2020年常州市中考数学模拟试卷及答案
2020年江苏省常州市中考数学模拟考试试卷附解析

2020年江苏省常州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .k >14-B .k >14-且0k ≠C .k <14-D .14k ≥-且0k ≠ 2. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( )A .0 个B .1 个C .2 个D .3 个3.在数轴上,表示数①-3;②2. 6;③35-;④0;⑤143;⑥223-;⑦- 1 的点中. 在原点右边的点有( )A .2 个B .3 个C .4 个D .5 个4.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.55.在NBA 的篮球队员中,有两位出色的中国球员,他们是姚明和易建联. 经调查,七(3)班44位学生中,喜欢姚明的有25人,喜欢易建联的有20人,两个都不喜欢的有8人,那么两个都喜欢的有( )人A . 9B . 11C . 13D . 8 6.化简(-2x )3·y 4÷12x 3y 2的结果是( ) A .61y 2 B .-61y 2 C .-32y 2 D .-32xy 2 7.如图是某镇中学七年级(3)班60名同学参加兴趣活动小组的扇形统计图.其中.S 1、S 2、S 3、S 4分别表示四个扇形的面积,如果S 1:S 2:S 3:S 4=4:3:2:1,那么参加数学活动小组的同学有( )A .24人B .18人C .12人D .6人8.从一 副扑克牌(除去大小王)中任取一张,抽到的可能性较小的是( )A .红桃B .6C .黑桃8D .梅花6或8 9.抛物线223y x x =--的顶点坐标是( )A .(-1,-4)B .(3,0)C .(2,-3)D .(1,-4) 10.在□ABCD 中∠A=50°,则∠A 的邻角∠D 的度数为( ) A .40° B .50° C .130°D .不能确定 11.如图,0是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是 OA ,OC 的中点.下列结论:①ADE BOD S S ∆∆=;②四边形 BFDE 是中心对称图形;③△DEF 是轴对称图形;④∠ADE=∠EDO. 其中正确的结论有( )A .1个B .2个C .3个D . 4个12.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为( )A .22cmB .2cmC .22cmD .21cm 13.如图中,属于相似形的是( )A .①和②,④和⑥B .②和③,⑧和⑨C .④和⑤,⑦和⑨D .①和③,⑧和⑨ 14.二次函数2y ax bx c =++的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A .0ab <B .0bc <C .240b ac ->D .0a b c ++< A O B15.下列各种现象中不属于中心投影现象是()A.民间艺人表演的皮影戏B.在日常教学过程中教师所采用投影仪的图象展示C.人们周末去电影院所欣赏的精彩电影D.在皎洁的月光下低头看到的树影16.下列长度的三条线段,能组成三角形的是()A.1cm,2 cm,3cm B.2cm,3 cm,6 cmC.4cm,6 cm,8cm D.5cm,6 cm,12cm二、填空题17.已知数据2,3,4,5,6,x的平均数是4,则x的值是.18.某种药品的说明书贴有如下标签,则一次服用这种药品的剂量范围是 mg~ mg.19.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x米,则根据题意,可列出方程为 .20.如图,,已知OA=OB,OC=OD,D和BC相交于点E,则图中全等三角形有对.21.一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .三、解答题22.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(2)摸出的两个球上数字之和为多少时的概率最大?23.如图,在Rt △ABC 中,∠C= 90°,AC=5,BC=12,求B 的正弦、余弦和正切的值.24.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.25.如图,1l 反映了某个体服装老板的销售收入与销售量之间的关系,2l 反映了该老板的销售成本与销售量的关系,根据图象回答下列问题:(1)分别求出1l 、2l 对应的函数解析式(不要求写出自变量的取值范围);(2)当销售量为30件时,销售收入为 元,销售成本为 元;(3)当销售量为60件时,销售收入为 元,销售成本为 元;(4)当销售量为 件时,销售收入等于销售成本;(5)当销售量 件时,该老板赢利.当销售量 件时.该老板亏本.26.如图,在△ABC 中,∠ABC= 50°,∠ACB=70°,延长 CB 至D 使 BD=BA ,延长 BC 至E 使 CE=CA. 连结 AD 、AE ,求△ADE 各内角的度数.27.星期六,小华同学到新华书店买了一套古典小说《水浒传》,共有上、中、下三册,回家后随手将三本书放在书架同一层上,问:(1)共有多少种不同的放法7 请画树状图分析;(2)求出按上、中、下顺序摆放的概率.28.A,B是平面上的两个固定点,它们之间的距离为5 cm,请你在平面上找一点C(1)要使点C到A,B两点的距离之和等于5 cm ,则C点在什么位置?(2)要使点C到A,B两点的距离之和大于5 cm ,则点C在什么位置?(3)能使点C到A,B两点的距离之和小于5 cm吗?为什么?29.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米.(1)用含a的代数式表示s;(2)已知a=11,求s的值.30.某商店将进货每个10元的商品按每个18元售出,每天可卖出60个,商店经理到市场上做了一翻调查发现,若将这种商品的售价(在每个18元的基础上)每个提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每个降低1元,则日销售就增加10个.为获得每日最大利润,此商品售价应定为多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.A5.A6.C7.B8.C9.D10.C11.C12.C13.D14.D15.D16.C二、填空题17.418.15,2019.312312126x x -=+20. 421.1120a +三、解答题22.解:(1)图略,摸出的两个球上数字之和为5的概率为16. (2)摸出的两个球上数字之和为6时概率最大. 23.5sin 13AC B AB ==,1213BC sB AB ∞==,5tan 12AC B BC == 24.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一)25.(1)1l :100t x =,2l :751000t x =+;(2)3000,3250;(3)6000,5500;(4)40;(5)大于40,小于4026.∠D=25°,∠E=35°,∠DAF=120°27.(1)共有 6种不同摆放顺序 (2)1 628.(1)点C在线段AB上;(2)点C在线段AB外;(3)不能,因为两点之间线段最短(为5 cm) 29.解:(1)s=700(a-1)+(881a+2309)=1581a+1609.(2)a=11时,s=1581a+1609=1 581×11 +1 609=19000.30.设此商品每一个售价为x元,每日利润S最大.当x>18时,S=[60-5(x-18)](x-10)=-5(x-20)2+500;即商品提价,当x=20时,每日最大利润为500元.当x<18时,S=[60+10(18-x)](x-10)=-10(x-17)2+490;即商品降价,当x=17时,每日最大利润为490元.综上所述:此售价应定为每个20元,每日利润最大.。
2020年常州市中考数学仿真模拟试题(附答案)

2020年常州市中考数学仿真模拟试题(附答案)考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷选择题(共30分)一、选择题(每小3分,共计30分。
每小超都给出A,B,C,D四个选项,其中只有一个是正确的。
)1.下列各数中,绝对值最大的数是()A.5 B.﹣3 C.0 D.﹣22.在下面的四个几何体中,它们各自的主视图与左视图不相同的是()A.圆锥 B.正方体 C.三棱柱 D.圆柱3.下列算正确的是()A.a3+a3=2a6 B.(a2)3=a6 C.a6÷a2=a3 D.(a+b)2=a2+b24.函数y=(x﹣1)0中,自变量x的取值范围是()A.x>1 B.x≠1 C.x<1 D.x≥15. 如图,直线a∥b,∠1=72°,则∠2的度数是()A. 118°B. 108°C. 98°D. 72°6. 如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A. 78°B. 75°C. 60°D. 45°7.如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16 B.8.5,16 C.8.5,8 D.9,88.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为()A .(﹣a ,﹣2b )B .(﹣2a ,﹣b )C .(﹣2a ,﹣2b )D .(﹣b ,﹣2a )9.已知,如图等边三角形ABC 中,D ,E 分别为AB ,BC 边上的点,且AD =BE ,AE 与CD 交于点F .AG⊥CD 于G ,则AFAG的值是( )A .3:2B .3:3C .2:2D .1:210.如图,在直角坐标系中,正方形ABCD 的顶点坐标分别为A (1,-1),B (-1,-1),C (-1,1),D (1,1).曲线AA 1A 2A 3…叫做“正方形的渐开线”,其中AA 1、A 1A 2、A 2A 3、A 3A 4…的圆心依次是B 、C 、D 、A 循环,则点A 18的坐标是( )A.(-35,1) B .(-37,1) C .(39,-1) D .(-37,-1)第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分)11.化简:=_______ .12.你喜欢足球吗?下面是对某学校七年级学生的调查结果:则男同学中喜欢足球的人数占全体同学的百分比是________.13.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB 的取值范围是.14.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).15.如图,点M是函数y=2x与y=的图象在第一象限内的交点,OM=,则k的值为.16.如图,在边长为4的菱形ABCD中,∠A=60°,点M、N是边AB、BC上的动点,若△DMN为等边三角形,点M、N不与点A、B、C重合,则△BMN面积的最大值是.三、解答题(共7小题,计72分)17.(本题8分)先化简再求值:,其中x是方程x2﹣2x=0的根.18.(本题8分)如图,分别延长▱ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF 为平行四边形.19.(本题10分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应扇形的圆心角为°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.20.(本题10分)已知抛物线y=2x2-4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.21.(本题12分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点)和格点O.(1)画出一个格点四边形,使它与四边形ABCD关于BC所在的直线对称;(2)将四边形ABCD绕O点逆时针旋转90°,得到四边形A2B2C2D2.22.(本题12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:+40已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?23.(本题12分)已知抛物线y=﹣x2﹣x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图2,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP面积最大时,求|PM﹣OM|的值.(3)如图3,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.参考答案第Ⅰ卷选择题(共30分)一、选择题(每小3分,共计30分。
2020年江苏省常州市中考数学模拟试卷及答案解析

2020年江苏省常州市中考数学模拟试卷
一.选择题(共8小题,满分16分,每小题2分)
1.﹣2的相反数是()
A.2B.﹣2C .D .﹣
2.要使分式有意义,x的取值应满足()
A.x≠1B.x≠﹣2C.x≠1或x≠﹣2D.x≠1且x≠﹣2 3.如图是一个立体图形从左面和上面看到的形状图,这个立体图形是由些相同的小正方体构成,这些相同的小正方体的个数最少是()
A.4B.5C.6D.7
4.如图,从位置P到直线公路MN有四条小道,其中路程最短的是()
A.P A B.PB C.PC D.PD
5.已知△ABC∽△A'B'C',AB=8,A'B'=6,则=()
A.2B .C.3D .
