【详解】(1)解:如图,作出点A 、B 、C 关于点O 的对称点D 、E 、F ,顺次连接,则DEF 即为所求.(2)解:如图,找出格点M 、N ,连接MF 、MN 、NE 、CN ,则菱形EFMN 即为所求作的菱形;根据格点特点可知,EF MF MN EN ===,∴四边形EFMN 为菱形,1334211132EFMN S =⨯−⨯⨯⨯−−=菱形,CN【点睛】本题主要考查了作中心对称图形,菱形的判断,勾股定理,解题的关键是数形结合,熟练掌握方格纸的特点.【答案】见解析【分析】先利用ABD BDC ∠=∠,证明AB DC ,进而证明四边形ABCD 为平行四边形,再有勾股定理逆定理证明AOB 为直角三角形,得到AC BD ⊥,则问题可证.【详解】证明:∵ABD BDC ∠=∠,∴AB DC ,∵AB CD =∴四边形ABCD 为平行四边形,∵AB CD =2OA =,1OB =,∴22222221OA OB AB +=+==,∴AOB 为直角三角形,即AC BD ⊥,∴四边形ABCD 是菱形.【点睛】本题考查了菱形的判定和勾股定理逆定理,解答关键是熟练掌握菱形的判定方法. (1)求证:四边形AECF 是菱形;(2)若1BE =,4EC =,求EF 【答案】(1)见解析(2)EF 的长为【分析】(1)由D 是AC 的中点,可得AD CD =,由DF DE =,可证四边形AECF 是平行四边形,由DE AC ⊥,可证平行四边形AECF 是菱形;(2)由题意知4AE CE ==,在Rt ABE △中,由勾股定理,得AB =,计算求AB 的值,在Rt ABC△中,由勾股定理,得AC =AC 的值,根据12AECF S EF AC AB EC =⋅=⋅菱形,计算求解即可.【详解】(1)证明:∵D 是AC 的中点,∴AD CD =,∵DF DE =,∴四边形AECF 是平行四边形,又∵DE AC ⊥,∴平行四边形AECF 是菱形;(2)解:∵1BE =,4EC =,四边形AECF 是菱形,∴4AE CE ==,∴在Rt ABE △中,由勾股定理,得AB =∴在Rt ABC △中,由勾股定理,得AC = ∵12AECF S EF AC AB EC =⋅=⋅菱形,∴EF =∴EF 的长为【点睛】本题考查了菱形的判定与性质,勾股定理.解题的关键在于对知识的熟练掌握与灵活运用. 20.(2023春·辽宁本溪·九年级统考开学考试)如图,ABCD Y 的对角线AC ,BD 相交于点O ,点O 作AC 的垂线,与AD ,BC 分别相文于点E ,F ,连接EC ,AF .(1)求证:四边形AECF 是菱形;(2)若4=EC ED ,DOE 的面积是2,求ABCD Y 的面积.【答案】(1)见解析(2)40【分析】(1)由平行四边形的性质得到OA OC =,AD BC ∥,进一步证明()AAS AOE COF △≌△,则AE CF =,即可证明四边形AECF 是平行四边形,由EF AC ⊥即可得到结论;(2)由菱形的性质得到AE CE =,进一步得到4AE EC ED ==,则48==AOE DOE S S △△,即可得到10=+=AOD AOE DOE S S S △△△,由平行四边形的性质即可得到ABCD Y 的面积.【详解】(1)证明:∵四边形ABCD 为平行四边形,∴OA OC =,AD BC ∥,∴DAC ACF ∠=∠,AEF EFC ∠=∠,∴()AAS AOE COF △≌△,∴AE CF =,∵AE CF ∥,∴四边形AECF 是平行四边形,∵EF AC ⊥,∴四边形AECF 是菱形;(2)解:∵四边形AECF 是菱形,∴AE CE =,∵4=EC ED ,∴4AE EC ED ==,∴48==AOE DOE S S △△,∴10=+=AOD AOE DOE S S S △△△,∵四边形ABCD 是平行四边形,∴AC 与BD 互相平分,∴AOD COD BOC AOB S S S S ===△△△△, ∴4=ABCD AOD S S △, ∴40=ABCDS 答:ABCD Y 的面积为40.【点睛】此题考查了平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等,熟练掌握相关判定和性质是关键. 21.(2023·陕西宝鸡·统考二模)如图,在四边形ABCD 中,AB CD =,过A 作AE BD ⊥交BD 于点E ,过C 作CF BD ⊥交BD 于F ,且AE CF =.请你在不添加辅助线的情况下,添一个条件______,使得四边形ABCD 是菱形,并说明理由.【答案】答案不唯一,见解析【分析】添加条件AB AD =,根据HL 证明Rt Rt ABE CDF ≌△△,从而得到ABE CDF ∠=∠,再根据平等线的判断得到AB CD =,从而得到结论.【详解】解:AB AD =.理由:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,在Rt ABE △和Rt CDF △中,AB CD AE CF =⎧⎨=⎩,∴()Rt Rt HL ABE CDF ≌△△,∴ABE CDF ∠=∠,∴AB CD ∥,∵AB CD =,∴四边形ABCD 是平行四边形.