6.下列计算错误的是()
A .×
=B.2﹣=C.(+)﹣=D .=±3
7.说明命题“若a2>b2,则a>b.”是假命题,举反例正确的是()A.a=2,b=3B.a=﹣2,b=3C.a=3,b=﹣2D.a=﹣3,b=2 8.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是()
A.平均数是92B.中位数是90C.众数是92D.极差是7
二.填空题(共10小题,满分20分,每小题2分)
第1页(共23页)。
2020年江苏省常州市中考数学名校模拟试卷附解析

2020年江苏省常州市中考数学名校模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,AB 是⊙O 的直径,弦 AC 、BD 相交于点P ,CD AB等于( )A .sin ∠BPCB .cos ∠BPC C .tan ∠BPCD .cot ∠BPC2.如图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D . 3.三角形的外心是( )A . 三条高线的交点B .三条中线的交点C .三条中垂线的交点D .三条内角平分线的交点 4.已知a ,b ,C 是同一平面内三条直线,下列命题中,属于假命题的是 ( )A .若a ⊥c ,b ⊥c ,则a ⊥bB .若a ∥b ,b ⊥c ,则a ⊥cC .若a ⊥c ,b ⊥c ,则a ∥bD .若a ⊥c ,b ∥a ,则b ⊥c5.如图所示,下列条件中,不能判定AB ∥CD 的是( )A .∠PEB=∠EFDB .∠AEG=∠DFHC .∠BEF+∠EFD=180°D .∠AEF=∠EFD6.若220x y y --=,则2()xy -的值为( ) A .64 B .64- C .16 D .16-7.下列解析式中,不是函数关系的是( )A .2y x =+(x ≥-2)B .2y x =-+(x ≥-2)C .2y x =+(x ≤一2)D .2y x =±+(z ≤-2)8.下列各题:①(-4x 3y 3)÷(-4x 2y )=x 2y 3; ②(-3x 2y 4)÷(-3xy 2)=x 2y 2;③2x 2y 2z÷21x 2y 2=4z ;•④15x 2y 3z 4÷(-5xyz )2=1125yz 2.其中计算正确的是( ) A .①②B .①③C .②④D .③④ 9.观察下面的图形,由图甲变为图乙,其中既不是通过平移也不是通过旋转得到的图案是( )10.如图所示,绕旋转中心旋转60°后能与自身重合的是( )11.在3223.14, 2, ,, 0.31, 8, 0.80800800087π--…(每两个8之间依次多1个0)这些数中,无理数的个数为 ( )A .1个B .2个C .3个D .4个 二、填空题12.一张桌子上摆放着若干个碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有 个碟子.13.⊙O 的半径为 4,圆心 0到直线 l 的距离为 3,则直线l 与⊙O 的位置关系是 .14.已知⊙O 的半径为5cm ,弦AB 的弦心距为3cm ,则弦AB 的长为 cm .15.已知等腰梯形的上、下底边长分别是2,10,腰长是5,则这个梯形的面积是 .16.如果一个三角形的三边长分别为1,k ,3,则化简7-4k 2-36k +81 -∣2k -3∣的结果为 .17.正方形111A B C O 、正方形2221A B C O 、正方形3332A B C O ……按如图所示的方式放置,点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线y kx b =+(k 为常数,且k>0)和x 轴上.已知点B 1(1,1),B 2(3,2),则点n B 的坐标是 .18.如图,若 AB∥CD,可得∠B+ =180°,理由.19.夏雪同学每次数学测试的成绩都是优,则在这次中考中他的数学成绩 (填“可能”或“不可能”或“必然”)是优秀.20.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球总表面积的百分比,若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是.21.扇形统计图是指利用来表示关系的统计图,扇形的大小反映了.三、解答题22.如图,AB 是⊙O的直径,点 P在BA 的延长线上,弦 CD⊥AB 于 E,∠POC=∠PCE.(1)求证:PC是⊙O的切线;(2)若 OE:EA=1:2,PA= 6,求⊙O的半径;(3)求 sin∠PCA 的值.23.如图所示,在△ABC 中,∠C=90°,∠BAC的平分线 AD =16,求∠BAC的度数以及 BC 和 AB 的长.24.已知△ABC ,P 是边 AB 上的一点,连结CP ,问:(1) △ACP 满足什么条件时,△ACP ∽△ABC ;(2) AC :AP 满足什么条件时,△ACP ∽△ABC.25.求出抛物线225y x x =-++的对称轴和顶点坐标.26.画出下图几何体的左、俯视图.27.如图,已知∠ABC 、∠ADC 都是直角,BC=DC .说明:DE=BE .28. 解方程:47233x x x-+=--29.如图,先把△ABC 作相似变换,放大到原来的2倍,且保持B 点不动;再把所得的像向上平移6格,再向右平移2格.30.下列用科学记数法表示的数原来各是什么数?(1)3.7×105;(2)6.38×l04;(3)5.010×106;(4)7.86×l07.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.A5.B6.A7.D8.D9.A10.A11.C二、填空题12.1213.相交14.815.1816.117.(21n -,12n -)18.∠C ;两直线平行,同旁内角互补19.可能20.0.71 21.圆和扇形,总体的各个组成部分数据,各部分在总体中所占的比例三、解答题22.(1)∵∠POC=∠PCE,∠OPC=∠CPE ,∴△OCP ∽△CEP ,∴∠OCP=∠CEP , ∵CD ⊥AB ,∴∠OCP=∠CEP=90°,∴PC 是⊙O 的切线(2)设 OE= x ,则EA=2x ,OC=OA==3x.∵∠COE=∠POC ,∠0EC=∠OCP ,∴△OCE ∽△OPC ,∴OC OP OE OC=,∴2OC OE OP =⋅ 即2(3)(36)x x x =+,∴x=1,∴OA=3x=3(3) ∵OC=OA ,∴∠OCA=∠OAC ,∵∠PCA+∠OCA=∠OAC+∠ACE= 90°, ∴∠PCA=∠ACE .在 Rt △COE 中,CE =在 Rt △ACE 中AC ==∴sinAE ACE AC ∠===sin sin PCA ACE ∠=∠=. 23.在△ACD 中,∠C=90°,cos 162AC CAD AD ∠=== ∴∠CAD=30°.∵AD 是∠BAC 的平分线,∴∠BAC=2∠CAD=60°,∴∠B=30°∵AC =2AB AC ==0cos3024BC AB =⋅== (或由勾股定理得出 BC)24.(1)∠ACP=∠B 时,△ACP ∽△ABC ;(2)AC AB AP AC=时,△ACP ∽△ABC. 25.顶点坐标(1,6),对称轴为直线x=1.26.略27.先说明Rt △ADC ≌Rt △ABC ,再说明△DCE ≌△BCE28.无解29.略30.(1) 370000 (2)63800 (3)5010000 (4)78600000。
2020年江苏省常州市中考数学摸底测试试卷附解析

2020年江苏省常州市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图1表示正六棱柱形状的高大建筑物,图2表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )A .P 区域B .Q 区域C .M 区域D .N 区域2.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC△内一点P 到三边的距离都相等.则PC 为( )A .1B .2C .322D .223.如图所示,CD 是Rt △ABC 斜边 AB 上的高,将△BCD 沿 CD 折叠,B 点恰好落在AB 的中点E 处,则A 等于( )A .25°B . 30°C . 45°D . 60°4.已知 Rt △ABC 中,AB= 200,∠C=90°,∠B=16°,则 AC 的值为(取整数) ( )A .58B .57C .55D .54 5.等腰三角形一个外角是80°,其底角是( ) A .40°B .100°或40°C .100°D .80° 6.关于x 的一元二次方程22(3)60a x x a a -++--=的一个根是 0,则a 的值为( )A .2-B .3C .-2 或 3D .-1或 6 7.给出以下长度线段(单位:cm )四组:①2、5、6;②4、5、10;③3、3、6;④7、24、25.其中能组成三角形的组数是( )A .1B .2C .3D .4 8.计算23(2)a -的结果是( )A .56a -B .66a -C .58a -D .68a -9.下列图形中,旋转60°后可以和原图形重合的是( )A .正六边形B .正五边形C .正方形D .正三角形 10. 一个底面为正方形的水池蓄水量为 4.86 m 3. 如果水池深1.5m ,那么这个水池底面的边长为( )A . 3.24 mB . 1.8 mC .0.324 mD . 0.18 m11.为了解噪声污染的情况,某市环保局抽样调查了80个测量点的噪声声级(单位:分贝),并进行整理后分成五组,绘制出频数分布直方图如图所示.已知从左到右的前四组的频数分别为l2,20,24,16,且噪声高于69.5分贝就会影响工作和生活,那么影响到工作和生活而需对附近区域进行治理的测量点所占百分比为 ( )A .10%B .15%C .20%D .25%二、填空题12.如图所示,摄像机 1、2、3、4 在不同位置拍摄了四幅画面,A 图象是 号摄像机所拍,B 图象是 号摄像机所拍,C 图象是 号摄像机所拍,D 图象是号摄像机所拍.13.sin60°= ,sin70°= , sin50°= , 并把它们用“<”号连结 .14.已知线段a=4 cm ,c = 9 cm ,线段b 是a 、c 的比例中项,则 b= cm .15. 若y 与x 成正比例,x 与成反比例,则 y 与z 成 .16.用正十二边形与三角形组合能够铺满地面,每个顶点周围有 个三角形和个正十二边形.17.在△ABC 中,∠B=45,∠C=72°,那么与∠A 相邻的一个外角等于 .18.如图,若∠1 =∠2,则1l ∥2l ( ),所以∠3 =∠4( ).19. 某种植大户计划安排10个劳动力来耕地,可以种蔬菜也可以种水稻,种这些作物所需劳动力及预计产值如下表: 每亩所需劳动力(个) 每亩预计产值(元) 蔬菜12 3000 水稻 14 700为了使所有土地都种上作物,全部劳动力都有工作,应安排种蔬菜的劳动力为人,这时预计产值为 元.20.单项式b a 231π-的系数是 ,次数是 ,多项式21232m m -+-中常数项是 . 21.若某商品降价25%以后的价格是240元,则降价前的价格是 元. 22.如图中标有相同字母的物体的质量相同,若A 的质量为20克,当天平处于平衡状态时,B 的质量为 克.23.三个连续奇数,若中间一个是n ,则其余两个分别是 , 这三个数的和是 .24.“两直线平行,同位角相等”的逆命题是 .三、解答题25.有一直径为2m 的圆形纸片,要从中剪去一个最大的圆心角是90°的扇形ABC (如图).(1)求被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?(3)求圆锥的全面积.26.AB 是半圆0的直径,C 、D 是半圆的三等分点,半圆的半径为R.(1)CD 与 AB 平行吗?为什么?(2)求阴影部分的面积.27.如图,DC∥AB,∠ADC=∠ABC,BE,DF分别平分∠ABC和∠ADC,请判断BE和DF 是否平行,并说明理由.28.某商场摘摸奖促销活动,商场在一只不透明的箱子里放了 3个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样. 规定:顾客在本商场同一日内,每消费满 100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品. 现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率.29.张宇和田松两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1、2、3后,放在一个不透明的口袋里,张宇同学先随意摸出一个球,记住球上标注的数字,然后让田松同学抛掷一个质地均匀的、各面分别标有数字1、2、3、4、5、6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则张宇获胜;否则,田松获胜.①请你用画树状图或列表法把两人所得的数字之和的所有结果都列举出来;②这个游戏公平吗?如果公平,请说明理由;如果不公平,请你加以改进,使游戏变得公平.30.当y=-1时,你能确定代数式[(x+2y)2-(x+y)(x-y)-5y2]÷(2x)的值吗?如果可以的话,请写出结果.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.C5.A6.A7.B8.D9.A10.B11.A二、填空题12.2,3,4,113.2,0.9397,0. 7660, sin50°< sin60°< sin70°14.615.反比例16.1,217.117°18.内错角相等,两直线平行;两直线平行,内错角相等19.5,4400020.1 3π-,3,-1 221.320元22.1023.(2n-),(.2n+);3n24.同位角相等,两直线平行三、解答题25.解:(1)连接BC.∵∠C=90°,∴BC为⊙O的直径.在Rt △ABC 中,AB=AC ,且AB 2+AC 2=BC 2,∴AB=AC=1,∴S 阴影=S ⊙O -S 扇形ABC =π·(22)2-2901360π⨯=12π-14π=14π(cm 2). (2)设圆锥底面半径为r ,则⌒BC 长为2πr .∴901180π⨯=2πr ,∴r=14(m ). (3)S 全=S 侧+S 底=S 扇形ABC +S 圆=14π+(14)2·π14=516πm 2. 26. (1)由题意知⌒AC =⌒CD =⌒DB ,∴∠CDA=∠DAS, ∴CD ∥AB.(2)由题意知⌒AC 的度数为 60°,∴∠AOC=∠COD=∠DOB=60°,223,64ADC OCD R S s R π∆==扇形,∴22233()6464R S R R ππ=+=+阴影 27.BE ∥DF ,理由略28.列树状图如下:两次摸奖结果共有 9种情况,其中两次奖品价格之和超过 40 元的有 3种情况.故所求概率为 P=3193= 29.(1)略;(2)不公平 如规则可改为:若两人的数字之和小于6,则张宇获胜. 30.-2.。
2020年江苏省常州市中考数学名师模拟试卷附解析

2020年江苏省常州市中考数学名师模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若半径为 7 和 9 的两圆相切,则这两圆的圆心距长一定为( )A . 16B .2C .2 或 16D . 以上答案都不对2.在半径为50cm 的图形铁片上剪去一块扇形铁皮,用剩余部分制做成一个底面直径为80cm ,母线长为50cm 的圆锥形烟囱帽,则剪去的扇形的圆心角的度数为( )A .288°B .144°C .72°D .36°3.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有( )条鱼A .400条B .500条C .800条D .1000条4.三角形内到三角形各边的距离都相等的点必在三角形的( )A . 中线上B .平分线上C .高上D . 中垂线上 5.用科学记数法表示:0.0000 45,正确的是( )A .4.5×104B .4.5×10-4C .4.5×10-5D .4.5×105 6.如图,①、③、④、⑤、⑥中可以通过平移图案②得到的是( )A .②B .④C .⑤D .⑥ 7. 用代数式表示“a 、b 两数和的平方的 2倍”,正确的表示是( )A .222a b +B .22()a b +C .222a b +D .222()a b + 二、填空题8.如图,△ABC 内接于⊙O ,∠C=30°,AB=2,则⊙O 的半径为 .9.如图,已知矩形ABCD 中()AD AB >,EF 经过对角线的交点O ,且分别交AD BC ,于E F ,,请你添加一个条件: ,使四边形EBFD 是菱形.10.如图是在一个19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,则图中阴影部分的面积为 .11.写出一个二元一次方程组,使它的解为23xy=⎧⎨=-⎩,则二元一次方程组为 .12.全等图形________是相似图形,但相似图形________是全等图形(填“一定”或“不一定”).13.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做根据的数学道理是.14.下列方程组中,其中是二元一次方程组的有 (填序号).①235571x yx y+=⎧⎨--=⎩,②123xyy x⎧+=⎪⎨⎪-=⎩,③32027x yy z-=⎧⎨+=⎩,④304xy-=⎧⎨=⎩15.将一大块花布铺平,它上面的图案可以看做由一个基本图案通过不断地得到.16.如图所示的四个两两相联的等圆.右边的三个圆可以看做是左边的圆经过得到的.17.若温度上升10℃记作+10℃,那么-8℃表示 .三、解答题18.已知AD是△ABC的高,CD=6,AD=BD=2,求∠BAC的度数.19.如图,在△ABC 中,BC 的中垂线交 BC于点D,交 AC 于点E,△ABD 为等边三角形,BE 交 AD 于点F,试说明:(1)△FDB∽△ABC;(2)AF=FD.20.某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量 y(张)之间有如下关系:x (元)3456y(张)20151210(1)根据表中数据在直角坐标系中描出实数对(x,y)的对应点;(2)猜测并确定 y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为ω元,试求ω与x之间的函数关系式,如果物价局规定此贺卡售价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?21.某公司甲、乙两座仓库分别有运输车 12辆和6辆,要调往A 地 10辆,调往B地8辆.已知从甲仓库调运一辆到 A 地和 B地的费用分别为 40元与 80元;从乙仓库调运一辆到A 地和 B地的费用分别为 30元与 50元. 设从乙仓库调到入地x辆车.(1)用含x的式子表示调运车辆的总费用;(2)若要求总费用不超过 900 元,共有几种运方案?(3)求出总费用最低的方案,最低费用是多少元?22.如图所示,是由同样大小的小正方体叠在一起所形成的图形,你能数出图形中小正方体一共有多少块吗?23.如图,在△ABC中,AB=AC=BC,D为BC边上的中点,DE上AC于E,试说明CE=14 AC.24.如图,△ABC 中,AB=AC,D、E、F分别在 AB、BC,AC上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?说明理由.25.如图,图中有哪些直线互相平行?为什么?26.有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图). 小华将这 4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用 A.B、C、D表示);(2)求摸出两张牌面图形都是轴对称图形的纸牌的概率.27.分析如图①、②、④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.28.如图,射线OC和OD把平角AOB三等分,OE平分∠AOC,OF平分∠BOD.(1)求∠COD的度数;(2)写出图中所有的直角;(3)写出∠COD的所有余角和补角.29.小张把压岁钱按定期一年存入银行,当时一年定期存款的年利率为1.98%,利息税的税率为20%,到期支取时,扣除利息税后,小明实得本利和为l015.84元,问小明存入银行的压岁钱有多少元?30.浙江省的民营企业在市场经济的运作下,迅速壮大起来.从下面一个企业提供的数据之中,我们就能感觉到中国经济迅猛发展的趋势:1997年产值110万,l999年产值200万,2001年产值500万,2002年产值900万,2003年产值1700万.请你设计一张统计表,简明地表达这一段文字的信息.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.B5.C6.C7.B二、填空题8.29.EF⊥BD(答案不惟一)10.6411.略12.一定、不一定13.三角形的稳定性14.①③15.平移16.平移17.温度下降8℃三、解答题18.当AD在BC边上时,∠BAC=105°,当AD在CB延长线上时,∠BAC=15°.19.(1) ∵△ABD 为等边三角形,∠ABD=∠ADB.∵ED 垂直平分BC,∴△EBC 为等腰三角形.∴∠EBC=∠C,∴△FDB∽△AEC.(2)∵△FDB∽△AEC,△ABD 为等边三角形,∴AD=BD=CD,∴∠C=∠DAC=12∠ADB= 30°,∴∠BAC=∠DFB=90°,∴FB 平分∠ABD,∴BF 平分AD,∴AF=FD. 20.(1)如图,(2)是反比例函数,60yx= (x 为正整数)图象如解图.(3)12060wx=-,当定价x定为10元/张时,利润最大,为48 元.21.(1)(20x+860)元.(2)根据题意,得20x+860≤900.解得2x≤.∵x为非负整数,∴x=0、1、2.∴共有三种调运方案:(方案一)从甲仓库分别调运10辆、2辆到A、B两地,从乙仓库调运6辆到B地;(方案二)从甲仓库分别调运9辆、3辆到A、B两地,从乙仓库分别调运1辆、5辆到A、B两地;(方案三)从甲仓库分别调运8辆、4辆到A、B两地,从乙仓库分别调运2辆、4辆到A、B两地.(3)方案一的总费用最低,为860元.22.20块23.说明CE=12CD=14AC24.△BDE≌△CEF(ASA)25.a∥b,m∥n,同位角相等,两直线平行26.(1)略 (2)9 1627.略28.(1)60° (2)∠DOE与∠COF (2)∠COD的余角:∠AOE、∠EOC、∠DOF、∠FOB;∠COD的补角:∠AOD、∠EOF、∠BOC29.1000元30.略。