∵AB AD =,∴四边形ABCD 是菱形.(注:答案不唯一)【点睛】本题考查了菱形的判定,熟练掌握全等三角形的性质与判定,平行线的性质与判定和菱形的判定是解题的关键. 的交点.若将BED 沿直线 (1)求证:四边形BEDF 是菱形;(2)若::1:3:22AE DE AB =【答案】(1)证明见解析(2)【分析】(1)由平行四边形的性质可得DE BF ∥,则EDB FBD ∠=∠,由折叠的性质可得DE DF =,EDB FDB ∠=∠,则FBD FDB ∠=∠,BF DF DE ==,进而结论得证;(2)设AE a =,则3DE a =,AB =,3BE a =,4AD a =,由()()222293a a a +==,即222AE AB BE +=,可得ABE 是直角三角形,且90BAE ∠=︒,则四边形ABCD 是矩形,由平行四边形ABCD的面积为可得AD AB ⨯=即4a ⨯=解得22a =,根据2BEDF BD EF S DE AB ⋅=⋅=菱形 ,计算求解即可得EF BD ⋅的值.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DE BF ∥,∴EDB FBD ∠=∠,。

3。2。2菱形的判定

3。2。2菱形的判定

3.2.2菱形的判定课前预习1、菱形的判定方法有:(1)有一组邻边相等的 是菱形;(2)、 的四边形是菱形;(3)、对角线 的四边形是菱形。

2、 的平行四边形是菱形(填上一个正确答案即可)3、如图1,平行四边形ABCD 中,AB=6cm ,AD=8cm ,M 、N 分别在AD 、BC 上,且DM=CN=2cm ,则四边形ABMN 是 形,判断的依据是当堂训练知识点一:菱形的判定1、在数学活动课上,老师和同学们在判断一个四边形图案是否为菱形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A 、测量对角线是否相等B 、测量对角线是否互相垂直C 、测量对角线是否相等且互相垂直D 、测量对角线是否互相垂直且平分 2、已知平行四边形ABCD ,添加下列条件:①AC ⊥BD ② AB=BC ③AC=BD ,其中能使ABCD 为菱形的有( ) A .① B .② C .③ D .①②3、在四边形ABCD 中,AC=BD ,E 、F 、G 、H 分别为AB 、BC 、CD 、AD 的中点,求证:EFGH 是菱形知识点二:菱形的性质与判定的综合运用4、(09南宁)如图2,将一个长为10cm ,宽为8cm 的长方形纸片对折两次后,沿所得长方形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A 、10cm 2 B 、20cm 2 C 、40cm 2 D 、80cm 25、如图3,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立的是()A. DA=DEB. BD=CEC.∠EAC=90°D. ∠ABC=2∠E6、如图,已知四边形ABCD 的对角线AC ⊥BD ,垂足为O ,且OA=OCOB=OD ,AC=12cm ,BD=16cm ,CE ⊥AD ,垂足为E,求CE 的长A D E图3 A BC D 图2 A BCD OE 图4 A B C D M N 图1课后作业7、在四边形ABCD 中,AC 、BD 相交于点O ,下列条件中,能判定四边形是菱形的是() A 、AC=BC ,AB=CD ,AB ∥CD B 、AB ∥CD ,∠A=∠CC 、AO=CO ,BO=DO ,AC ⊥BD D 、AO=CO ,AB=BC 8、(09绵阳)如图5然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为()A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 9、(09 大兴安岭)如图6,边长为1的形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACC 1D 1,使∠D 1AC=60°;连结AC 1,再以AC 1为边作第三个菱形AC 1C 2D 2,使 ∠D 2AC 1=60°;……,按此规律所作的第n 个菱形的边长为 .10、(09青海)四边形ABCD 的对角线互相平分,要使它变为菱形,添加的条件可以是11、如图8,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F , 求证:四边形AFCE 是菱形12、如图9,四边形ABCD 中,AD ∥BC ,AD=DC=BC 过AD 的中点E 作AC 的垂线,交CB 的延长线于F求证:(1)四边形(2)BF=DE .ABCD 中,AE 方向平移,使点A DCB 图7 D 1图6 C F图9图8 图11答案:一、课前预习1、(1)平行四边形;(2)四边相等;(3)互相垂直平分2、答案不唯一,如有一组邻边相等3、菱形;有一组邻边相等的平行四边形二、当堂训练1、D2、D3、E、F分别为AB和AC的中点,∴EF∥12AC,EF=12AC同理GH∥12AC,GH=12AC∴EF∥GH,EF=GH,∴EFGH为菱形4、A 5、B 6、9。

菱形的判定专项练习30题(有答案)ok

菱形的判定专项练习30题(有答案)ok

菱形的判定专项练习30题(有答案)ok菱形的判定专项练习30题(有答案)1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点.(1)求证:四边形ABED是菱形;(2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长.2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD.求证:BC=2DN.3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)若AB=12cm,求菱形AEDF的周长.4.如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.(1)求证:AF=DC;(2)若∠BAC=90°,求证:四边形AFBD是菱形.6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE.(1)求证:四边形ADCE是菱形.(2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么?8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形.9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作▱ADFE交BC于点G,H,且EH=EC.求证:(1)∠B=∠C;(2)▱ADFE是菱形.10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB于G.(1)求证:△AEG≌△AEC;(2)△CEF是否为等腰三角形,请证明你的结论;(3)四边形GECF是否为菱形,请证明你的结论.11.如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.12.如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF 为菱形.13.已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形.14.如图,在△ABC中,AB=AC,M、O、N分别是AB、BC、CA的中点.求证:四边形AMON是菱形.15.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.16.如图,矩形ABCD绕其对角线交点旋转后得矩形AECF,AB交EC于点N,CD交AF于点M.求证:四边形ANCM是菱形.17.如图,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE交于M,BC、DF交于N,那么四边形BMDN是菱形吗?如果是,请写出证明过程;如果不是,说明理由.18.已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明理由.19.已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.20.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.21.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.22.如图所示,在▱ABCD中,点E在BC上,AE平分∠BAF,过点E作EF∥AB.求证:四边形ABEF为菱形.23.已知,如图,矩形ABCD中,AB=4cm,AD=8cm,作∠CAE=∠ACE交BC于E,作∠ACF=∠CAF交AD于F.(1)求证:AECF是菱形;(2)求四边形AECF的面积.24.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE是菱形吗?请说明理由.25.如图:在平行四边形ABCD中,E、F分别是边AB、CD的延长线上一点,且BE=DF,连接EF交AC于O.(1)AC与EF互相平分吗?为什么?(2)连接CE、AF,再添加一个什么条件,四边形AECF是菱形?为什么?26.已知:如图,△ABC和△DBC的顶点在BC边的同侧,AB=DC,AC=BD交于E,∠BEC的平分线交BC于O,延长EO到F,使EO=OF.