2020年江苏省常州市中考数学全真模拟试卷附解析_1

2020年江苏省常州市中考数学全真模拟试卷 _1 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A.B. C. D.2.已知数据13、2-、0.618、125、34-,随意抽取一个数是负数的概率为()A.20%B.40%C.60%D.80%3.如图,在两半径不同的圆心角中,∠AOB=∠A′O′B′=60°,则()A.AB=A′B′B.AB<A′B′C.AB的度数=A′B′的度数D.AB的长度=A′B′的长度4.已知(-1,y1),(-2,y2),(-4,y3)在抛物线y=-2x2+8x+m上,则()A.y1<y2<y3B.y3<y2<y1C.y2>y1>y3D.y2>y3>y15.关于二次函数y=-12 x2,下列说法不正确的是()A.图像是一条抛物线B.有最大值0C.图像的对称轴是y轴D.图像都在x轴的下方6.如图,在菱形ABCD中,对角线AC,BD分别等于8和6,将BD沿CB的方向平移,使D与A重合,B与CB延长线上的点E重合,则四边形AECD的面积等于()A.36 B.48 C.72 D.967.如图,△ABC为正三角形,∠ABC,∠ACB的平分线相交于点0,OE∥AB交BC于点E,OF∥AC交BC于点F,图中等腰三角形共有()A.6个B.5个C.4个D.3个8.如图,小贩设计了一个转盘游戏,2元钱玩一次,学生自由转动转盘,待停后指针指向的物品即为学生所获物品,那么学生转到什么物品的可能性最大()A.铅笔盒B.橡皮C.圆珠笔D.胶带纸9.小亮在镜中看到身后的时钟如图,你认为实际时间最接近八点的是()10.x(g)盐溶解在 a(g)水中,取这种盐水m(g),含盐()A.mxa (g)B.amx(g)C.amx a+(g)D.mxx a+(g)11.顶角为20°的等腰三角形放大2倍后得到的三角形是() A.其顶角为40°B.其底角为80°C.周长不变D.面积为原来的2倍12.若3a的倒数与293a-互为相反数,那么a的值是()A.32B.32-C.3 D.-13二、填空题13.如图,小亮在操场上距离杆AB的C处,用测角仪测得旗杆顶端A的仰角为300,已知BC=9米,测角仪的高CD为1.2米,那么旗杆AB的高为米(结果保留根号).14.某口袋里有编号为 l~5的5个球,先从中摸出一球,将它放回口袋中,再模一次,两次摸到的球相同的概率是.15.在数学活动课上. 老师带领学生去测量河两岸 A.B两处之间的距离,先从A处出发与AB 成 90°方向,向前走了lOm到 C处,在 C 处测得∠ACB=60°(如图所示),那么AB 之间的距离为 m. (精确到1m)16.如图,小亮从A点出发前进10m,向右转15,再前进10m,又向右转15,…,这样一直走下去,他第一次回到出发点A时,一共走了 m.17.请写出命题“直角三角形的两个锐角互余”的逆命题:.18.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D.从这四个条件中选取三个条件能判定△ABC≌△DEF的方法共有种.解答题19.某养猪场400头猪质量的频率分布直方图如图所示,其中数据不在分点上.由图可知,质量在55.5 kg ~60.5 kg 这个组的猪最多,有 头,质量在60.5 kg 以上的猪有头.20.①244a a -+;②214a a ++;③2144a a -+;④2441a a ++.以上各式中属于完全平方式的有 .(填序号)21.如图,当剪刀口∠AOB 增大15°时,∠COD 增大 .三、解答题22.如图,放在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3.4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M 点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用树状图或列表的方法,求M 点落在正方形ABCD 面上(含内部与边界)的概率;(2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD 面上的概率为34?若存在,指出一种具体的平移过程?若不存在,请说明理由.23.如图,在右边格点图中画出一个和左边格点图中的三角形相似的图形.24.如图是某工件的三视图,求此工件的全面积.25.如图,有长为 24m 的篱笆,一面靠墙 (墙长为lOm),围成中间隔有一道篱笆的长方形花圃,设花圃宽 AB 为x(m),面积为 S(m2).(1)求S与x 的函数关系式;(2)如果要围成面积为 45m2的花圃,AB 的长是多少?(3)能围出比 45 m2更大的花圃吗?若能,求出最大的面积,并说明围法;若不能,说明理由. 26.有一块菜地,地形如图,试求它的面积s(单位:m).27.计算: (1)432114212121a a a a a a +----+++;(2)2242n mn m mn m n m n n m ------;(3)22()()()()xy yz x y x z x y z x +----; (4)2b ac b c a b c b a c b a c+-+--+----28.已知n 为正整数,求212(2)2(2)n n +-+⋅-的值.29.如图所示,经过平移,小船上的点A 移到了点B 的位置,作出平移后的小船.30.如图所示,已知线段a ,b 和∠α,用直尺和圆规作△ABC ,使∠B=∠α,AB=a ,BC=b .【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.C4.B5.D6.A7.B8.D9.D10.D11.B12.C二、填空题13. 33 +1.214.1515. 1716.24017.两个角互余的三角形是直角三角形18.219.160,12020.①②④21.15°三、解答题22.(1)41164==P ;(2)先向右平移1个单位,再向上平移2个单位(答案不唯一). 23.如图所示,答案不唯一24.解:由三视图可知,该工件为底面半径为10cm ,高为30cm 的圆锥体.cm ).圆锥的侧面积为12×20π×π(cm 2).圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100ππ=100(π(cm 2).25.(1) 2(243)324S x x x x =⋅-=-+(2)由已知得(243)45x x ⋅-=,整理得28150x x -+=,13x =,25x =,∵墙长 10 m ,∴x=3不合题意 ,舍去.∴x=5.即AB=5 (m).(3) ∵2324S x x =-+,即23(4)48S x =--+∴x=4 时,S 最大值=48.又∵墙长为 lOm ,当 x=4 时,BC=12,∴x=4,不合题意舍去.∵ 24-3x ≤10,∴143x ≥,∴1483x ≤<,∴当143AB =,BC = 10 时,围成的面积比45 m 2 大,为1403m 2 26. 24m 227.(1)3;(2)m n -;(3)2y yχ-;(4)-2 28.29.略30.略。
2020年江苏省常州市中考数学模拟试卷(附答案详解)

2020年江苏省常州市中考数学模拟试卷(5月份)一、选择题(本大题共8小题,共16.0分)1.下列方程有两个相等的实数根的是()A. 3x2−6x+3=0B. 3x2+x−6=0C. x2−5x+10=0D. 3x2+9x=02.在抗击疫情中,某社区志愿者小分队年龄如表:年龄(岁)1822303543人数23221则这10名队员年龄的中位数是()A. 20岁B. 22岁C. 26岁D. 30岁3.在Rt△ABC中,∠C=90°,sinA=513,则sin B的值为()A. 1213B. 513C. 135D. 5124.如图,在△ABC中,DE//BC且分别交AB、AC于点D、E.若AD=2,DB=3,则△ADE的面积与△ABC的面积的比等于()A. 23B. 49C. 25D. 4255.如图,AB是半圆的直径,点D是弧AC的中点,∠A=60°,则∠B等于()A. 30°B. 50°C. 60°D. 70°6.已知一次函数y=kx+b的图象经过点(3,2),若图象不经过第二象限,则k的取值范围是()A. k≤23B. k≥23C. 0<k≤23D. 23≤k≤17.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路,某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A. 9(1−2x)=1B. 9(1−x)2=1C. 9(1+2x)=1D. 9(1+x)2=1图象上一动点,连8.如图,点A是反比例函数y=−1x接AO并延长交图象另一支于点B.又C为第一象限内的点,且AC=BC,当点A运动时,点C始终在的图象上运动.则∠CAB的正切值为()函数y=8xA. 2B. 3C. 2√2D. 2√3二、填空题(本大题共10小题,共20.0分),则锐角A的度数为______.9.若cosA=√2210.在一个不透明的布袋中,有五张分别写有数字22,√2、−1、0、π且大小和质地均7相同的卡片,从中任意抽取一张,抽到无理数的概率是______.11.一次函数y=−2x+6的图象与x轴的交点坐标是______.12.已知一个扇形的半径为6cm,圆心角为120°,则这个扇形的面积为______ cm2.13.石拱桥是中国传统桥梁四大基本形式之一,如图,已知一石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,求水面宽AB=______ m.14.如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=______度.+2)的值为15.