求证:四边形BFCE是菱形.27.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由;(3)在(2)下要使BECF是菱形,则△ABC应满足何条件?并说明理由.28.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.29.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.30.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA 的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.参考答案:1.1)证明:∵点E为BC的中点,∴BE=CE=BC,∵BA=AD=DC=BC,∴AB=BE=ED=AD,∴四边形ABED是菱形;(2)解:过点D作DH⊥BC,垂足为H,∵CD=DE=CE,∴∠DEC=60°,∴∠DBE=30°,在Rt△BDH中,BD=4cm,∴DH=2cm,∵AF=DH,∴AF=2cm.2.∵AO=ON,BM=MO,∴四边形AMND是平行四边形,∵AC⊥BD,∴平行四边形AMND是菱形,∴MN=DN,∵ON=NC,BM=MO,∴MN=BC,∴BC=2DN 3.(1)∵D,E分别是BC,AB的中点,∴DE∥AC且DE=AF=AC.同理DF∥AB且DF=AE=AB.又∵AB=AC,∴DE=DF=AF=AE,∴四边形AEDF是菱形.(2)∵E是AB中点,∴AE=AB=6cm,因此菱形AEDF的周长为4×6=24cm.4.(1)∵BE=BP,∴∠E=∠BPE,∵BC∥AF,∴∠BPE=∠F,∴∠E=∠F.(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是平行四边形,∴□ABCD是菱形.5.1)证明:∵E是AD的中点,∴∠1=∠2,在△AEF和△DEC 中,∴△AFE≌△DCE(AAS),∴AF=DC;(2)证明:∵D是BC的中点,∴DB=CD=BC,∵AF=CD,∴AF=DB,∵AF∥BD,∴四边形AFBD是平行四边形,∵∠BAC=90°,D为BC中点,∴AD=CB=DB,∴四边形AFBD是菱形.6.∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.7.(1)∵三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,∴△ABC≌△ABF,且∠BAC=∠BAF=30°,∴∠FAC=60°,∴AD=DC=AC,又∵△ABC≌△EFC,∴CA=CE,又∵∠ECF=60°,∴AC=EC=AE,∴AD=DC=CE=AE,(2)证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形,∴BC=AC,∵EC=CB,∴EC=AC,∴E为AC中点,∴DE⊥AC,∴AE=EC,∵AG∥BC,∴∠EAG=∠ECB,∠AGE=∠EBC,∴△AEG≌△CEB,∴AG=BC,(7分)∴四边形ABCG是平行四边形,∵∠ABC=90°,∴四边形ABCG是矩形8.在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形9.(1)∵在▱ADFE中,AD∥EF,∴∠EHC=∠B(两直线平行,同位角相等).∵EH=EC(已知),∴∠EHC=∠C(等边对等角),∴∠B=∠C(等量代换);(2)∵DE∥BC(已知),∴∠AED=∠C,∠ADE=∠B.∵∠B=∠C,∴∠AED=∠ADE,∴AD=AE,∴▱ADFE是菱形.10.1)证明:∵∠ACB=90°,∴AC⊥EC.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL);(2)解:△CEF是等腰三角形.理由如下:∵CD是AB边上的高,∴CD⊥AB.又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA.又由(1)知,Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,即△CEF是等腰三角形;(3)解:四边形GECF是菱形.理由如下:∵由(1)知,Rt△AEG≌Rt△AEC,则GE=EC;由(2)知,CE=CF,∴GE=EC=FC.又∵EG∥CD,即GE∥FC,∴四边形GECFR是菱形.11.∵D、E、F分别是△ABC三边的中点,∴DE AC,EF AB,∴四边形ADEF为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF为菱形.12.∵M、E、分别为AD、BD、的中点,∴ME∥AB,ME=AB,同理:FH∥AB,FH=AB,∴四边形MENF是平行四边形,∵M.F是AD,AC中点,∴MF=DC,∵AB=CD,∴MF=ME,∴四边形MENF为菱形13.