已知a是方程x2−x−5=0的一个实数根,则代数式(a2−a)(a−5a ______.(k<0)的图象上,则y1,16.若点A(−3,y1),B(−2,y2),C(1,y3)都在反比例函数y=kxy2,y3的大小关系是______.17.在△ABC中,AB=5,∠C=30°,∠A>∠B,则BC的长的最大值是______.18.若二次函数y=a(x−4)2+4的图象在2<x<3这一段位于x轴的上方,在6<x<7这一段位于x轴的下方,则a值为______.三、解答题(本大题共10小题,共84.0分))−1+√3tan60°.19.计算(−1)2020+π0−(1320.解下列方程(1)x2−3x−2=0;(2)8−(x−1)(x+2)=4.21.随着我国人民生活水平的提高,越来越多的居民重视选择适合自己的方式强身健体.某班同学在街头随机调查了所在地区一些参加健身活动的市民,并将他们的健身方式绘制成如下两幅仅提供部分信息的统计图(A:跑步;B:打球;C:舞蹈;D:下棋;E:其它).请根据图中提供的信息,解答下列问题:(1)求本次参与调查的健身市民人数;(2)将上面的条形统计图补充完整;(3)若该区有20000名市民参加健身活动,根据调查数据估计他们中有多少人选择打球方式健身.22.A、B两人去茅山风景区游玩,已知每天某一时段开往风景区有三辆舒适程度不同的车,开过来的顺序也不确定.两人采取了不同的乘车方案:A无论如何总是上开来的第一辆车;B先观察后上车,当第一辆车开来时他不上车,而是仔细观察车的舒适度,如果第二辆车的状况比第一辆车好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请解决下列问题:(1)三辆车按出现的先后顺序共有哪几种不同的可能?(2)你认为A、B两人采用的方案,哪种方案使自己乘上等车的可能性大?为什么?23.如图,分别位于反比例函数y=1x 、y=kx在第一象限图象上的两点A、B与原点O在同一直线上,且OAAB =12.(1)求k的值;(2)过点A作x轴的平行线交y=kx的图象于点C,连接BC,求△ABC的面积.24.某居民小区有一朝向为正南方的居民楼,如图,该居民楼一楼是高7m的小区超市,超市以上是居民住房,在该楼的前面18m处要盖一高20m的新楼,当冬季正午时,阳光与地平面夹角为32°(tan32°≈0.6249).问冬季正午时:(1)超市以上的居民住房采光是否有影响?为什么?(2)若要使超市采光不受影响,两楼至少应相距多少米?(结果保留整数)25.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为弧AC的中点,过点D作DE//AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为6,AB=9,求CE的长.26.我国互联网发展日新月异,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条60元,当售价为每条100元时,每月可销售120条.为了吸引更多顾客,该网店采取降价措施.据市场调查知:销售单价每降1元,则每月可多销售6条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出300元资助贫困学生.为了保证捐款后每月利润不低于4950元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?27.操作作图如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8.点D在边AC上,请用圆规和直尺作菱形DEFG,使点E、F在边AB上,点G在边BC上(不写作法,但要保留作图痕迹).阅读理解我们把图①中的菱形DEFG称为△ABC的有一边平行于AB的内接菱形,简称AB 类内接菱形.类似的可得到AB类内接矩形.若公共顶点为D的AB类内接菱形DEFG 恰好以BC类内接矩形DFMC的一边为对角线,求CD的长.深入探究(1)当CD长度满足什么条件时,可作2个AB类内接菱形DEFG?说明理由;(2)直接写出AB类内接菱形DEFG面积的最大值.28.如图,已知二次函数y=ax2+bx+8的图象与x轴交于两点A(−6,0)和B(4,0),与y轴交于点C.(1)求a、b的值;(2)已知在x轴上方的二次函数图象上有一点P满足∠APC=90°.求点P的坐标;(3)在二次函数图象上是否存在点Q,使得√2cos∠QBA=√5cos∠ACB?若存在,求出满足条件的所有点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:A 、Δ=(−6)2−4×3×3=0,方程有两个相等的两个实数根; B 、Δ=12−4×3×(−6)=73>0,方程有两个相等的两个实数根; C 、Δ=(−5)2−4×10=−15<0,方程没有实数根;D 、Δ=92−4×3×0=81>0,方程有两个相等的两个实数根. 故选:A .分别计算四个方程的判别式的值,然后根据判别式的意义进行判断,本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.2.【答案】C【解析】解:将表格中的年龄按照从小到大排列是:18,18,22,22,22,30,30,35,35,43,故这10名队员年龄的中位数是(22+30)÷2=26(岁), 故选:C .先将表格中的年龄按照从小到大排列,然后即可得到这10名队员年龄的中位数. 本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.3.【答案】A【解析】解:∵Rt △ABC 中,∠C =90°,sinA =513, ∴cosA =√1−sin 2A =√1−(513)2=1213,∠A +∠B =90°, ∴sinB =cosA =1213. 故选:A .一个角的正弦值等于它的余角的余弦值.此题考查的是互余两角三角函数的关系,属基础题,掌握正余弦的这一转换关系:一个角的正弦值等于它的余角的余弦值.4.【答案】D【解析】解:∵DE//BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴S△ADES△ABC =(ADAB)2,∵AD=2,DB=3,∴ADAB =25,∴S△ADES△ABC =(ADAB)2=425.故选:D.先判断△ADE与△ABC相似,再求出相似比,而面积比等于相似比平方即可得到答案.本题考查相似三角形的性质,解题的关键是求出相似比,掌握面积比等于相似比的平方.5.【答案】C【解析】解:连接BD.∵AB是直径,∴∠BDA=90°,∴∠A+∠ABD=90°,∵∠A=60°,∴∠ABD=30°,∵CD⏜=AD⏜,∴∠ABD=∠CBD=30°,∴∠CBA=60°,故选:C.连接BD.求出∠ABD,再证明∠CBD=∠ABD即可解决问题.本题考查圆周角定理,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】B【解析】解:∵一次函数y=kx+b的图象经过点(3,2),∴2=3k+b,即b=2−3k.∵一次函数y=kx+b的图象不经过第二象限,∴一次函数y=kx+b的图象经过第一、三、四象限或第一、三象限,∴k>0,b≤0,∴{k>02−3k≤0,.解得:k≥23故选:B.由一次函数图象上点的坐标特征可得出b=2−3k,由一次函数图象经过的象限可得出k>0,b≤0,进而可得出关于k的一元一次不等式组,解之即可得出k的取值范围.本题考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征以及解一元一次不等式,利用一次函数图象上点的坐标特征及一次函数图象与系数的关系,找出关于k 的一元一次不等式组是解题的关键.7.【答案】B【解析】【分析】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.等量关系为:2016年贫困人口×(1−下降率)2=2018年贫困人口,把相关数值代入计算即可.【解答】解:设这两年全省贫困人口的年平均下降率为x,根据题意得:9(1−x)2=1,故选:B.8.【答案】C【解析】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥x轴于点F,如图所示:由直线AB与反比例函数y=−1x的对称性可知A、B 点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴AECF =OEOF=AOOC,∵AE⋅OE=|−1|=1,CF⋅OF=8,∴AE=1OE ,CF=8OF,∴AECF =1OE8OF=OEOF,∴OFOE=2√2(负值舍去),∴∠CAB的正切值为OCOA =OFOE=2√2,故选:C.连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥x轴于点F,如图所示:根据轴对称的性质得到AO=BO.根据等腰三角形的性质得到CO⊥AB.根据相似三角形的性质得到AECF =OEOF=AOOC,得到AE=1OE,CF=8OF,即可得到结论.本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解题的关键是求出CF⋅OF=8.本题属于中档题,难度不大,解决该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.9.【答案】45°,【解析】解:∵cosA=√22∴∠A=45°,故答案为:45°.根据特殊角的三角函数值可得答案.此题主要考查了特殊角的三角函数值,关键是掌握30°,45°,60°角的三角函数值.10.【答案】25,√2、−1、0、π且大小和质地均相同的卡片,从【解析】解:有五张分别写有数字227中任意抽取一张,抽到的无理数有√2,π,,则抽到无理数的概率是25故答案为:2.5直接利用概率公式计算得出答案.此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.正确得出无理数的个数是解题关键.11.【答案】(3,0)【解析】解:当y=0时,有−2x+6=0,解得:x=3,∴一次函数y=−2x+6的图象与x轴的交点坐标是(3,0).故答案为:(3,0).代入y=0求出x值,此题得解.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.12.【答案】12π【解析】解:∵r=6cm,n=120°,根据扇形的面积公式S=nπr 2360得S 扇=120×π×36360=12(cm2).故答案为:12π.根据扇形的面积S=nπr 2360进行计算即可.本题主要考查了扇形的面积公式,正确理解公式是解题关键.13.【答案】8【解析】解:连接OA,如图所示.∵CD⊥AB,∴AD=BD=12AB.在Rt△ADO中,OA=OC=5m,OD=CD−OC=3m,∠ADO=90°,∴AD=√OA2−OD2=√52−32=4(m),∴AB=2AD=8m.故答案为:8.连接OA,根据垂径定理可知AD=BD=12AB,在Rt△ADO中,利用勾股定理即可求出AD的长,进而可得出AB的长,此题得解.本题考查了垂径定理的应用以及勾股定理,利用勾股定理求出AD的长度是解题的关键.14.【答案】66【解析】【分析】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.首先根据正五边形的性质得到,然后根据角平分线的定义得到,再利用三角形内角和定理得到∠APB的度数.【解答】解:∵五边形ABCDE为正五边形,,∵AP是∠EAB的角平分线,,∵∠ABP=60°,∴∠APB=180°−60°−54°=66°.故答案为:66.15.【答案】15【解析】解:∵a是方程x2−x−5=0的一个实根,∴a2−a−5=0,即a2=a+5,∴原式=(a+5−a)×a2−5+2aa=5×a+5−5+2aa=5×3=15.故答案为15.先利用一元二次方程根的定义得到a2=a+5,再利用通分和整体代入的方法得到原式═5×a+5−5+2a,然后约分后进行有理数乘法运算即可.a本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【答案】y3<y1<y2(k<0)中,k<0,【解析】解:∵在反比例函数y=kx∴此函数图象在二、四象限,在每个象限内y随x增大而增大,∵−3<−2<0,∴点A(−3,y1),B(−2,y2)在第二象限,∴0<y1<y2.∵1>0,∴C(1,y3)点在第四象限,∴y3<0,∴y1,y2,y3的大小关系为y3<y1<y2.故答案为:y3<y1<y2.先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.17.【答案】10【解析】解:如图,作△ABC的外接圆,∵∠BAC>∠ABC,AB=5,当∠BAC=90°时,BC为直径时最长,∵∠BAC=90°,AB=5,∠C=30°,∴BC=2AB=10,∴BC的长的最大值是10.故答案为:10.如图,作△ABC的外接圆,当∠BAC=90°时,BC为直径时最长,根据直角三角形含30度角的性质可得结论.本题考查了勾股定理,三角形的外接圆,圆周角定理等知识,熟练掌握直径是圆中最长的弦是本题的关键.18.【答案】−1【解析】解:∵y=a(x−4)2+4(a≠0),∴抛物线的对称轴为x=4.又∵当2<x<3时,函数图象位于x轴的上方,∴当5<x<6时,函数图象位于x轴的上方.又∵当6<x <7时,函数图象位于x 轴的下方,∴当x =6时,y =0.∴4a +4=0.∴a =−1.故答案为:−1.先根据抛物线的解析式可求得抛物线的对称轴为x =4,由二次函数的对称性可知当5<x <6时,函数图象位于x 轴的上方,结合题意可知当x =6时,y =0,从而可求得a 的值.本题主要考查的而是二次函数的性质,利用二次函数的性质得到当x =6时,y =0是解题的关键.19.【答案】解:原式=1+1−3+√3×√3=1+1−3+3=2.【解析】先计算乘方和零指数幂、负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得.本题主要考查实数的混合运算,解题的关键是掌握实数混合运算顺序和运算法则、熟记特殊锐角三角函数值、零指数幂及负整数指数幂的规定.20.【答案】解:(1)∵a =1,b =−3,c =−2,∴△=b 2−4ac =(−3)2−4×1×(−2)=17,∴x =3±√172×1, ∴x 1=3+√172,x 2=3−√172;(2)原方程化为x 2+x −6=0,∵(x +3)(x −2)=0,∴x +3=0或x −2=0,∴x 1=−3,x 2=2.【解析】(1)先计算判别式的值,然后利用求根公式计算出方程的根;(2)先把方程化为一般式,然后利用因式分解法解方程.本题考查了解一元二次方程−公式法:用求根公式解一元二次方程的方法是公式法.21.【答案】解:(1)本次参与调查的健身市民人数有:80÷40%=200(人);(2)舞蹈的人数为:200×15%=30(人),其它的人数为:200×30%=60(人),补全图形如下:(3)根据题意得:20000×20200=2000(人),答:估计他们中有2000人选择打球方式健身.【解析】(1)根据A健身方式的人数及其所占百分比可得总人数;(2)总人数分别乘以C、E所占百分比求出其人数即可补全图形;(3)总人数乘以样本中B的百分比即可得出答案.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)列表:三辆车按出现的先后顺序共有6种不同的可能;(2)A采用的方案使自己乘上等车的概率=26=13;B采用的方案使自己乘上等车的概率=3 6=12,因为13<12,所以B人采用的方案使自己乘上等车的可能性大.【解析】(1)利用列表展示所有6种不同的可能;(2)分别求出两个方案使自己乘上等车的概率,然后比较概率大小可判断谁的可能性大.本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.23.【答案】解:(1)过点A、B分别作AE、BF分别垂直于x轴,垂足为E、F.则△AOE∽△BOF,又OAOB =13,∴OAOB =OEOF=EAFB=13.由点A在函数y=1x的图象上,设A的坐标是(m,1m),∴OEOF =mOF=13,EAFB=1mFB=13,∴OF=3m,即B的坐标是(3m,3m).又点B在y=kx的图象上,∴k=3m×3m=9;(2)由(1)可知,A(m,1m ),B(3m,3m).又已知过A作x轴的平行线交y=9x的图象于点C.∴C的纵坐标是1m,把y=1m 代入y=9m得x=9m,∴C的坐标是(9m,1m),∴AC=9m−m=8m.∴S△ABC=12×8m×2m=8.【解析】(1)作AE、BF分别垂直于x轴,垂足为E、F,则△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;(2)根据AC//x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.本题考查了待定系数法确定函数关系式以及相似三角形的判定与性质,正确利用m表示出个点的坐标是关键.24.【答案】解:(1)如图1,设CF=x米,则AE=(20−x)米,tan32°=AEEF =20−x18=0.6249,解得:x≈9,∵9>7,∴居民住房的采光受影响;(2)如图2,当AB=20m,tan32°=AB=0.6249,BC解得:BC=32(米).故要使超市采光不受影响,两楼应至少相距32米.【解析】(1)利用三角函数算出阳光可能照到居民楼的什么高度和7米进行比较.(2)超市不受影响,说明32°的阳光应照射到楼的底部,根据新楼的高度和32°的正切值即可计算.本题考查了解直角三角形的应用,需注意直角三角形的构造是常用的辅助线方法.25.【答案】解:(1)DE与⊙O相切,理由:连接OD,∵AC为⊙O的直径,∴∠ADC=90°,∵D为AC⏜的中点,∴AD⏜=CD⏜,∴AD=CD,∴∠ACD=45°,∵O是AC的中点,∴∠ODC=45°,∵DE//AC,∴∠CDE=∠DCA=45°,∴∠ODE=90°,∴DE与⊙O相切;(2)∵⊙O的半径为6,∴AC=12,∴AD=CD=6√2,∵AC为⊙O的直径,∴∠ABC=90°,∵∠BAD=∠DCE,∵∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴ABCD =ADCE,∴6√2=6√2CE,∴CE=8.【解析】(1)连接OC,由AC为⊙O的直径,得到∠ADC=90°,根据AD⏜=CD⏜,得到AD= CD,根据平行线的性质得到∠CDE=∠DCA=45°,求得∠ODE=90°,于是得到结论;(2)根据勾股定理得到AD=CD=6√2,易证△ABD∽△CDE,根据相似三角形的性质即可得到结论.本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.【答案】解:(1)由题意得:y=120+6(100−x)=−6x+720;∴y与x的函数关系式为y=−6x+720;(2)由题意得:w=(x−60)(−6x+720)=−6x2+1080x−43200=−6(x−90)2+5400,∵−6<0,当x=90时,w有最大值,最大值为5400元.∴应降价100−90=10(元).∴当销售单价降低10元时,每月获得的利润最大,最大利润是5400元;(3)由题意得:−6(x−90)2+5400=4950+300,解得:x1=85,x2=95.∵抛物线开口向下,对称轴为直线x=90,∴当85≤x≤95时,符合该网店要求.而为了让顾客得到最大实惠,故x=85.∴当销售单价定为85元时,即符合网店要求,又能让顾客得到最大实惠.【解析】(1)直接利用销售单价每降1元,则每月可多销售6条得出y与x的函数关系式;(2)利用销量×每件利润=总利润进而得出函数关系式求出最值;(3)利用总利润=4950+300,求出x的值,进而得出答案.本题主要考查了二次函数的应用,理清题中的数量关系并正确得出w与x之间的函数关系式是解题的关键.27.【答案】解:操作作图:如图所示中的四边形DEFG为符合条件的其中一个菱形.阅读理解:符合条件的图形如图所示:∵公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,∴DG=GF,DC=FM,∠C=∠FMC=90°=∠FMB.∴Rt△DCG≌Rt△FMG(HL).∴CG=MG.∵DG//AB,∴∠DGC=∠B.∴△DCG≌△DMB(AAS).∴CG=BM.∴CG=83.∵△DCG∽△ACB,∴DCCG =ACBC=68=34.即DC83=34,∴DC=2.深入探究:(1)如图所示,当点E与点A重合时,此时存在符合条件的两个菱形.在Rt△ABC中,AB=√62+82=10.∵四边形DEFG为菱形,∵DG//AB,∴DGAB =DCAC,即DC6=6−DC10.解得DC=94.如图,当DE⊥AB时,过点C作CH⊥AB,交DG于点Q,交AB于点H.在Rt△ABC中,CH=AB×BCAB =6×810=245.∵DG//AB,∴△ABC∽△DGC.∴DGAB =CQCH.即DG10=245−DG245,∴DG=12037.∴DCDG =ACAB.即DC12037=610,∴DC=7237.∴当94<DC≤12037时,可作2个AB类内接菱形DEFG.(2)如图,过点C作CH⊥AB于点H,交DG于点Q.∵四边形DEFG为菱形,设DG=x,∵DG//AB,∴△ABC∽△DGC.∴DGAB =CQCH.即x10=CQ245,∴CQ=1225x.则QH=245−1225x.∴S菱形DEFG =DG×CH=x(245−1225x)=−1225x2+245x.配方得S=−1225( x−5)2+12.当点F与点B重合时,可求得DG=409,由(1)可知:120 37≤DG≤409.