∵AE平分∠BAD,∵,∴△BAE≌△DAE(SAS)…(2分)∴BE=DE,…(3分)∵AD∥BC,∴∠DAE=∠AEB,…(4分)∴∠BAE=∠AEB,∴AB=BE,…(5分)∴AB=BE=DE=AD,…(6分)∴四边形ABED是菱形.14.∵AB=AC,M、O、N分别是AB、BC、CA的中点,∴AM=AB=AC=AN,M0∥AC,NO∥AB,且MO=AC=AN,NO=AB=AM(三角形中位线定理),∴AM=MO=AN=NO,∴四边形AMON是菱形(四条边都相等的四边形是菱形)15.证法一:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵CE平分∠ACB,EF⊥BC,∠BAC=90°(EA⊥CA),∴AE=EF(角平分线上的点到角两边的距离相等),∵CE=CE,∴由勾股定理得:AC=CF,∵△ACG和△FCG中,∴△ACG≌△FCG,∴∠CAD=∠CFG,∵∠B=∠CAD,∴∠B=∠CFG,∴GF∥AB,∵AD⊥BC,EF⊥BC,∴AD∥EF,即AG∥EF,AE∥GF,∴平行四边形AEFG是菱形.证法二:∵AD⊥BC,∠CAB=90°,EF⊥BC,CE平分∠ACB,∴AD∥EF,∠4=∠5,AE=EF,∵∠1=180°﹣90°﹣∠4,∠2=180°﹣90°﹣∠5,∴∠1=∠2,∵AD∥EF,∴∠2=∠3,∴∠1=∠3,∴AG=AE,∵AE=EF,∴AG=EF,∵AG∥EF,∴四边形AGFE是平行四边形,∵AE=EF,∴平行四边形AGFE是菱形.16.∵CD∥AB,∴∠FMC=∠FAN,∴∠NAE=∠MCF(等角的余角相等),在△CFM和△AEN中,,∴△CFM≌△AEN(ASA),∴CM=AN,∴四边形ANCM为平行四边形,在△ADM和△CFM中,,∴△ADM≌△CFM(AAS),∴AM=CF,∴四边形ANCM是菱形17.四边形BMDN是菱形.∵AM∥BC,∴∠AMB=∠MBN,∵BM∥FN∴∠MBN=∠BNF,∴∠AMB=∠BNF,又∵∠A=∠F=90°,AB=BF,∴△ABM≌△BFN,∴DM=DN,∵ED=BF=AB,∠E=∠A=90°,∠AMB=∠EMD,∴△ABM≌△EDM,∴BM=DM,∴MB=MD=DN=BN,∴四边形BMDN是菱形18.如图,由于DE∥AC,DF∥AB,所以四边形AEDF 为平行四边形.∵DE∥AC,∴∠3=∠2,又∠1=∠2,∴∠1=∠3,∴AE=DE,∴平行四边形AEDF为菱形.19.∵EF是BD的垂直平分线,∴EB=ED,∴∠EBD=∠EDB.∵BD是△ABC的角平分线,∴∠EBD=∠FBD.∴∠FBD=∠EDB,∴ED∥BF.同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.20.方法一:∵AE∥FC.∴∠EAC=∠FCA.(2分)又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.(5分)∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线.(8分)∴AF=AE,CF=CE,又∵EA=EC,∴AF=AE=CE=CF.∴四边形AFCE为菱形.(10分)方法二:同方法一,证得△AOE≌△COF.(5分)∴AE=CF.∴四边形AFCE是平行四边形.(8分)又∵EF是AC的垂直平分线,方法三:同方法二,证得四边形AFCE是平行四边形.(8分)又EF⊥AC,(9分)∴四边形AFCE为菱形21.(1)四边形BEDF是菱形.在△DOF和△BOE中,∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,所以△DOF≌△BOE,所以OE=OF.又因为EF⊥BD,OD=OB,所以四边形BEDF为菱形.(5分)(2)如图,在菱形EBFD中,BD=20,EF=15,则DO=10,EO=7.5.由勾股定理得DE=EB=BF=FD=12.5.S菱形EBFD =EF•BD=BE•AD,即所以得AD=12.根据勾股定理可得AE=3.5,有AB=AE+EB=16.由2(AB+AD)=2(16+12)=56,故矩形ABCD的周长为5622.∵四边形ABCD是平行四边形,∴AF∥BE,又∵EF∥AB,∴四边形ABEF为平行四边形,∵AE平分∠BAF,∴∠BAE=∠FAE,∵∠FAE=∠BEA,∴∠BAE=∠BEA,∴BA=BE,∴平行四边形ABEF为菱形23.(1)证明:在矩形ABCD中,∵AB∥CD,∴∠BAC=∠DCA,又∠CAE=∠ACE,∠ACF=∠CAF,∴∠EAC=∠FCA.∴AE∥CF.∴四边形AECF为平行四边形,又∠CAE=∠ACE,∴AE=EC.∴▱AECF为菱形.(2)设BE=x,则EC=AE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,所以EC=5,即S菱形AECF=EC×AB=5×4=20.24.