在此范围内S 菱形DEFG 随x 的增大而增大,∴当x =409时,S 菱形DEFG 最大, 最大值为32027.∴AB 类内接菱形DEFG 面积的最大值为32027.【解析】操作作图:根据菱形的判定使用尺规作图;阅读理解:首先画出符合条件的图形,利用相似的判定与性质列出成比例线段,代值求解;深入探究:(1)根据题意画出临界状态的两个图形,利用相似的相关知识求CD 的取值范围;(2)根据相似的性质列出菱形面积与边长DG 的二次函数关系,在DG 的范围之内求面积的最大值.本题考查了使用尺规作菱形,相似的判定与性质,菱形、矩形、正方形的相关知识,根据几何性质求得二次函数关系,并在一地范围内求函数极值.本题综合性较强,相似的判定与性质贯穿整个问题,是解题的关键.28.【答案】解:(1)∵二次函数y =ax 2+bx +8的图象与x 轴交于两点A(−6,0)和B(4,0), ∴抛物线的解析式为y =a(x +6)(x −4)=a(x 2+2x −24)=ax 2+2ax −24a , ∴−24a =8,∴a =−13,∴抛物线的解析式为y =−13x 2−23x +8,∴a ,b 的值为−13和−23;(2)如图1,∵∠APC =90°,∴点P 是以AC 为直径的圆与抛物线在x 轴上方部分的交点,此圆的圆心记作O′,连接CP ,AP ,O′P ,由(1)知,抛物线的解析式为y =−13x 2−23x +8,∴C(0,8),∵A(−6,0),∴点O′(−3,4),O′A =12AC =5, 设点P(m,−13m 2−23m +8), ∴O′P 2=(m +3)2+(−13m 2−23m +8−4)2=(m +3)2+19(m 2+2m −12)2, ∴(m +3)2+19(m 2+2m −12)2=25,∴m 4+4m 3−11m 2+6m =0,∴m(m +6)(m −1)2=0,∴m =0(舍)或m =−6(舍)或m =1,∴P(1,7);(3)存在,理由:如图3,由(2)知,C(0,8),∵A(−6,8),B(4,0),∴BC =4√5,AC =10,AB =10,∴AC =AB ,过点A 作AD ⊥BC 于D ,∴CD =12BC =2√5,在Rt △ADC 中,cos∠ACB =CD AC =2√510=√55,∵√2cos∠QBA =√5cos∠ACB ,∴cos∠QBA =√22×√5×√55=√22,∴∠QBA =45°,Ⅰ、当点Q 在x 轴上方时,连接BQ 交y 轴E ,∴OE =OB =4,∴E(0,4),∵B(4,0),∴直线BE 的解析式为y =−x +4①,∵抛物线的解析式为y =−13x 2−23x +8②,联立①②解得,{x =4y =0(舍)或{x =−3y =7,∴点Q(−3,7),Ⅱ、当点Q在x轴下方时,同(Ⅰ)的方法得,Q(−9,−13),即:满足条件的所有点Q的坐标为(−3,7)或(−9,−13).【解析】(1)直接利用待定系数法,即可得出结论;(2)先判断出点在以AC为直径的圆上,再求出此圆的圆心O′的坐标,半径,进而用O′P= 5,建立方程求解即可得出结论;(3)先求出∠ABQ=45°,再分点Q在x轴上方和下方两种情况,求出直线BQ的解析式,联立抛物线的解析式建立方程组求解即可得出结论.此题二次函数综合题,主要考查了待定系数法,锐角三角函数,等腰三角形的性质,用方程(组)的思想解决问题是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年常州市中考数学5月模拟试卷一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一个是正确的)1.的相反数是()A.B.C.D.2.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×1033.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.为参加2016年“常州市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为150,158,162,158,166,这组数据的众数,中位数依次是()A.158,158 B.158,162 C.162,160 D.160,1605.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20°B.40°C.60°D.80°6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米B.米C.500•cosα米D.米7.已知点A(﹣3,m)与点B(2,n)是直线y=﹣x+b上的两点,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定8.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG 上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则CG的长为()A.B.C.D.2二、填空题(每小题2分,共20分)9.|﹣2|﹣()﹣1=.10.若式子有意义,则x的取值范围是.11.分解因式:3x2﹣6xy+3y2=.12.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于.13.方程=0的解是.14.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是cm2.15.若二次函数y=2x2﹣mx+1的图象与x轴有且只有一个公共点,则m=.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C=.17.已知点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,当△AOA′为直角三角形时,点A的坐标是.18.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为.三、解答题(共10小题,共84分)19.先化简,再求值:(a+b)(a﹣b)+b(b﹣2),其中a=2,b=1.5.20.解方程和不等式组(1)x2﹣3x=x﹣3 (2).21.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生是;(2)求图1中∠α的度数是°,把图2条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为.22.甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.23.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.24.图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点C、D在小正方形的顶点上),使得四边形ABCD 为中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF(点E、F在小正方形的顶点上),使得四边形ABEF 中心对称图形但不是轴对称图形,且tan∠F AB=3.25.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?26.如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)求甲船加快速度后,追赶乙船时的速度.(结果保留根号)27.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥A C.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△P AE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.28.如图,在平面直角坐标系xOy中,直线y=kx﹣7与y轴交于点C,与x轴交于点B,抛物线y=ax2+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2:7.(1)求抛物线的解析式;(2)点D为线段CB上一点,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.参考答案一、选择题1.的相反数是()A.B.C.D.故选:D.2.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×103解:161000=.612×105.故选B.3.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解::A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、圆是轴对称图形,不是中心对称图形.故错误.故选C.4.为参加2016年“常州市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为150,158,162,158,166,这组数据的众数,中位数依次是()A.158,158 B.158,162 C.162,160 D.160,160解:将数据按照从小到大的顺序排列为:150,158,158,160,162,这5个数据中位于中间的数据是158,所以中位数为:158;数据中出现次数最多的数是158,158就是这组数据的众数;故选A.5.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20°B.40°C.60°D.80°解:∵a∥b,∠1=80°,∴∠2+∠3=80°,∠3=∠4.∵∠2=∠3,∴∠3=40°,∴∠4=40°.故选B.6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米B.米C.500•cosα米D.米解:如图,∠A=α,AE=500.则EF=500sinα.故选A.7.已知点A(﹣3,m)与点B(2,n)是直线y=﹣x+b上的两点,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定解:∵直线y=﹣x+b中,k=﹣<0,∴此函数是减函数.∵﹣3<2,∴m>n.故选A.8.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG 上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则CG的长为()A.B.C.D.2解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=.故选B.二、填空题(每小题2分,共20分)9.|﹣2|﹣()﹣1=.