四边形AFCE是菱形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴=,∵AO=OC,∴OE=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形25.(1)AC与EF互相平分,连接CE,AF,∵平行四边形ABCD,∴AB∥CD,AB=CD,又∵BE=DF,∴AB+BE=CD+DF,∴AE=CF,∴AE∥CF,AE=CF,∴四边形AECF是平行四边形,∴AC与EF互相平分;(2)条件:EF⊥AC,∵EF⊥AC,又∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.26.∵AB=DC AC=BD BC=CB,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴BE=CE,又∵∠BEC的平分线是EF,∴EO是中线(三线合一),∴BO=CO,∴四边形BFCE是平行四边形(对角线互相平分),又∵BE=CE,∴四边形BFCE是菱形.27.(1)证明:∵CF∥BE,∴∠EBD=∠FCD,D是BC边的中点,则BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF.(2)如图所示,由(1)可得CF=BE,又CF∥BE,所以四边形BECF是平行四边形;(3)△ABC是等腰三角形,即AB=AC,理由:当AB=AC 时,则有AD⊥BC,又(2)中四边形为平行四边形,所以可判定其为菱形.28.(1)∵DE为BC的垂直平分线,∴∠EDB=90°,BD=DC,又∵∠ACB=90°,∴DE∥AC,∴E为AB的中点,∴在Rt△ABC中,CE=AE=BE,∴∠AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵AF=CE,∴四边形ACEF为平行四边形;(2)要使得平行四边形ACEF为菱形,则AC=CE即可,∵DE∥AC,∴∠BED=∠BAC,∠DEC=∠ECA,又∵∠BED=∠DEC,∴∠EAC=∠ECA,∴AE=EC,又EB=EC,∴AE=EC=EB,∵CE=AB,∴AC=AB即可,在Rt△ABC中,∠ACB=90°,∴当∠B=30°时,AB=2AC,故∠B=30°时,四边形ACEF为菱形.29.∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO即EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形30.1)解:OE=OF.理由如下:∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠ECD,∴∠OFC=∠COF,∴OF=OC,∴OE=OF;(2)解:当∠ACB=90°,点O在AC的中点时,∵OE=OF,∴四边形AECF是正方形;(3)答:不可能.解:如图所示,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形的判定2.2 19.
一、七彩题
于ACBD?交ABC中,∠ACB=90°,∠ABC的平分线.1(一题多解题)如图所示,△是菱形吗?请说明理E,四边形CDEFF,DE⊥AB于,点DCH⊥AB于H,且交BD于点由. C
D F
AB EH 二、知识交叉题
作?的中点,过点DAB=AC,D是BC2.(科内综合题)如图所示,已知△ABC中,,,垂足分别为G,FH⊥AB,再过E,F作EG⊥AC,⊥DEAB,DF⊥AC,垂足分别为EFA DK之间的关系.,试说明EF和,且EG,?FH相交于点KH
GHK
FE
DBC 三、实际应用题.菱形以其特殊的对称美而备受人们喜爱,在生产生活中有极其广泛的应用.如图所3
AB,?,CD,DA分别是边的长方形的瓷砖,20cmE,F,G,HBC示是一块长30cm,宽的墙壁准备2.8m?4.2m,宽的中点,涂黑部分为淡蓝色花纹,中间部分为白色.现有一面长贴这种瓷
砖,试问:DAG)这面墙壁最少要贴这种瓷砖多少块?(1
HF )全部贴满瓷砖后,这面墙壁最多会出现多少(2 其中有花纹的菱形有多少个?个面积相等的菱形??BCE
四、经典中考题5 共页第1 页
4.(宜宾)已知:如图所示,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)试说明:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,试说明:△AEF为等边三角
形.
五、探究学习篇
1.(结论开放题)如图所示,在菱形ABCD中,E,F分别是BC,CD上的点,且CE=CF.请你仔细观察图,除了菱形自身已经具备的性质和题目中的条件外,请你选取一个角度提出一个问
题,并加以说明.