解:原式=2﹣=,故答案为:.10.若式子有意义,则x的取值范围是x≥3.解:式子有意义,得x﹣3≥0,解得x≥3,故答案为:x≥3.11.分解因式:3x2﹣6xy+3y2=3(x﹣y)2.解:3x2﹣6xy+3y2,=3(x2﹣2xy+y2),=3(x﹣y)2.故答案为:3(x﹣y)2.12.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于 4.5.解:∵AB∥CD,∴△ABO∽△CDO,∴=()2=()2=,∵△ABO的面积是2,∴△CDO的面积等于4.5.故答案为:4.5.13.方程=0的解是x=3.解:去分母得:2x﹣10+x+1=0,解得:x=3,经检验x=3是分式方程的解.故答案为:x=314.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是15πcm2.解:由勾股定理得:圆锥的母线长==5cm,∵圆锥的底面周长为2πr=2π×3=6πcm,∴圆锥的侧面展开扇形的弧长为6πcm,∴圆锥的侧面积为:×6π×5=15πcm2.故答案为:15π.15.若二次函数y=2x2﹣mx+1的图象与x轴有且只有一个公共点,则m=.解:依题意有△=m2﹣8=0,解得:m=±2.故答案是:±2.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C= 27°.解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=36°,∴∠BOA=54°,∴由圆周角定理得:∠C=∠BOA=27°,故答案为:27°.17.已知点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,当△AOA′为直角三角形时,点A的坐标是(,).解:因为点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,设点A坐标为(x,),点A'的坐标为(﹣x,),因为△AOA′为直角三角形,可得:x2=2,解得x=,所以点A的坐标为(,),故答案为:(,).18.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为4+3.解:连结CC′,A′C交BC于O点,如图,∵△ABC绕点B逆时针旋转60°得到△A′BC′,∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,∴△BCC′为等边三角形,∴CB=CB′,而A′B=A′C′,∴A′C垂直平分B′C,∴BO=BC′=3,在Rt△A′OB中,A′O===4,在Rt△OBC中,∵tsin∠CBO=sin60°=,∴OC=6×=3,∴A′C=A′O+OC=4+3.故答案为4+3.三、解答题(共10小题,共84分)19.先化简,再求值:(a+b)(a﹣b)+b(b﹣2),其中a=2,b=1.5.解:原式=a2﹣b2+b2﹣2b=a2﹣2b.当a=2,b=1.5时,原式=4﹣2×1.5=4﹣3=1.20.解方程和不等式组(1)x2﹣3x=x﹣3 (2).解:(1)x2﹣3x=x﹣3,x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1;(2)∵解不等式①得:x≥﹣2,解不等式②得:x<1,∴原不等式组的解集是﹣2≤x<1.21.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生是40;(2)求图1中∠α的度数是144°,把图2条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为175.解:(1)本次抽样的人数是14÷35%=40(人),故答案是:40;(2)∠α=×360=144°,C级的人数是40﹣16﹣14﹣2=8(人),故答案是:144.(3)估计不及格的人数是3500×=175(人),故答案是:175.22.甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.解:(1)列表或画树状图表示三位同学抽到卡片的所有可能结果如下:甲a a b b c c乙b c a c a b丙c b c a b a(2)如图可知,三位同学抽到卡片的所有可能的结果共有6种,所以三位同学中有一人抽到自己制作的卡片有3种,有三人抽到自己制作的卡片有1种.所以,三位同学中至少有一人抽到自己制作卡片有4种,8分所以,三位同学中至少有一人抽到自己制作的卡片的概率为:.10分23.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.证明:∵△ABC是等边三角形,∴AB=BD,∠ABD=60°,∵AB=BD,点E是AB的中点,∴DE⊥AB,∴∠DEB=90°,∵∠C=90°,∴∠DEB=∠C,∵∠BAC=30°,∴∠ABC=60°,∴∠ABD=∠ABC,在△ACB与△DEB中,,∴△ACB≌△DEB(AAS),∴AC=DE.24.图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点C、D在小正方形的顶点上),使得四边形ABCD为中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF(点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠F AB=3.解:(1)如图1所示:(2)如图2所示.25.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C 的速度是多少?解:(1)当0≤t≤90时,甲步行路程与时间的函数解析式为S=60t;当20≤t≤30时,设乙乘观光车由景点A到B时的路程与时间的函数解析式为S=mt+n,把(20,0)与(20,3000)代入得:,解得:,∴函数解析式为S=300t﹣6000(20≤t≤30);联立得:,解得:,∵25﹣20=5,∴乙出发5分钟后与甲相遇;(2)设当60≤t≤90时,乙步行由景点B到C的速度为x米/分钟,根据题意,得5400﹣3000﹣(90﹣60)x=360,解得:x=68,∴乙步行由B到C的速度为68米/分钟.26.如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)求甲船加快速度后,追赶乙船时的速度.(结果保留根号)解:(1)过点A作AD⊥BC于D,由题意得:∠B=30°,∠BAC=105°,则∠BCA=45°,AC=30千米,在Rt△ADC中,CD=AD=A C.cos45°=30(千米),在Rt△ABD中,AB=2AD=60千米,t==4(时).4﹣2=2(时),答:甲船从C处追赶上乙船用了2小时;(2)由(1)知:BD=AB•cos30°=30千米,∴BC=30+30(千米),v=(30+30)=(15+15)千米/时.答:甲船加快速度后,追赶乙船时的速度为:(15+15)千米/时.27.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥A C.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x 的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△P AE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.解:(1)∵AE⊥AC,∠ACB=90°,∴AE∥BC,∴=,∵BC=6,AC=8,∴AB==10,∵AE=x,AP=y,∴=,∴y=(x>0);(2)∵∠ACB=90°,而∠P AE与∠PEA都是锐角,∴要使△P AE与△ABC相似,只有∠EP A=90°,即CE⊥AB,此时△ABC∽△EAC,则=,∴AE=.故存在点E,使△ABC∽△EAP,此时AE=;(3)∵点C必在⊙E外部,∴此时点C到⊙E上点的距离的最小值为CE﹣DE.设AE=x.①当点E在线段AD上时,ED=6﹣x,EC=6﹣x+8=14﹣x,∴x2+82=(14﹣x)2,解得:x=,即⊙E的半径为.②当点E在线段AD延长线上时,ED=x﹣6,EC=x﹣6+8=x+2,∴x2+82=(x+2)2,解得:x=15,即⊙E的半径为9.∴⊙E的半径为9或.28.如图,在平面直角坐标系xOy中,直线y=kx﹣7与y轴交于点C,与x轴交于点B,抛物线y=ax2+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2:7.(1)求抛物线的解析式;(2)点D为线段CB上一点,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.解:(1)∵直线y=kx﹣7与y轴的负半轴交于点C∴C(0,﹣7),∴OC=7,∵抛物线y=ax2+bx+14a经过点C,∴14a=﹣7,∴a=﹣,∴y=﹣x2+bx﹣7,∵OA:OC=2:7.∴OA=2,∴A(2,0)∵抛物线y=﹣x2+bx﹣7经过点A,∴b=∴抛物线的解析式为y=﹣x2+x﹣7,(2)如图1,∵抛物线y=﹣x2+x﹣7经过B点,令y=0解得x=7或x=2(舍去),∴B(7,0),∴OB=7,∴OC=OB,∴∠OCB=∠OBC=45°过点P作PF⊥x轴于点G,交CB延长线于点F,则PF∥y轴,∴∠CFG=∠OCB=45°,∴BF=GF,过P作PE⊥BC于点E,∵PD=PB,∴∠PBD=∠PDB,∴tan∠PBD=tan∠PDB=2,∴PE=2BE,∵EF=PE,∴BF=BE,∴PF=PE=2BE=2BF=4GF,∴PG=3GF,∵直线y=kx﹣7过B点,∴k=1,∴y=x﹣7,设F(m,m﹣7),则P(m,﹣3(m﹣7)),∵点P在抛物线y=﹣x2+x﹣7上,∴,解得m=7(舍去)或m=8,∴P(8,﹣3);(3)如图2,当DP∥QR时,即四边形DQRP是平行四边形,∵B(7,0),Q(7,m)∴BQ∥y轴过P作PN∥BQ,过D作DN⊥BQ交PN于点N,过R作RM⊥BQ于点M.设PD交BQ于点T,DN交BM于点I,∴∠DTB=∠DPN,∠PTQ=∠RQM,∵∠DTB=∠PTQ,∴∠DPN=∠RQM,∵四边形DPRQ是平行四边形,∴DP=RQ,在△RMQ和△DNP中,,∴△RMQ≌△DNP(AAS),∴RM=DN,MQ=PN,由(2)可求F(8,1),GF=1,BD=2BE=2BF=2GF=∵∠QBC=45°,∴BI=DI=2,∴D(5,﹣2),设R点的横坐标为t,∵RM=DN,∴t﹣7=8﹣5,解得t=10,∵点R在抛物线y=﹣x2+x﹣7 上,∴当t=10时,,∴R(10,﹣12),∵MQ=PN,∴3﹣2=﹣12﹣n,∴n=﹣11,∴R(10,﹣12),Q(7,﹣11),如图3,当DR∥QP时,即四边形DQPR是平行四边形同理可求得R(6,2),Q(7,﹣7).。