2.阅读下列材料,完成后面的问题:如图,在ABCD中,∠BAD的平分线AE与BC相交于点E,∠ABC的平分线BF与AD相交于点F,AE?与BF?相交于点O,?求证:?四边形ABEF 是菱形.
证明:①因为四边形ABCD是平行四边形;②所以AD∥BC;③所以第2 页共5 页
1,BAF∠2=∠,∠ABE;⑤所以∠1=④因为∠ABE+∠BAF=?180°;AE,BF分别平分∠BAF 211;⑧AOB=90°)=90°4=;⑦所以∠∠3=(∠ABE+∠BAF∠ABE;??⑥所以∠1+3=∠∠22是菱形,问:;??⑨所以四边形ABEFBF所以AE⊥)上述证明是否正确?(1
;答:___________
步后添加如下证明过程:步推理错误,应在第_____(2)如有错误,在第______
参考答案CDEF是菱形.一、1.解法一:四边形
AB,,DE⊥理由:如图所示,因为∠1=∠2,∠ACB=90°,EBD,所以CD=DE,?所以△CBD ≌△BD又BD=??5,∠2,∠3=∠,∠因为∠1+∠4=90°2+∠5=90°,∠1= CF=DE.4.所以CF=CD.所以3=所以∠∠//DE.CF?,所以CH∥DE.所以ABAB因为CH⊥,DE⊥所以四边形CDEF是平行四边形.
又因为CF=CD,所以□CDEF是菱形.
解法二:四边形CDEF是菱形.理由:如答图20-3-4所示,连结CE交DF于点O.
第3 页共5 页
因为∠1=∠2,∠BCD=∠BED=90°,BD=BD,所以△BCD≌△BED.所以BC=BE.
又因为∠1=∠2,所以BD⊥CE,且OC=OE.
因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,
所以∠3=??∠4.所以CF=CD.
又因为CE⊥DF,所以OF=OD.所以四边形CDEF是平行四边形,?
,所以CDEF是菱形.⊥CE 又因为DF 点拨:解法一利用了菱形的定义,?解法二利用了“对角线互相垂直的平行四边形是菱形”的方法,本题除以上两种解法外,还可利用“四条边都相等的四边形是菱形”的方法解决,请同学们再进行探讨.
二、2.解:EF与DK互相垂直平分.理由:因为DE⊥AB,FH⊥AB,所以DE∥FH.?
因为DF⊥AC,EG⊥AC,所以DF∥EG.所以四边形DEKF是平行四边形.
因为AB=AC,所以∠B=∠C.又因为BD=CD,∠BED=∠CFD=90°,
所以△BDE≌△CDF,所以DE=DF.所以DEKF是菱形,?
所以EF与DK互相垂直平分.
点拨:要说明EF与DK互相垂直平分,只要说明四边形DEKF是菱形,?要说明四边形DEKF 是菱形,可先说明四边形DEKF是平行四边形,再说明一组邻边相等即可.
2),每块瓷砖的面积为0.3×4.2×2.8=11.76(m0.2=0.06)三、3.解:(1因为墙壁的总面积为2),所以最少需要贴这种瓷砖11.76÷0.06=196m(块).((2)因为每相邻4块瓷砖构成一个有花纹的菱形(如图),
在长4.2m,宽2.8m的墙壁上贴长30cm,宽20cm的长方形瓷砖,
可贴4.2÷0.3=14(列),2.8÷0.2=14(?行).
因此构成的有花纹的菱形共13列13行,所以有花纹的菱形共13×13=169(个).
同时,白色菱形的个数与瓷砖的块数相同,故有白色菱形196个.
从而面积相等的菱形最多有169+196=365(个).
第4 页共5 页
,B=∠DABCD(1)因为四边形是菱形,所以AB=AD,∠四、4.解:.)连结AC,所以AE=AF.(2≌△又因为BE=DF,?所以△ABEADF BC的中点,?是等边三角形,因为E是△因为AB=BC,∠B=60°,所以ABC ,=30°,所以∠BAE=90°-60°所以AE⊥BC ,-∠B=120°同理∠DAF=30°.因为∠BAD=180°,?∠DAF=60°.又因为AE=AF∠所以∠EAF=∠BAD-BAE-是
等边三角形.所以△AEF 5 共页第5 页。

相关文档
最新文档